簡易檢索 / 詳目顯示

研究生: 梁育誠
Yu-cheng Liang
論文名稱: 蓄電池儲能系統之功率轉換器研製
Development of Power Converter for Battery Storage Systems
指導教授: 黃仲欽
Jonq-Chin Hwang
口試委員: 葉勝年
Sheng-Nian Yeh
連國龍
Kuo-Lung Lian
劉傳聖
Chuan-Sheng Liu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 100
中文關鍵詞: 單相市電併聯高頻變壓器直流-直流功率轉換器直流-交流功率轉換器全通濾波器
外文關鍵詞: single-phase grid connection, high-frequency transformer, dc-dc power converter, dc-ac power converter, all-pass filter
相關次數: 點閱:278下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本文旨在研製蓄電池儲能系統及配合單相市電併聯功率轉換之雙向功率轉換器。此系統包含蓄電池模組之三臂式昇、降壓直流-直流功率轉換器、單相全橋型直流-交流功率轉換器,其中三臂式昇、降壓直流功率轉換器具雙向功率轉換功能,可分別對蓄電池模組進行充、放電,並使用高頻變壓器隔離,因為是三臂式電路,故適用於高功率場合。在蓄電池方面,三臂式昇、降壓直流-直流功率轉換器上臂開關改用輸入電感使各臂電感電流維持在連續導通模式,並藉交錯式脈波寬度調變,減少電流漣波。在單相全橋型直流-交流功率轉換器方面,市電電壓利用數位全通濾波器算出市電之角位置,並採用前饋補償控制策略以提高暫態響應速度及減少穩態誤差;同時配合直流鏈電壓與交流電感電流之電壓閉迴路控制,完成蓄電池儲能系統。

      本文以高性能的數位信號處理器(DSP,TMS320F28069)作為系統之控制核心,其整體系統之控制策略及能量管理皆由軟體程式完成,以達到數位化之控制。在放電模式時,蓄電池輸出500W之功率至市電側,整體系統效率87%,三臂式直流-直流功率轉換器放電電流漣波為3%,單相直流-交流功率轉換器之電流總諧波失真率為9.59%。在充電模式時,市電側以定電流方式輸出500W功率至蓄電池,整體系統效率78%,三臂式直流-直流功率轉換器充電電流漣波為2%,單相直流-交流功率轉換器之電流總諧波失真率為9.81%。實測結果驗證本文分析及控制法則之可行性。


      The aim of this thesis is to develop a new system using battery as energy storage unit for a single-phase power grid paralleled with a power converter for bidirectional power conversion. The system includes a three-arm buck-boost bidirectional dc-dc power converter with a battery module and a single-phase full-bridge dc-ac power converter. The three-arm buck-boost bidirectional power converter, using high-frequency transformers as isolators, can be used to charge and discharge the battery. Moreover, it is three-arm circuit, can be used in high power applications. By using input inductors on the upper arms of the three-arm buck-boost bidirectional dc-dc power converter, making inductor currents work in continuous conducting mode, and implementing pulse-width modulation, one can reduce ripple currents efficiently. In addition, applying digital all-pass filter to estimate the angle of the supply mains voltage, and introducing feedback, one can increase transient response and reduce steady-state error of the single-phase full-bridge dc-ac power converter.

      In this thesis, a high performance digital signal processor, TMS320F28069, is used to control the whole system and monitor overall energy usage. Under discharging mode, the battery provides a total output of 500 W to the supply mains, with an overall efficiency of 87%. The three-arm buck-boost bidirectional power converter has a current ripple of 3%, and the single-phase full-bridge dc-ac power converter has a total current harmonic distortion of 9.59%. On the other hand, the battery receives a 500 W input from power grid through constant-current charging operation, The corresponding efficiency is 78%. The three-arm buck-boost bidirectional power converter has a current ripple of 2%, and the single-phase full bridge dc-ac power converter has a total current harmonic distortion of 9.81%. The result confirms the analysis as well as the feasibility of the proposed control strategy.

    中文摘要 英文摘要 致  謝 目  錄 符號索引 圖表索引 第一章 緒論 1.1 研究動機及目的 1.2 文獻探討 1.3 系統架構及本文特色 1.4 本文大綱 第二章 三臂式雙向直流-直流功率轉換器昇壓(放電)模式分析 2.1 前言 2.2 三臂式昇壓模式之直流-直流功率轉換器分析與控制 2.2.1 三臂式昇壓模式之工作原理 2.2.2 三臂式昇壓模式之控制策略分析 2.3 結語 第三章 三臂式雙向直流-直流功率轉換器降壓(充電)模式分析 3.1 前言 3.2 三臂式降壓模式之直流-直流功率轉換器分析與控制 3.2.1 硬性切換與柔性切換介紹 3.2.2 三臂式降壓模式之工作原理 3.2.3 三臂式降壓模式之控制策略分析 3.3 結語 第四章 三臂式雙向直流-直流功率轉換器之參數設計與實測 4.1 前言 4.2 磁性元件設計 4.2.1 磁性材料介紹 4.2.2 高頻變壓器設計 4.2.3 輸入電感設計 4.2.4 諧振電感設計 4.3 盲時設定選擇 4.4 三臂式雙向直流-直流功率轉換器實測 4.5 結語 第五章 單相直流-交流功率轉換器分析與控制 5.1 前言 5.2 單相直流-交流功率轉換器之數學模式 5.3 單相直流-交流功率轉換器之脈波寬度調變控制 5.3.1 全通濾波器 5.4 單相市電併網控制策略 5.5 濾波電感與濾波電容之設計 5.6 單相直流-交流功率轉換器實測 5.7 結語 第六章 系統整合及實測 6.1 前言 6.2 數位信號處理器介面電路與回授規劃 6.3 系統軟體規劃 6.3.1 系統主程式之規畫 6.3.2 蓄電池放電之控制程式 6.3.3 蓄電池充電之控制程式 6.3.4 單相市電併網之控制程式 6.4 實測結果 6.5 結語 第七章 結論與未來研究方向 7.1 結論 7.2 未來研究方向 參考文獻

    [1]Y. Panov and M. M. Jovanovic, “Design and performance evaluation of low- voltage/high-current DC/DC on-board modules,” IEEE Transactions on Power Electronics, vol.16, no.1, pp.26-33, 2001.

    [2]N. Kurio, K. Ogata and T. Ohnishi, “Natural commutation method for a low-voltage high-current input DC-DC converter,” IEEE 2nd International Power and Energy Conference, 2008. PECon 2008, pp.192-197, 2008.

    [3]R. Mirzahosseini and F. Tahami, “A phase-shift three-phase bidirectional series resonant DC/DC converter,” IECON 2011-37th IEEE Industrial Electronics Society on Annual Conference, pp.1137-1143, 2011.

    [4]L. Sangwon and C. Sewan, “A three-phase current-fed push-pull DC-DC converter with active clamp for fuel cell applications,” Applied Power Electronics Conference and Exposition (APEC), pp.1934-1941, 2010.

    [5]C. Jungwan , C. Hanju and H. Byung-Moon, “A three-phase interleaved dc-dc converter with active clamp for fuel cells,” IEEE Transactions on Power Electronics, vol.25, no.8, pp.2115-2123, 2010.

    [6]S. Oliveira and I. Barbi, “A three-phase step-up dc-dc converter with a three-phase high-frequency transformer for dc renewable power source applications,” IEEE Transactions on Industrial Electronics, vol.58, no.8, pp.3567-3580, 2011.

    [7]J. M. Zhang, X. G. Xie, X. K. Wu and Q. Zhaoming, “Comparison study of phase-shifted full bridge ZVS converters,” Power Electronics Specialists Conference, pp.533-539, 2004.

    [8]M. Xuejun, W. Hongxia and Y. Xiumei, “PWM and phase-shifted control method for isolated asymmetric half- bridge bi-directional converter,” Power Electronics Specialists Conference, pp.3665-3670, 2008.

    [9]K. Hyungjoon, Y. Changwoo and C. Sewan, “A three-phase zero-voltage and zero-current switching dc-dc converter for fuel cell applications,” IEEE Transactions on Power Electronics, vol.25, no.2, pp.391-398,2010.

    [10]廖日能,並聯型三臂式直流-直流功率轉換器之研製,國立台灣科技大學研究所碩士論文,2009。

    [11]F. J. Wu, B. Sun and H. R. Peng, “Single-phase three-level SPWM scheme suitable for implementation with DSP,” Electronics Letters, vol.47, pp. 994-996, 2011.

    [12]A. B. Afarulrazi, M. Zarafi, W. M. Utomo and A. Zar, “FPGA implementation of unipolar SPWM for single phase inverter,” International Conference of Computer Applications and Industrial Electronics (ICCAIE), pp. 671-676, 2010.

    [13]A. Maiti, S. Choudhuri , J. Bera , T. Banerjee ,and S. Maitra, “Development of microcontroller based single phase SPWM inverter with remote control facility,” Power Electronics of Drives and Energy Systems (PEDES) &Power India, Joint International Conference, pp. 1-5, 2010.

    [14]A. Kumar and R. Gupta, “Single-phase AC/DC/AC converter using cascaded multilevel inverter,” International Conference of Power Control and Embedded Systems (ICPCES), pp. 1-5, 2010.

    [15]陳立修,燃料電池功率轉換系統之研製,國立台灣科技大學研究所博士論文,民國九十六年。

    [16]S. Oliveira and I. Barbi, “An average current-mode controlled three-phase step-up dc-dc converter with a three-phase high frequency transformer,” Power Electronics Specialists Conference, pp.2623-2629, 2005.

    [17]Z. Zhang , F. Li and Y. Liu, “A high frequency dual-channel isolated resonant gate driver with low gate drive loss for ZVS full-bridge converter,” IEEE Transactions on Power Electronics, vol.1,no.99, pp.1-1.

    [18]D. S. Oliveira and I. Barbi, “A three-phase ZVS PWM DC/DC converter with asymmetrical duty cycle associated with a three-phase version of the hybridge rectifier,” IEEE Transactions on Power Electronics, vol.20, no.2, pp.354-360, 2005.

    [19]D. S. Oliveira and I. Barbi, “A three-phase ZVS PWM DC/DC converter with asymmetrical duty cycle for high power applications,” Power Electronics Specialist Conference, pp.616-621, 2003.

    [20]張旭鋒,植基於數位信號處理器之雙向直流-直流功率轉換器研製,國立台灣科技大學研究所碩士論文,2006。

    [21]林正宏,1kW 全橋相移式升壓型零電壓切換轉換器之研製,國立台灣科技大學研究所碩士論文,2009。

    [22]J. Kim, J. Choi and H. Hong, “Output LC filter design of voltage source inverter considering the performance of controller,” International Conference on Power System Technology, pp.1659-1664, 2000.

    無法下載圖示 全文公開日期 2019/01/24 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE