簡易檢索 / 詳目顯示

研究生: SHAMBEL ABATE MARYE
SHAMBEL ABATE MARYE
論文名稱: 利用激發態輻射光合成奈米金屬與其特徵概述
Laser-Irradiation Synthesis and Characterization of Metal Nanocatalysts
指導教授: 今榮東洋子
Toyoko Imae
口試委員: 何清華
Ching-Hwa Ho
氏原真樹
Masaki Ujihara
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 99
中文關鍵詞: 飛秒激光金屬奈米糰簇銀奈米糰簇金屬奈米催化劑纖維素奈米纖維絲和4-硝基苯
外文關鍵詞: Femtosecond laser, metal nanoclusters, silver nanoclusters, metal nanocatalysts, cellulose nanofiber filaments, 4-nitrophenol
相關次數: 點閱:352下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

摘要
當粒子的大小縮至極小時,可應用的範圍會因為其特性而大幅增廣。研究指出多種利用還原劑與保護劑的化學還原反應可用來合成金屬奈米團簇。在此研究中,在不使用還原劑及穩定劑情況下,以極強的飛秒雷射照射在水溶液中的金屬離子中合成出銀奈米團簇(AgNCs)。 不同於一般尺寸的物質,極小的奈米物質確實表現出高表面積及量子尺寸效應的特性。此研究也以對硝基苯酚(4-NP)的降解來對銀奈米團簇在雲母上的催化特性進行探究。短暫鐳射照射產生的微型裸面金屬奈米團簇可達成高催化效率。
此外,銀奈米團簇在飛秒雷射照射程序後沈積於纖維素奈米纖維(CNF)上。纖維素奈米纖維上銀奈米團簇的形成與分佈可藉由X射線光電子能譜儀及場發射掃描電子顯微鏡能譜儀來測定。製備好充滿銀奈米團簇纖維的對硝基苯酚降解效率則達到銀奈米團簇催化雲母相似的反應速率


Abstract
When the particles’ size is reduced to be very small, the scope of their applications would expand widely due to their unique properties. Then the synthesis of metal nanoclusters has been reported through various chemical reductions where reducing agents and protecting agents were utilized. In this study, silver nanoclusters (AgNCs) were synthesized by irradiating a highly intense femtosecond laser to metal ions in an aqueous solution without reducing and stabilizing agents. Ultra-small nanomaterial indeed exhibits characteristic properties of their extremely high surface area and quantum size effects different from those of bulk counterpart. The catalytic properties of silver nanoclusters on mica were investigated by the degradation of 4-nitrophenol (4-NP). The excellent catalytic efficiency was achieved by metal nanoclusters with bare surface and smaller sizes which was produced by shorter laser irradiation.
Additionally, silver nanoclusters were deposited on cellulose nanofiber (CNF) filament by a femtosecond laser irradiation procedure. The formation and distribution of silver nanoclusters on CNF filament was determined by X-ray photoelectron spectroscopy and field emission scanning electron microscope-energy dispersive spectroscopy. The 4-NP degradation efficiency of an as-prepared silver nanocluster loaded filament achieved a similar reaction rate to that of catalyst on mica.

Table of Contents ABSTRACT I ACKNOWLEDGEMENTS V LIST OF ABBREVIATIONS IX LIST OF FIGURES XI LIST OF TABLES XIV CHAPTER 1 : GENERAL INTRODUCTION 1 1.1 BACKGROUND 1 1.2 METAL NANOCLUSTERS AND QUANTUM CLUSTERS 3 1.2.1 Science of metal clusters 3 1.2.2 Electronic structure of metal nanoclusters 5 1.2.3 Properties of metal nanoclusters 8 1.2.3.1 Reactivity properties 9 1.2.3.2 Optical properties 9 1.2.3.3 Melting properties 10 1.2.3.4 Magnetic properties 10 1.3 LASER IRRADIATION IN AQUEOUS MEDIA 11 1.3.1 The interaction between laser irradiation and matters 11 1.3.2 Femtosecond laser irradiation in aqueous media and formation of metal nanoclusters 16 1.3.2.1 Top-down approaches 20 1.3.2.2 Bottom-up approaches 21 1.4 CATALYTIC PROPERTIES OF METAL NANOCLUSTERS 22 1.4.1 Introduction 22 1.4.2 Catalytic model reaction 25 1.4.3 Reduction of 4-nitrophenol 25 1.5 FEMTOSECOND LASER DEPOSITION OF METAL NANOCTALYST ON CELLULOSE NANOFIBER FILAMENTS (CNF) 26 1.5.1 Wet spinning 27 1.6 OBJECTIVES 28 1.6.1 Specific objective 28 CHAPTER 2 : SYNTHESIS AND CATALYTIC EFFECT OF METAL NANOCATALYSTS UNDER FEMTOSECOND LASER IRRADIATION 30 2.1 MOTIVATION 30 2.2 EXPERIMENTAL SECTION 32 2.2.1 Materials and methods 32 2.2.1.1 Synthesis of Silver Nanocluster (AgNCs) 33 2.2.1.2 Catalytic degradation of 4-Nitrophenol 34 2.3 RESULTS AND DISCUSSION 35 2.3.1 Fabrication of AgNCs 35 2.3.2 Quantum yield of AgNCs 48 2.3.3 Catalytic performance of Ag and Au NCs 50 2.4 CONCLUSION 55 CHAPTER 3 : FEMTOSECOND LASER DEPOSITION OF SILVER NANOCLUSTERS ON CNF FILAMENT AND ITS CATALYTIC EFFECT. 57 3.1 MOTIVATION 57 3.2 EXPERIMENTAL SECTION 59 3.2.1 Materials and methods 59 3.2.1.1 Synthesis of silver nanoclusters at CNF filament 59 3.2.1.2 Catalytic reduction of 4-nitrophenol (4-NP) 60 3.3 RESULT AND DISCUSSION 61 3.3.1 Characterization of Ag@CNF filaments 61 3.3.2 Catalytic performance of AgNCs supported by cellulose nanofiber (CNF) filament 64 3.4 CONCLUSION 69 CHAPTER 4 : GENERAL CONCLUSION AND SUMMARY 70 REFERENCES 72

References
[1] I. Ghiuţă, D. Cristea, D. Munteanu, Synthesis methods of metallic nanoparticles-An overview, Bulletin of the Transilvania University of Brasov. Engineering Sciences. Series I, 10 (2017) 133-140.
[2] J. Hulla, S. Sahu, A. Hayes, Nanotechnology: History and future, Hum Exp Toxicol, 34 (2015) 1318-1321.
[3] A. Junk, F. Riess, From an idea to a vision: There’s plenty of room at the bottom, Am J Phys, 74 (2006) 825-830.
[4] H.W. Kroto, J.R. Heath, S.C. O'Brien, R.F. Curl, R.E. Smalley, C60: Buckminsterfullerene, Nature, 318 (1985) 162-163.
[5] E. Becker, K. Bier, W. Henkes, Strahlen aus kondensierten Atomen und Molekeln im Hochvakuum, Z Angew Math Phys, 146 (1956) 333-338.
[6] T.G. Dietz, M.A. Duncan, D.E. Powers, R.E. Smalley, Laser production of supersonic metal cluster beams, J. Chem. Phys., 74 (1981) 6511-6512.
[7] S. Khanna, P. Jena, Assembling crystals from clusters, Phys. Rev. Lett., 69 (1992) 1664-1667.
[8] J.L.H. Chau, C.-Y. Chen, C.-C. Yang, Facile synthesis of bimetallic nanoparticles by femtosecond laser irradiation method, Arab. J. Chem., 10 (2017) S1395-S1401.
[9] P. Jena, A.W. Castleman Jr, Nanoclusters: a bridge across disciplines, Elsevier (2010), Book.
[10] F.L. Deepak, Metal Nanoparticles and Clusters: Advances in Synthesis, Properties and Applications, Springer (2017), Book.
[11] W. Knight, K. Clemenger, W.A. de Heer, W.A. Saunders, M. Chou, M.L. Cohen, Electronic shell structure and abundances of sodium clusters, Phys. Rev. Lett., 52 (1984) 2141-2143.
[12] S. Ibrahimkutty, P. Wagener, T. dos Santos Rolo, D. Karpov, A. Menzel, T. Baumbach, S. Barcikowski, A. Plech, A hierarchical view on material formation during pulsed-laser synthesis of nanoparticles in liquid, Sci. Rep., 5 (2015) 16313-16323.
[13] R. Kubo, Electronic properties of small metallic particles, Appl. Phys. Lett., 1 (1962) 49-50.
[14] C. Vinod, G. Kulkarni, C. Rao, Size-dependent changes in the electronic structure of metal clusters as investigated by scanning tunneling spectroscopy, Chem. Phys. Lett., 289 (1998) 329-333.
[15] S.M. Morton, D.W. Silverstein, L. Jensen, Theoretical studies of plasmonics using electronic structure methods, Chem. Rev., 111 (2011) 3962-3994.
[16] M. Haruta, Size-and support-dependency in the catalysis of gold, Catal. Today, 36 (1997) 153-166.
[17] Y. Lu, W. Chen, Size effect of silver nanoclusters on their catalytic activity for oxygen electro-reduction, J. Power Sources, 197 (2012) 107-110.
[18] Q. Sun, Q. Wang, B. Rao, P. Jena, Electronic Structure and Bonding of Au on a SiO2 Cluster: A Nanobullet for Tumors, Phys. Rev. Lett., 93 (2004) 186803-186807.
[19] P. Buffat, J.P. Borel, Size effect on the melting temperature of gold particles, Phys Rev A (Coll Park), 13 (1976) 2287-2298.
[20] F. Liu, M. Press, S. Khanna, P. Jena, Magnetism and local order: Ab initio tight-binding theory, Phys. Rev. B, 39 (1989) 6914-6924.
[21] B. Reddy, S. Nayak, S. Khanna, B. Rao, P. Jena, Physics of nickel clusters. 2. Electronic structure and magnetic properties, J. Phys. Chem. A, 102 (1998) 1748-1759.
[22] I.M. Billas, A. Chatelain, W.A. de Heer, Magnetism from the atom to the bulk in iron, cobalt, and nickel clusters, Science, 265 (1994) 1682-1684.
[23] I.M. Billas, J. Becker, A. Châtelain, W.A. de Heer, Magnetic moments of iron clusters with 25 to 700 atoms and their dependence on temperature, Phys. Rev. Lett., 71 (1993) 4067-4070.
[24] L. Shang, S. Dong, G.U. Nienhaus, Ultra-small fluorescent metal nanoclusters: synthesis and biological applications, Nano Today, 6 (2011) 401-418.
[25] J. Li, J.-J. Zhu, K. Xu, Fluorescent metal nanoclusters: from synthesis to applications, Trends Analyt Chem, 58 (2014) 90-98.
[26] J. Singh, T. Dutta, K.-H. Kim, M. Rawat, P. Samddar, P. Kumar, ‘Green’synthesis of metals and their oxide nanoparticles: applications for environmental remediation, J. Nanobiotechnology, 16 (2018) 84-108.
[27] K. Habiba, V.I. Makarov, B.R. Weiner, G. Morell, Fabrication of nanomaterials by pulsed laser synthesis, Manufacturing Nanostructures, (2014) 263-292.
[28] I. Draganic, The radiation chemistry of water, Elsevier (2012), Book.
[29] S.A.e. Kozlov, V.V. Samartsev, Fundamentals of femtosecond optics, Elsevier (2013), Book.
[30] S. Le Caër, Water radiolysis: influence of oxide surfaces on H2 production under ionizing radiation, Water Res., 3 (2011) 235-253.
[31] J.-P. Abid, A. Wark, P.-F. Brevet, H. Girault, Preparation of silver nanoparticles in solution from a silver salt by laser irradiation, ChemComm, (2002) 792-793.
[32] B.C. Garrett, D.A. Dixon, D.M. Camaioni, D.M. Chipman, M.A. Johnson, C.D. Jonah, G.A. Kimmel, J.H. Miller, T.N. Rescigno, P.J. Rossky, Role of water in electron-initiated processes and radical chemistry: Issues and scientific advances, Chem. Rev., 105 (2005) 355-390.
[33] T. Nakamura, H. Magara, Y. Herbani, S. Sato, Fabrication of silver nanoparticles by highly intense laser irradiation of aqueous solution, Appl. Phys. A, 104 (2011) 1021-1024.
[34] R.A. de Matos, T. da Silva Cordeiro, R.E. Samad, N.D. Vieira, L.C. Courrol, Green synthesis of gold nanoparticles of different sizes and shapes using agar–agar water solution and femtosecond pulse laser irradiation, Appl. Phys. A, 109 (2012) 737-741.
[35] T. Nakamura, Y. Mochidzuki, S. Sato, Fabrication of gold nanoparticles in intense optical field by femtosecond laser irradiation of aqueous solution, J. Mater. Res., 23 (2008) 968-974.
[36] T. Nakamura, K. Takasaki, A. Ito, S. Sato, Fabrication of platinum particles by intense, femtosecond laser pulse irradiation of aqueous solution, Appl. Surf. Sci., 255 (2009) 9630-9633.
[37] T. Nakamura, Y. Herbani, S. Sato, Fabrication of gold-platinum nanoparticles by intense, femtosecond laser irradiation of aqueous solution, Conference on Lasers and Electro-Optics, Optical Society of America, (2010), pp. 16-18.
[38] Y. Herbani, T. Nakamura, S. Sato, Synthesis of platinum-based binary and ternary alloy nanoparticles in an intense laser field, J. Colloid Interface Sci., 375 (2012) 78-87.
[39] M. John, K. Tibbetts, One-step femtosecond laser ablation synthesis of sub-5 nm gold nanoparticles embedded in silica, Appl. Surf. Sci., (2018) 1057-1089.
[40] C.-A.J. Lin, C.-H. Lee, J.-T. Hsieh, H.-H. Wang, J.K. Li, J.-L. Shen, W.-H. Chan, H.-I. Yeh, W.H. Chang, Synthesis of fluorescent metallic nanoclusters toward biomedical application: recent progress and present challenges, J Med Biol Eng, 29 (2009) 276-283.
[41] Y. Chen, M.L. Phipps, J.H. Werner, S. Chakraborty, J.S. Martinez, DNA templated metal nanoclusters: from emergent properties to unique applications, Acc. Chem. Res., 51 (2018) 2756-2763.
[42] I. Chakraborty, T. Pradeep, Atomically precise clusters of noble metals: emerging link between atoms and nanoparticles, Chem. Rev., 117 (2017) 8208-8271.
[43] M.S. Blevins, D. Kim, C.M. Crittenden, S. Hong, H.-C. Yeh, J.T. Petty, J.S.J.A.n. Brodbelt, Footprints of Nanoscale DNA–Silver Cluster Chromophores via Activated-Electron Photodetachment Mass Spectrometry, ACS Nano, 13 (2019) 14070-14079.
[44] B. Liu, H. Yao, W. Song, L. Jin, I.M. Mosa, J.F. Rusling, S.L. Suib, J. He, Ligand-free noble metal nanocluster catalysts on carbon supports via “soft” nitriding, J. Am. Chem. Soc., 138 (2016) 4718-4721.
[45] L. Zhang, E. Wang, Metal nanoclusters: new fluorescent probes for sensors and bioimaging, Nano Today, 9 (2014) 132-157.
[46] M.A. Ur Rehman, S. Ferraris, W.H. Goldmann, S. Perero, F.E. Bastan, Q. Nawaz, G.G.d. Confiengo, M. Ferraris, A.R. Boccaccini, Antibacterial and bioactive coatings based on radio frequency co-sputtering of silver nanocluster-silica coatings on PEEK/bioactive glass layers obtained by electrophoretic deposition, ACS Appl. Mater. Interfaces, 9 (2017) 32489-32497.
[47] S. Pan, W. Liu, J. Tang, Y. Yang, H. Feng, Z. Qian, J. Zhou, Hydrophobicity-guided self-assembled particles of silver nanoclusters with aggregation-induced emission and their use in sensing and bioimaging, J Mater Chem B, 6 (2018) 3927-3933.
[48] C. Kagan, Flexible colloidal nanocrystal electronics, Chem. Soc. Rev., 48 (2019) 1626-1641.
[49] M. Liu, W. Chen, Green synthesis of silver nanoclusters supported on carbon nanodots: enhanced photoluminescence and high catalytic activity for oxygen reduction reaction, Nanoscale 5 (2013) 12558-12564.
[50] K. Shimizu, K. Sawabe, A. Satsuma, Technology, Unique catalytic features of Ag nanoclusters for selective NOx reduction and green chemical reactions, Catal. Sci. Technol., 1 (2011) 331-341.
[51] W. Zhou, Y. Fang, J. Ren, S. Dong, DNA-templated silver and silver-based bimetallic clusters with remarkable and sequence-related catalytic activity toward 4-nitrophenol reduction, ChemComm 55 (2019) 373-376.
[52] R. Jin, The impacts of nanotechnology on catalysis by precious metal nanoparticles, Nanotechnol. Rev., 1 (2012) 31-56.
[53] Y.A. Kherde, Green Synthesis and Evaluation of Catalytic Activity of Sugar Capped Gold Nanoparticles, (2014), Master's Thesis.
[54] S. Khan, J. Nawab, M. Waqas, Constructed wetlands: a clean-green technology for degradation and detoxification of industrial wastewaters, Bioremediation of Industrial Waste for Environmental Safety, Springer (2020), pp. 127-163.
[55] H.H. Kung, M.C. Kung, Nanotechnology and heterogeneous catalysis, Nanotechnology in catalysis, Springer (2007), pp. 1-11.
[56] T. Bhowmik, M.K. Kundu, S. Barman, Ultra small gold nanoparticles–graphitic carbon nitride composite: an efficient catalyst for ultrafast reduction of 4-nitrophenol and removal of organic dyes from water, RSC Adv., 5 (2015) 38760-38773.
[57] C. Wang, H. Zhang, C. Feng, S. Gao, N. Shang, Z. Wang, Multifunctional Pd@ MOF core–shell nanocomposite as highly active catalyst for p-nitrophenol reduction, Catal Commun, 72 (2015) 29-32.
[58] S. Pandey, S.B. Mishra, Catalytic reduction of p-nitrophenol by using platinum nanoparticles stabilised by guar gum, Carbohydr. Polym., 113 (2014) 525-531.
[59] B. Lai, Y. Zhang, Z. Chen, P. Yang, Y. Zhou, J. Wang, Removal of p-nitrophenol (PNP) in aqueous solution by the micron-scale iron–copper (Fe/Cu) bimetallic particles, Appl. Catal. B, 144 (2014) 816-830.
[60] W. Zhou, Y. Fang, J. Ren, S. Dong, DNA-templated silver and silver-based bimetallic clusters with remarkable and sequence-related catalytic activity toward 4-nitrophenol reduction, ChemComm, 55 (2019) 373-376.
[61] P. Zhao, X. Feng, D. Huang, G. Yang, D. Astruc, Basic concepts and recent advances in nitrophenol reduction by gold-and other transition metal nanoparticles, Coord Chem Rev, 287 (2015) 114-136.
[62] X.-Q. Qiao, Z.-W. Zhang, F.-Y. Tian, D.-F. Hou, Z.-F. Tian, D.-S. Li, Q. Zhang, Enhanced catalytic reduction of p-nitrophenol on ultrathin MoS2 nanosheets decorated with noble metal nanoparticles, Cryst. Growth Des., 17 (2017) 3538-3547.
[63] S. Ghasemi, Cellulose nanofibrils (CNF) for textile applications: production of neat CNF filaments and reinforcement of natural fiber yarns, (2019), PhD Thesis.
[64] M. Gopiraman, D. Deng, S. Saravanamoorthy, I.-M. Chung, I.S. Kim, Gold, silver and nickel nanoparticle anchored cellulose nanofiber composites as highly active catalysts for the rapid and selective reduction of nitrophenols in water, RSC advances, 8 (2018) 3014-3023.
[65] A. Isogai, Wood nanocelluloses: fundamentals and applications as new bio-based nanomaterials, J. Wood Sci., 59 (2013) 449-459.
[66] L. Wang, M.J. Lundahl, L.G. Greca, A.C. Papageorgiou, M. Borghei, O.J. Rojas, Effects of non-solvents and electrolytes on the formation and properties of cellulose I filaments, Sci. Rep., 9 (2019) 1-11.
[67] R. Jin, Atomically precise metal nanoclusters: stable sizes and optical properties, Nanoscale, 7 (2015) 1549-1565.
[68] Y. Sheng, H. Yang, Y. Wang, L. Han, Y. Zhao, A. Fan, Silver nanoclusters-catalyzed luminol chemiluminescence for hydrogen peroxide and uric acid detection, Talanta, 166 (2017) 268-274.
[69] P. Jena, Q. Sun, Super atomic clusters: design rules and potential for building blocks of materials, Chem. Rev., 118 (2018) 5755-5870.
[70] R. Jin, Atomically precise metal nanoclusters: stable sizes and optical properties, Nanoscale, 7 (2015) 1549-1565.
[71] B.H. Kim, M.J. Hackett, J. Park, T. Hyeon, Synthesis, characterization, and application of ultrasmall nanoparticles, Chem. Mater., 26 (2014) 59-71.
[72] R. Jin, Quantum sized, thiolate-protected gold nanoclusters, Nanoscale 2 (2010) 343-362.
[73] H. Xu, K.S. Suslick, Water-soluble fluorescent silver nanoclusters, Adv. Mater., 22 (2010) 1078-1082.
[74] C.-A.J. Lin, C.-H. Lee, J.-T. Hsieh, H.-H. Wang, J.K. Li, J.-L. Shen, W.-H. Chan, H.-I. Yeh, W.H. Chang, Synthesis of fluorescent metallic nanoclusters toward biomedical application: recent progress and present challenges, J. Med. Biol. Eng, 29 (2009) 276-283.
[75] J. Lü, Y. Fu, Y. Song, D. Wang, C. Lü, Temperature-dependent catalytic reduction of 4-nitrophenol based on silver nanoclusters protected by a thermo-responsive copolymer ligand, RSC adv., 6 (2016) 14247-14252.
[76] Q. Geng, J. Du, Reduction of 4-nitrophenol catalyzed by silver nanoparticles supported on polymer micelles and vesicles, RSC Adv., 4 (2014) 16425-16428.
[77] J. Wilcoxon, B. Abrams, Synthesis, structure and properties of metal nanoclusters, Chem. Soc. Rev., 35 (2006) 1162-1194.
[78] H. Hirai, Y. Nakao, N. Toshima, Preparation of colloidal rhodium in poly (vinyl alcohol) by reduction with methanol, J Macromol Sci Phys, 12 (1978) 1117-1141.
[79] W. Tu, H. Liu, Continuous synthesis of colloidal metal nanoclusters by microwave irradiation, Chem. Mater., 12 (2000) 564-567.
[80] T.G. Dietz, M.A. Duncan, D.E. Powers, R.E. Smalley, Laser production of supersonic metal cluster beams, The Journal of Chemical Physics, 74 (1981) 6511-6512.
[81] W. Chen, J. Kim, S. Sun, S. Chen, Electro-oxidation of formic acid catalyzed by FePt nanoparticles, Phys. Chem. Chem. Phys., 8 (2006) 2779-2786.
[82] Z. Liu, M. Shamsuzzoha, E.T. Ada, W.M. Reichert, D.E. Nikles, Synthesis and activation of Pt nanoparticles with controlled size for fuel cell electrocatalysts, J. Power Sources, 164 (2007) 472-480.
[83] C. Koenigsmann, W.-p. Zhou, R.R. Adzic, E. Sutter, S.S. Wong, Size-dependent enhancement of electrocatalytic performance in relatively defect-free, processed ultrathin platinum nanowires, Nano Lett., 10 (2010) 2806-2811.
[84] Y. Cao, J. Guo, R. Shi, G.I.N. Waterhouse, J. Pan, Z. Du, Q. Yao, L.Z. Wu, C.H. Tung, J. Xie, T. Zhang, Evolution of thiolate-stabilized Ag nanoclusters from Ag-thiolate cluster intermediates, Nat Commun, 9 (2018) 2379-2385.
[85] B. Han, E. Wang, DNA-templated fluorescent silver nanoclusters, Anal. Bioanal. Chem., 402 (2012) 129-138.
[86] A. Regiel-Futyra, M. Kus-Liśkiewicz, V. Sebastian, S. Irusta, M. Arruebo, A. Kyzioł, G. Stochel, Development of noncytotoxic silver–chitosan nanocomposites for efficient control of biofilm forming microbes, RSC adv., 7 (2017) 52398-52413.
[87] L. Yan, K.H. Chan, A. Uddin, Dopamine-induced growth of Au and Ag nanoparticles on ITO substrate and their application in PCPDTBT-based polymer solar cell, Plasmonics, 12 (2017) 345-351.
[88] I. Díez, R.H. Ras, Fluorescent silver nanoclusters, Nanoscale, 3 (2011) 1963-1970.
[89] P. Díaz-Núñez, J. González-Izquierdo, G. González-Rubio, A. Guerrero-Martínez, A. Rivera, J.M. Perlado, L. Bañares, O. Peña-Rodríguez, Effect of organic stabilizers on silver nanoparticles fabricated by femtosecond pulsed laser ablation, Appl. Sci., 7 (2017) 793-803.
[90] T. Nakamura, H. Magara, Y. Herbani, S. Sato, Fabrication of silver nanoparticles by highly intense laser irradiation of aqueous solution, Applied Physics A, 104 (2011) 1021-1024.
[91] S. Le Caër, Water radiolysis: influence of oxide surfaces on H2 production under ionizing radiation, Water 3 (2011) 235-253.
[92] G. Dey, Chemical reduction of CO2 to different products during photo catalytic reaction on TiO2 under diverse conditions: an overview, J Nat Gas Sci Eng, 16 (2007) 217-226.
[93] X. Le Guével, C. Spies, N. Daum, G. Jung, M. Schneider, Highly fluorescent silver nanoclusters stabilized by glutathione: a promising fluorescent label for bioimaging, Nano Res., 5 (2012) 379-387.
[94] C. Würth, M. Grabolle, J. Pauli, M. Spieles, U. Resch-Genger, Relative and absolute determination of fluorescence quantum yields of transparent samples, Nat. Protoc., 8 (2013) 1535-1550.
[95] A.T.R. Williams, S.A. Winfield, J.N. Miller, Relative fluorescence quantum yields using a computer-controlled luminescence spectrometer, Analyst, 108 (1983) 1067-1071.
[96] G. Liao, J. Chen, W. Zeng, C. Yu, C. Yi, Z. Xu, Facile preparation of uniform nanocomposite spheres with loading silver nanoparticles on polystyrene-methyl acrylic acid spheres for catalytic reduction of 4-nitrophenol, J. Phys. Chem. C, 120 (2016) 25935-25944.
[97] A. Gangula, R. Podila, L. Karanam, C. Janardhana, A.M. Rao, Catalytic reduction of 4-nitrophenol using biogenic gold and silver nanoparticles derived from Breynia rhamnoides, Langmuir, 27 (2011) 15268-15274.
[98] L. Ai, J. Jiang, Catalytic reduction of 4-nitrophenol by silver nanoparticles stabilized on environmentally benign macroscopic biopolymer hydrogel, Bioresour. Technol., 132 (2013) 374-377.
[99] H.-L. Cao, H.-B. Huang, Z. Chen, B. Karadeniz, J. Lü, R. Cao, Ultrafine silver nanoparticles supported on a conjugated microporous polymer as high-performance nanocatalysts for nitrophenol reduction, ACS Appl. Mater. Interfaces, 9 (2017) 5231-5236.
[100] K. Kuroda, T. Ishida, M. Haruta, Reduction of 4-nitrophenol to 4-aminophenol over Au nanoparticles deposited on PMMA, J Mol Catal A Chem, 298 (2009) 7-11.
[101] S. Shankar, A.A. Oun, J.-W. Rhim, Preparation of antimicrobial hybrid nano-materials using regenerated cellulose and metallic nanoparticles, Int. J. Biol. Macromol., 107 (2018) 17-27.
[102] S. Ramakrishna, K. Fujihara, W.-E. Teo, T. Yong, Z. Ma, R. Ramaseshan, Electrospun nanofibers: solving global issues, Appl. Mater. Today, 9 (2006) 40-50.
[103] T. Zhang, W. Wang, D. Zhang, X. Zhang, Y. Ma, Y. Zhou, L. Qi, Biotemplated synthesis of gold nanoparticle–bacteria cellulose nanofiber nanocomposites and their application in biosensing, Adv. Funct. Mater., 20 (2010) 1152-1160.
[104] W.K. Son, J.H. Youk, W.H. Park, Antimicrobial cellulose acetate nanofibers containing silver nanoparticles, Carbohydr. Polym., 65 (2006) 430-434.
[105] B. Ramaraju, T. Imae, A.G. Destaye, Ag nanoparticle-immobilized cellulose nanofibril films for environmental conservation, Applied Catalysis A: General, 492 (2015) 184-189.
[106] X. Lin, M. Wu, D. Wu, S. Kuga, T. Endo, Y. Huang, Platinum nanoparticles using wood nanomaterials: eco-friendly synthesis, shape control and catalytic activity for p-nitrophenol reduction, Green Chem., 13 (2011) 283-287.
[107] R.D. Neal, Y. Inoue, R.A. Hughes, S. Neretina, Catalytic Reduction of 4-Nitrophenol by Gold Catalysts: The Influence of Borohydride Concentration on the Induction Time, J. Phys. Chem. C, 123 (2019) 12894-12901.
[108] C. Kästner, A.F. Thünemann, Catalytic reduction of 4-nitrophenol using silver nanoparticles with adjustable activity, Langmuir, 32 (2016) 7383-7391.
[109] J. Lü, Y. Fu, Y. Song, D. Wang, C. Lü, Temperature-dependent catalytic reduction of 4-nitrophenol based on silver nanoclusters protected by a thermo-responsive copolymer ligand, RSC Adv., 6 (2016) 14247-14252.
[110] H. Yamamoto, H. Yano, H. Kouchi, Y. Obora, R. Arakawa, H. Kawasaki, N, N-Dimethylformamide-stabilized gold nanoclusters as a catalyst for the reduction of 4-nitrophenol, Nanoscale, 4 (2012) 4148-4154.
[111] G. Liao, Y. Gong, L. Zhong, J. Fang, L. Zhang, Z. Xu, H. Gao, B. Fang, Unlocking the door to highly efficient Ag-based nanoparticles catalysts for NaBH 4-assisted nitrophenol reduction, Nano Res., (2019) 1-30.
[112] K. Hayakawa, T. Yoshimura, K. Esumi, Preparation of gold− dendrimer nanocomposites by laser irradiation and their catalytic reduction of 4-nitrophenol, Langmuir, 19 (2003) 5517-5521.
[113] S. Mourdikoudis, T. Altantzis, L.M. Liz-Marzán, S. Bals, I. Pastoriza-Santos, J. Pérez-Juste, Hydrophilic Pt nanoflowers: synthesis, crystallographic analysis and catalytic performance, CrystEngComm, 18 (2016) 3422-3427.
[114] Y.-J. Cheng, G.-F. Luo, J.-Y. Zhu, X.-D. Xu, X. Zeng, D.-B. Cheng, Y.-M. Li, Y. Wu, X.-Z. Zhang, R.-X. Zhuo, Enzyme-induced and tumor-targeted drug delivery system based on multifunctional mesoporous silica nanoparticles, ACS Appl. Mater. Interfaces, 7 (2015) 9078-9087.
[115] T.M. Tolaymat, A.M. El Badawy, A. Genaidy, K.G. Scheckel, T.P. Luxton, M. Suidan, An evidence-based environmental perspective of manufactured silver nanoparticle in syntheses and applications: a systematic review and critical appraisal of peer-reviewed scientific papers, Sci. Total Environ., 408 (2010) 999-1006.
[116] Q. Yao, B. Fan, Y. Xiong, C. Wang, H. Wang, C. Jin, Q. Sun, Stress sensitive electricity based on Ag/cellulose nanofiber aerogel for self-reporting, Carbohydr. Polym., 168 (2017) 265-273.
[117] B. Ajitha, Y.A.K. Reddy, P.S. Reddy, Green synthesis and characterization of silver nanoparticles using Lantana camara leaf extract, Mater. Sci. Eng. C, 49 (2015) 373-381.
[118] J. Jiménez, H. Liu, E. Fachini, X-ray photoelectron spectroscopy of silver nanoparticles in phosphate glass, Mater. Lett., 64 (2010) 2046-2048.
[119] S.M. Albukhari, M. Ismail, K. Akhtar, E.Y. Danish, Catalytic reduction of nitrophenols and dyes using silver nanoparticles@ cellulose polymer paper for the resolution of waste water treatment challenges, Colloids Surf. A Physicochem. Eng. Asp., 577 (2019) 548-561.
[120] A. Gangula, R. Podila, L. Karanam, C. Janardhana, A.M. Rao, Catalytic reduction of 4-nitrophenol using biogenic gold and silver nanoparticles derived from Breynia rhamnoides, Langmuir, 27 (2011) 15268-15274.

無法下載圖示 全文公開日期 2026/01/27 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE