簡易檢索 / 詳目顯示

研究生: 陳婉君
Wan-jiun Chen
論文名稱: 以熱沉積法摻雜氮在二氧化鈦之特性與光催化研究
Characterization and Photooxidation of N-doped Photocatalyst Prepared by Thermal Deposition
指導教授: 顧洋
Young Ku
口試委員: 蔣本基
Pen-Chi Chiang
曾迪華
Dyi-Hwa Tseng
劉志成
Jhy-Chern Liu
曾堯宣
Yao-Hsuan Tseng
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 125
中文關鍵詞: 二氧化鈦BLED摻雜氮光觸媒催化摻雜
外文關鍵詞: TiO2, BLED, nitrogen-doped, Photocatalysis, doping
相關次數: 點閱:288下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

中文摘要

本研究是將市售二氧化鈦光觸媒(P25)置於管狀高溫爐中,接著通入氨氣進行氮摻雜改質,分別改變不同鍛燒溫度以及氨氣流量作為探討因子,藉由讓O 2P軌域和N 2P軌域重疊以縮短能隙,使其光觸媒具有可見光光催化活性。並分別利用XRD、SEM、UV-vis DRS、BET、XPS以及Zata potential等儀器,對光觸媒特性做進一步的分析與探討。接著將製備出來的摻雜氮光觸媒,針對染料(甲基藍,Methylene Blue)進行光催化降解反應評估,針對不同變因進行探討,包括觸媒燒結溫度,不同光源以及溶液pH值等對觸媒活性的影響。
光觸媒材料經由UV-vis DRS鑑定分析發現,改質後的光觸媒能隙從3.2eV降至2.85eV,確實大幅提升可見光的吸收效率,XPS的定量和定性分析圖譜也分別顯示出N元素的存在。在光催化反應中,分別以BLED、GLED、UV-LED三種LED光源,進行甲基藍光催化降解,發現都具有可見光降解能力,去除率分別為68%、30%、98%。而以其甲基藍降解能力而言,在500℃下鍛燒出來的光觸媒具最佳催化能力,說明了氮的摻雜量並不是越多越好,而是存在一適當值,因為過多的摻雜反而會造成晶體結構的改變。在改變甲基藍水溶液的pH值研究發現,由於溶液不同pH值會造成溶液中的物種表面帶電性改變,不僅影響光觸媒本身對染料的吸附能力,也造成了不同的反應效率。其降解最佳值出現在pH 9.0。


Abstract

In this study, the nitrogen-doped TiO2 (P25) was prepared by annealing TiO2 under ammonia atmosphere at different temperature and for different ammonia gas flow rate in a tube furnace. Owing to the mixing of the band gap with O 2p and N 2p, the band gap was reduced and let the photocatalysts have visible light photodegradation activity. The characterizations of sample were estimated by XRD, SEM, BET, UV-vis DRS, XPS and Zeta potential. The photocatalytic activity of N-doped TiO2 was examined by decomposing of Methylene Blue with varying the calcinated temperature, different light sources and the solution pH.
From the UV-vis DRS analysis, the band gap was reduced from 3.2 eV to 2.85 eV before and after calcined the photocatalysts. The results shown the wavelengths red shifted to visible region. Moreover, the XPS spectrum of N-doped TiO2 showed the N peak obviously. In the photodegration reaction process of Methylene Blue, there were three kinds of the light be used as light sources, included BLED, GLED and UV-LED, the decomposition rate were 68%, 30% and 98%, respectively. According to the photocatalytic reaction results, the optimum temperature was annealed at 500℃. The result was shown that not the more nitrogen doping the more photocatalytic activity it have. The photocatalytic reaction was controlled strongly by pH because of the electrostatic force between the TiO2 particles and dye molecules. The optimum pH in the solution was pH 9.0.

Table of Contents Page Acknowledgment…..…………………………………..………………………………………. I English Abstract………………………………………...……………………………….. II Chinese Abstract………………………………………………………………………...III Table of Contents…………………………………………………………………………IV List of Figures…………………………………………………………………………….VII List of Tables……………………………………………………………………….….........XII List of Symbols……………………………………………………………………………XIII Chapter 1 Introduction………………………………………………………………………………1 1.1 Background……………………………………………...………………………1 1.2 Objectives and Scope……………………………………………………………2 2 Literature Review………………………………………………………………………...4 2.1 Introduction of Photocatalyst……………………………………………………4 2.2 Modification of Photocatalyst……………...……………………………………7 2.2.1 Metal-Doped Photocatalyst…………………………………………………...7 2.2.2 Non-Metal-Doped Photocatalyst……………………………………………..9 2.2.3 Visible-Light induced Photocatalyst………………………………………12 2.3 Preparative Methods of TiO2-xNx……………………………………………13 2.3.1 Sol-Gel Method………………………………………………….……….13 2.3.2 Solid State Reaction………………………………………………………15 2.3.3 Gas Phase Reaction………………………………………………………….18 2.4 Principles and Reaction Mechanisms of Photocatalysis…………………..21 2.5 Factors Affecting Photocatalysis………………………………………..23 2.5.1 Effect of Solution pH………………………………………………….23 2.5.2 Effect of Light Sources………………………………………………..24 2.5.3 Effect of Initial Concentration…………………………………………30 2.5.4 Effect of Dissolved Oxygen…………………………………………31 3 Experimental Procedures and Equipments……………………………………………33 3.1 Materials………………………………………………………………………33 3.2 Catalytic Preparation………………………………………………………….34 3.2.1 Instruments……………………………………………………………….34 3.2.2 Preparation of N-doped TiO2 Photocatalysts…………………………….39 3.3 Characterization Analysis of Photocatalysts………………………………….42 3.3.1 XRD Analysis………………………………………………………….42 3.3.2 BET Surface Area Analysis……………………………………………….43 3.3.3 SEM-EDX Analysis…………………………………………………………44 3.3.4 UV-vis Diffuse Reflectance Spectra……………………………………….44 3.3.5 XPS Results………………………………………………………………45 3.3.6 Zeta Potential Analysis……………………………………………………45 3.4 Evaluation of Visible-Light Photocatalytic Activity…………………………46 3.4.1 Establishment of Catalysis System……………………………………….46 3.4.2 Background Experiments…………………………………………….50 3.4.3 Decomposition of MB by using TiO2-xNx Photocatalysts………………..51 3.5 Experimental Structure…………………………………………………55 4 Results and Discussion…………………………………………………………..56 4.1 Background Experiments…………………………………….……………56 4.2 Characterization of Photocatalysts………………………………..………..65 4.2.1 XRD Analysis………………………………………………….……….65 4.2.2 SEM Analysis..........................................................................................73 4.2.3 UV-vis DRS Analysis................................................................................79 4.2.4 BET Surface Area Measurement……………………………..………….84 4.2.5 XPS Analysis………………………………………………………………..88 4.2.6 Zeta Potential Analysis……………………………………………..…….97 4.3 Photocatalytic Degradation of dye solution…………………………………..100 4.3.1 Effect of Calcined Temperature of Catalysts…………..……………….100 4.3.2 Effect of Solution pH…………………………………………..………..107 4.3.3 Effect of Light Source……………………………………………………..112 5 Conclusions and Recommendations……………………………………………….118 Reference Vita List of figures Figure 2.1 The structure of anatase, rutile and brookite of TiO2…………………………………..6 2.2 Schematic band energy diagram of lead or bismuth substituted perovskite-related oxides 2.3 UV-vis DRS reflection spectra of the modified photocatalysts……………….…………8 2.4 (A) Total DOSs of doped TiO2 and (B) the projected DOSs into the doped anion sites, calculated by FLAPW…………………………………………………………………..11 2.5 UV-vis diffuse reflection spectrum: (a) ball milling in H2O (b) ball milling in NH3•H2O………………………………………………………….12 2.6 Comparison of specific surface area depending on the grinding conditions and grinding Time…………………………………………………………………………………….16 2.7 UV–vis profiles of TiO2 ground in NH3 (0.1MPa) by 700 rpm grinding……….………17 speed as a function of grinding time: (a) raw TiO2, (b) 15 min, (c) 60 min, (d)120 min and (e) (d) heated at 200 ℃.( King et al. 2007)……………………………..…………18 2.8 Optical absorbance spectra of TiO2-xNx and TiO2………………………………..……..19 2.9 Dependence between the maximum intensity of absorption and modification temperature of photocatalyst…………………………………………………………………………21 2.10 Conduction and valence bands and electron-hole pair generation in semiconductors...22 2.11 Band diagram of a p-n homojunction LED: (a) zero-biased junction, (b) Junction it voltage V applied in the forward direction………………………………….………...26 3.1 Spectral distribution of light emitting by UV lamp……………………..………………36 3.2 Spectral distribution of light emitting by BLEDs……………………………….………37 3.3 Spectral distribution of light emitting by GLEDs……………………………….………38 3.4 The scheme of N-doped photocatalyst preparation system……………………………..41 3.5 Schematic diagram for determining Bragg’s law………………………………………..43 3.6 Experimental apparatus………………………………………………………….………48 3.7 Wavelength distribution of fluorescent lamp……………………………..…………….49 3.8 UV-vis absorption spectra of Methylene Blue solution…………………………………53 3.9 UV/vis spectrophotometer calibration line for MB………………...…………..……….54 4.1 Degradation of MB by photolysis process in the irradiation of 395 nm UV-LED with 10 ppm initial concentration of MB………………………………………………………..59 4.2 Degradation of MB by photolysis process in the irradiation of 463 nm BLED with 10 ppm initial concentration of MB……………………………………………….………60 4.3 Degradation of MB by photolysis process in the irradiation of 463 nm GLED with 10 ppm initial concentration of MB……………………………………………………….61 4.4 Degradation of MB by photolysis process under the irradiation of fluorescent lamp with wavelength of 400 to 700 nm in 10 ppm initial concentration of MB…………….…..62 4.5 Adsorption equilibrium of MB at different pH solution using TiO2-xNx annealing under NH3(50ml/min)/Ar(50ml/min) flow at 3 h……………………………………..………64 4.6 The structures for substitutional and interstitial in TiO2-xNx……………………..…….67 4.7 The XRD patterns of TiO2 powder before (pure TiO2) and after annealing three-hours under NH3(50ml/min)/Ar(50ml/min) flow at 300 to 700 ℃........................................69 4.8 The XRD patterns of TiO2 powder before (pure TiO2) and after annealing three-hours under NH3(70ml/min)/Ar(30ml/min) flow at 300 to 700 ℃.....................................70 4.9 The XRD patterns of TiO2 powder before (pure TiO2) and after annealing three-hours under NH3(100ml/min) flow at 300 to 700 ℃……………………………….………..71 4.10 The XRD patterns of TiO2 powder annealing three-hours under different ammonia flow rate at 700 ℃ ………………………………………………………..…….…….72 4.11 The SEM photographs (15.0kV×100,000) for N-doped TiO2 annealing at the same temperature 300 ℃ for different flow conditions……………………………..……….74 4.12 The SEM photographs (15.0kV×100,000) for N-doped TiO2 annealing at the same temperature 400 ℃ for different flow conditions…………………………..…………75 4.13 The SEM photographs (15.0kV×100,000) for N-doped TiO2 annealing at the same temperature 500 ℃ for different flow conditions…………………….……………….76 4.14 The SEM photographs (15.0kV×100,000) for N-doped TiO2 annealing at the same temperature 600 ℃ for different flow conditions…………………………………….77 4.15 The SEM photographs (15.0kV×100,000) for N-doped TiO2 annealing at the same temperature 700 ℃ for different flow conditions…………………………………….78 4.16 Dependence of the UV-vis DRS and calcined temperature on the samples annealed three-hours under NH3(50ml/min)/Ar(50ml/min) flow at 300 to 700 ℃………..……81 4.17 Dependence of the UV-vis DRS and calcined temperature on the samples annealed three-hours under NH3(70ml/min)/Ar(30ml/min) flow at 300 to 700 ℃………….….82 4.18 Dependence of the UV-vis DRS and calcined temperature on the samples annealed three-hours under NH3(100ml/min) flow at 300 to 700 ℃…………………………..83 4.19 Specific surface area of nitrogen-doped titania powders plotted as function of calcination temperature.…………………………………………………………..85 4.20 The XPS spectra of N1s. The TiO2-xNx were annealing under NH3(50ml/min)/Ar(50ml/min) flow at 300-700℃ for 3h………………………….…90 4.21 The XPS spectra of N1s. The TiO2-xNx were annealing under NH3(70ml/min)/Ar(30ml/min) flow at 300-700℃ for 3h............................................91 4.22 The XPS spectra of N1s. The TiO2-xNx were annealing under NH3(100ml/min) flow at 300-700℃ for 3h……………………………………………92 4.23 The XPS spectra of Ti2p. The TiO2-xNx were annealing under NH3(50ml/min)/Ar(50ml/min) flow at 300-700℃ for 3h............................................93 4.24 The XPS spectra of O1s. The TiO2-xNx were annealing under NH3(50ml/min)/Ar(50ml/min) flow at 300-700℃ for 3h.............................................94 4.25 The fitting curve of Ti2p. The TiO2-xNx sample was annealing under NH3(50ml/min)/Ar(50ml/min) flow at 700℃ for 3h...................................................95 4.26 pHzpc of TiO2 and TiO2 calcined at 500℃ and with 50% NH3 + 50% Ar gases……..99 4.27 Effect of different calcined temperature on photocatalytic degradation curves of methylene blue under BLED irradiation. N-doped TiO2 photocatalysts were annealing under NH3(50ml/min)/Ar(50ml/min) flow at 300 to 700℃ for 3 h…………………102 4.28 Effect of different calcined temperature on photocatalytic degradation curves of methylene blue under BLED irradiation. N-doped TiO2 photocatalysts were annealing under NH3(70ml/min)/Ar(30ml/min) flow at 300 to 700℃ for 3 h…………………103 4.29 Effect of different calcined temperature on photocatalytic degradation curves of methylene blue under BLED irradiation. N-doped TiO2 photocatalysts were annealing under NH3(100ml/min) flow at 300,400, 500, 600 and 700℃ for 3 h…………....104 4.30 Effect of calcined temperature on photocatalytic degradation curves of methylene blue under BLED irradiation……………………………………………….……………..105 4.31 The effect of pH on the photocatalytic activity of TiO2-xNx. The pH was controlled at 3, 5, 7, 9 and 11………………………………………………………………..……….109 4.32 Effect of solution pH value on photocatalytic degradation of MB……………….….110 4.33 Effect of different gas sources at the same temperature on photocatalytic degradation curves of methylene blue under BLED irradiation. N-doped TiO2 hotocatalysts were annealing under NH3(50ml/min)/Ar(50ml/min), NH3(70ml/min)/Ar(30ml/min) and NH3(100ml/min) flow at 300 to 700℃ for 3 h………………………………………114 4.34 Effect of different gas sources at the same temperature on photocatalytic degradation curves of methylene blue under GLED irradiation. N-doped TiO2 hotocatalysts were annealing under NH3(50ml/min)/Ar(50ml/min), NH3(70ml/min)/Ar(30ml/min) and NH3(100ml/min) flow at 300, 400, 500, 600 and 700℃ for 3 h……………..………115 4.35 Effect of different gas sources at the same temperature on photocatalytic degradation curves of methylene blue under UV-LED irradiation. N-dope TiO2 hotocatalysts were annealing under NH3(50ml/min)/Ar(50ml/min), NH3(70ml/min)/Ar(30ml/min) and NH3(100ml/min) flow at 300, 400, 500, 600 and 700℃ for 3 h……………………..116 4.36 Effect of different light sources on photocatalytic degradation curves of methylene blue. N-doped TiO2 hotocatalysts were annealing under NH3(50ml/min)/Ar(50ml/min) flow at 300 to 700℃ for 3 h……………………………………………………………….117 List of tables Table 2.1 Basic properties of anatase and rutile structures of TiO2……………………………….5 2.2 Phosphor and nitrogen content and apparent rate constant for the photodegradation of 4CP of different samples…………………………………………………………………15 2.3 Nitrogen values in TiO2-xNx.............................................................................................20 2.4 Light emitting diode color Variations……………………………….…………………..29 3.1 Characteristics of Methylene Blue………………………………………………………52 4.1 Adsorption equilibrium of MB at different prepared methods between the temperature of 300 to 700 ℃..........................................................................................................63 4.2 JCPDS - TiO2 anatase phase............................................................................................68 4.3 JCPDS - TiO2 rutile phase………………………………………………………………68 4.4 Properties of the N-doped annealing under NH3(50ml/min)/Ar(50ml/min) flow for 3h..86 4.5 Properties of the N-doped annealing under NH3(70ml/min)/Ar(30ml/min) flow for 3h..86 4.6 Properties of the N-doped annealing under NH3(100ml/min) flow for 3h………….…87 4.7 The property of Ti at different temperature…………………………….……………….96 4.8 The amount of the doped-nitrogen………………………………………………………96 4.9 The influence of calcined temperature on the activity of TiO2-xNx……………………106 4.10 The pseudo-first-order degradation rate constants and removal efficiencies of Methylene Blue by BLED/TiO2 process at various solution pH……………..……111 4.11 The pseudo-first-order degradation rate constants of Methylene Blue at various of light sources………………………………………………………………………………113

References
Asahi, R., T. Morikawa, T. Ohwaki, K. Aoki and Y. Taga “Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides,” Science vol. 293, pp. 269 (2001)
Chakrabarti, S. and Dutta, B. K., “ Photocatalytic degradation of model textile dyes in wastewater using ZnO as semiconductor catalyst,” J. Hazard. Mater., Vol. B112, pp. 269-278 (2004)
Calzada, M. L., Sirela, R., Carmona, F. and Jiménez, B., “Investigations of a Diol Based Sol-gel Process for the Preparation of Lead Titanate Materials,” J. Am. Ceram. Soc., Vol. 77, pp.1802-1808 (1995)
Cogan, S. F., Nguyen, N. M., Perrotti, S. J. and Rauh, R. D., “Optical Properties of Electrochromic Vanadium Pentoxide,” J. Appl. Phys., Vol. 66, pp.1333-1337 (1989)
Fukuda, M., “Reliability and Degradation of Semiconductor Lasers and LEDs,” Artech House, MA, US (1991)
Fang, X., Z. Zhang, Q. Chen, J. H. Ji and X. G.ao “Dependence of Nitrogen Doping on TiO2 Precursor Annealed under NH3 Flow.” J. Solid State Chem. Vol. 180, pp. 1325-1332 (2007)
Irie, H., Y. Watanabe and K. Hashimoto, ”Nitrogen-Concentration Dependence on Photocatalytic Activity of TiO2-xNx Powders” J. Phys. Chem. B. vol. 107, pp. 5483-5486 (2003)
Kosowska, B., Mozia, S., Morawski, A.W., Grzmil, B., Janus, M. and Kalucki, K.” The preparation of TiO2-nitrogen doped by calcinations of TiO2•XH2O under ammonia atmosphere for visible light photocatalysis,” Sol. Energy Mater. Sol. Cells., Vol. 88, pp. 269-280 (2005)
Valentin, C. D., Emanuele, F., Gianfranco, P., Annabella, S., Stefano, L., Maria, C. P. And Elio, G. “N-doped TiO2: Theory and experiment,” Chemical Physics vol. 339, pp. 44-56 (2007)
Matsumoto, T., N. Iyi, Y. Kaneko, K. Kitamura, S. Ishihara, Y. Takasu and Y. Murakami “High visible-light photocatalytic activity of nitrogen-doped titania prepared from layered titania/isostearate nanocomposite,” Catalysis Today vol. 120, pp. 226-232 (2006)
Joung, S. K., T. Amemiya, M. Murabayashi and K. Itoh “Relation between photocatalytic activity and preparation conditions for nitrogen-doped visible light-driven TiO2 photocatalysts,” Applied Catalysis A: General vol. 312, pp. 20-26 (2006)
Hasnat, M. A., Siddiquey, I. A., Nuruddin, A., “Comparative Photocatalytic Studies of Degradation of A Cationic and An Anionic Dye,” Dyes. Pigm., Vol. 66, pp.185-188 (2005)
Kang, I. C., Q. Zhang, J. Kano, S. Yin, T. Sato and F. Saito “Synthesis of nitrogen doped TiO2 by grinding in gaseous NH3,” Journal of Photochemistry and Photobiology A: Chemistry vol. 189 pp. 232–238 (2007)
Kormann, C., Bahnemann, D. W., and Hoffmann, M. R., “Photolysis of Chloroform and Other Organic Molecules in Aqueous TiO2 Suspensions,” Environ. Sci. Technol., Vol. 25, pp. 494- 500 (1991)
Lin, L., R. Y. Zheng, J. L. Xie, Y. X. Zhu and Y. C. Xie “Synthesis and characterization of phosphor and nitrogen co-doped titania,” Applied Catalysis B: Environmental vol. 76, pp. 196-202 (2007)
Lakshmi, S., Renganathan, R., and Fujita, S., “Study on TiO2-Mediate Photocatalytic Degradation of Methylene Blue,” J. Photochem. Photobio. A:Chem., Vol. 88, pp. 163-167 (1995)
Mills, A., and Wang, J., “Photobleaching of Methylene Blue Sensitised by TiO2: an Ambiguous System? , ” J. Photochem. Photobio. A:Chem., Vol.127, pp.123-134 (1999)
Marc, P. T., Veronica, G. M., Miguel, A. B., Jaime, G., and Santiago, E., “Degradation of chlorophenols by means of advanced oxidation processes: a general review, ” Appl. Catal. B: Environ., Vol. 47, pp. 219-256 (2004)
Nakamura, R., T. Tanaka and Y. Nakato “Mechanism for Visible Light Responses in Anodic Photocurrents at N-Doped TiO2 Film Electrodes,” J. Phys. Chem. B vol. 108 pp. 10617-10620 (2004)
Nambu, A., J. Graciani, J. A. Rodriguez, Q. Wu and E. Fujita “N doping of TiO2 (110): Photoemission and density-functional studies,” THE JOURNAL OF CHEMICAL PHYSICS, vol. 125, pp. 094706 (2006)
Ohno, T., M. Akiyoshi, T. Umebayashi, K. Asai, T. Mitsui and M. Matsumura “Preparation of S-doped TiO2 photocatalysts and their photocatalytic activities under visible light,” Applied Catalysis A: General vol. 265, pp. 115-121 (2004)
Ollis, D. F., Pelizzetti, E., and Serpone, N., “Photocatalyzed Destruction of Water Contaminants,” Environ. Sci. Technol., Vol. 25, pp.1523-1529 (1991)
Shifu, C., C. Lei, G. Shen and C. Gengyu “The preparation of nitrogen-doped photocatalyst TiO2_xNx by ball milling,” Chemical Physics Letters vol. 413, pp. 404–409 (2005)
Sze, S. M., “Physics of Semiconductor Divices,” John Wiley & Sons, Inc., New York, US (1991)
Villacres, R., Ikeda, S., Torimoto, T., Ohtani, B., “Development of a Novel Photocatalytic Reaction System for Oxidative Decomposition of Volatile Organic Compounds in Water with Enhanced Aeration,” J. Photochem. Photobio. A:Chem., Vol. 160, pp. 121-126 (2003)
Valentin, C. D., E. Finazzi, G. Pacchioni, A. Selloni, S. Livraghi, M. C. Paganini and E. Giamello “N-doped TiO2: Theory and experiment,” Chemical Physics, vol. 339, pp. 44–56 (2007)
Wawrzyniak, B. and A. W. Morawski “Solar-light-induced photocatalytic decomposition of two azo dyes on new TiO2 photocatalyst containing nitrogen,” Applied Catalysis B: Environmental vol. 62, pp. 150–158 (2006)
Zukauskas, A., Shur, A. S. and Caska, R., “Introduction to Solid-State Lighting,” John Wiley & Sons, Inc., New York, US (2002)
曾郁茗,’’以含氮氣體於常溫常壓下電將輔助程序製造可見光及紫外光觸媒研 究’’,國立交通大學環境工程研究所碩士論文 (2005)
李聖文,”以碳、氮摻雜法氮摻雜法改質光觸媒及其催化活性研究”,國立清華大學化學工程研究所碩士論文 (2006)
潘建呈,”摻雜鉻之TiO2-xNx 奈米可見光光觸媒”,國立台灣大學化學工程研究所碩士論文 (2004)
侯韋銘,”溶膠凝膠法合成鈦酸鑭在紫外光下分解染料水溶液之研究”,國立台灣科技大學化學工程研究所碩士論文 (2007)
楊明倫,“紫外線/光觸媒程式外加電位處理含有機染料水溶液之研究”,國立臺灣科技大學化學工程研究所碩士論文 (2006)

無法下載圖示 全文公開日期 2013/07/27 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE