簡易檢索 / 詳目顯示

研究生: 蔡育儒
Yu-Ru Tsai
論文名稱: 製備新型具甲基丙烯酸酯之生物相容性光固化材料及其性質研究分析
Synthesis of New Biocompatible UV-Curable Materials with Methacrylate and Research for Their Properties
指導教授: 何郡軒
Jinn-Hsuan Ho
口試委員: 陳崇賢
Chorng-Shyan Chern
何明樺
Ming-Hua Ho
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 123
中文關鍵詞: 甲基丙烯酸酯光固化材料
外文關鍵詞: Methacrylate, UV-Curable Material
相關次數: 點閱:182下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文合成出一系列新型具甲基丙烯酸酯之生物相容性光固化單體,藉由改變其側鏈結構或末端羥基,以合成出具不同特性之新型具生物相容性光固化單體,再以核磁共振光譜圖譜(NMR)以及質譜儀(MASS)鑑定其分子結構,接著於此六種新型光固化單體加入1173光起始劑, 並利用數位式旋轉黏度計、傅立葉轉換紅外線光譜儀(FTIR)、萬能材料試驗機、熱重分析儀(TGA)、示差掃描熱分析儀(DSC)、接觸角量測儀、平均膨潤動力分析法與細胞毒性測試(MTT Assay)分析各新型光固化單體之黏度及光固化後之聚合程度、機械強度、熱穩定、表面親疏水性、平均膨潤度與速率及細胞毒性等性質。由各種測試結果顯示,此六種新型光固化單體之黏度範圍非常廣,且當其側鏈結構愈長和支鏈愈複雜,其聚合程度會下降,也會間接使機械強度變差,膨潤度速率變慢和平均膨潤度降低,還有造成表面愈疏水,而當末端羥基改變時,其性質也會有所不同,若變為甲氧基,其聚合程度會提升,但若變為苯氧基時,則會下降。另外,當其側鏈結構愈長和支鏈愈複雜,或是末端羥基變為苯氧基時,其熱穩定性也會提升。在細胞毒性方面,也顯示各光固化後之材料對於細胞並無立即之毒性。


In this research, a series of new biocompatible UV-curable materials with methacrylate have been synthesized. We changed the side chain or hydroxyl terminal, and synthesized the new biocompatible UV-curable monomers with different characteristics. Used the nuclear magnetic resonance spectroscopy (NMR) and the mass spectroscopy (MASS) to identify the structures of monomers. Then we used 1173 as photoinitiator and analyze their properties, such as viscosity, the degree of polymerization, mechanical strength, thermal stability, hydrophilicity or hydrophobicity on the surface, swelling ratio, swelling rate and cytotoxicity by viscometer, FTIR, Universal Testing Machine, TGA, DSC, Contact Angle, swelling test and MTT assay. In the result, the viscosity range of those monomers were very extensive. The degree of polymerization decreased with increasing the length of side chain and branched chain, and the mechanical strength, swelling ratio and swelling rate also decreased. In addition, it caused more hydrophobic on the surface of materials. As the hydroxyl terminal was changed, the new biocompatible UV-curable monomers had different properties. If it was changed into methoxy group, the degree of polymerization increased. Otherwise, if it was changed into phenoxy group, the degree of polymerization decreased. But the thermal stability were raised with increasing the length of side chain and branched chain or the hydroxyl terminal turned into phenoxy group. According to MTT assay, the result showed the cured monomers were not immediate toxicity for cells.

第一章 緒論 1-1前言 1-2 3D 列印簡介 1-2-1 3D 列印技術的原理 1-2-2 3D 列印系統的種類 1-3 光固化型高分子簡介 1-3-1 光固化型高分子種類 1-3-2 壓克力型之光固化高分子 1-3-3 壓克力型光固化高分子反應機制 1-3-4 環氧樹脂型之光固化高分子 1-3-5 壓克力型與環氧樹脂型之光固化高分子相互比較 1-4 影響固化速率之因素 1-4-1 氧阻聚 1-4-2 光源強度 1-4-3 光源種類 1-4-4 光起始劑種類及濃度 1-4-5 樣品厚度 1-4-6 溫室效應 1-5 高生物相容性材料─乳酸 1-6 文獻回顧 1-7 研究動機及目的 第二章 結果與討論 2-1 各單體比較與探討 2-2 黏度性質分析 2-2-1 於不同溫度下各單體黏度性質分析及討論 2-3 傅立葉轉換紅外線光譜儀(FTIR)分析 2-3-1 各單體經紫外光固化前與後之FTIR光譜分析及比較 2-4 機械強度性質分析 2-4-1 拉伸試片之製備 2-4-2 各單體經固化後之機械強度分析與性質比較 2-5 熱重分析儀(TGA)分析 2-5-1 各單體經固化後之熱烈解溫度(Td 10%)與焦炭殘餘量(R700)分析與性質比較 2-6 示差掃描熱分析儀(DSC)分析 2-6-1 各單體經固化後之玻璃轉移溫度(Tg)與比熱(Cp)分析與性質比較 2-7 表面接觸角(Contact Angle)分析 2-7-1 量測試片之製備 2-7-2 各單體經固化後之表面平均接觸角分析與性質比較 2-8 平均膨潤(Swelling)動力分析 2-8-1 各單體經固化後之平均膨潤度分析與性質比較 2-9 細胞毒性(MTT Assay)分析 2-9-1 各光固化後材料之細胞毒性分析與性質比較 第三章 實驗部分 3-1 實驗儀器 3-2 微電腦數位錐板式黏度計的量測方法 3-3 傅立葉紅外線光譜儀量測方法 3-4 萬能材料試驗機量測方法 3-5 示差掃描熱分析儀量測方法 3-6 熱重分析儀量測方法 3-7 接觸角量測方法 3-8 平均膨潤動力量測方法 3-9 細胞毒性量測方法 3-10 各化合物結構分子式與分子量 3-11 各化合物結構鑑定 第四章 結論 4-1 結論 4-2 未來展望 第五章 參考文獻 附錄 光譜資料

1. Ponsford, M.; Glass, N. The night I invented 3D printing.
2. Hull, C. W. Apparatus for production of three-dimensional objects by stereolithography. 1986.
3. Freedman, D. H., Layer by layer. Technology Review 2012, 115 (1), 50-53.
4. Bird, J., Exploring the 3D printing opportunity. Financ. Times 2012.
5. 林宗德. 新彈性層式及噴霧式製程與線上影像監控之快速原型機研發. 台灣科技大學機械工程研究所, 1997.
6. Greenemeier, L., 3D列印你的夢想. 科學人 2013.
7. 林鼎勝. 3D 列印的發展現況. 2014.
8. 張睿麟. 3D 列印與自造者時代的商業模式. 東海大學企業管理學系研究所, 2014.
9. Kaufui V. Wong, A. H., A review of additive manufacturing. ISRN Mechanical Engineering 2012, 2012.
10. Anderson, C., 自造者時代:啟動人人製造的第三次工業革命. 天下文化: 2013.
11. C. K. Chua, K. F. L., 快速原型-原理與製造上的應用. 六合出版社: 1998.
12. Larry D. Mitcham, W. E. N. Stereolithographic apparatus and method of use. 1993.
13. Dietmar W. Hutmacher, T. S., Iwan Zein, Kee Woei Ng, Swee Hin Teoh, Kim Cheng Tan, Mechanical properties and cell cultural response of polycaprolactone scaffolds designed and fabricated via fused deposition modeling. Journal of Biomedical Materials Research 2001, 55 (2), 203-216.
14. Jean-Pierre Kruth, P. M., J. Van Vaerenbergh, Ludo Froyen, Marleen Rombouts, Binding mechanisms in selective laser sintering and selective laser melting. Rapid Prototyping Journal 2005, 11 (1), 26-36.
15. Ben Utela, D. S., Rhonda Anderson, Mark Ganter, A review of process development steps for new material systems in three dimensional printing (3DP). Journal of Manufacturing Processes 2008, 10 (2), 96-104.
16. Bor Z. Jang, J. Y., Junhai Liu, Lijun Pan Layer manufacturing using deposition of fused droplets. 2002.
17. 張豐志, 應用高分子手冊. 五南圖書: 2003; p 57-72.
18. 楊建文; 曾兆華; 陳用烈, 光固化塗料及應用. 化學工業出版社: 2006.
19. 陳奇毅; 芮祥鵬, UV Curable 樹脂於不同波長之反應性探討. 第十八屆纖維紡織科技研討會論文集 2002.
20. 張永漢, 塗料與塗裝技術. 化工技術雜誌 1998.
21. 劉建良, UV Curing 發展簡介及應用. 化工科技與商情 2003.
22. 游恩華. 紫外線成型技術探討與應用. 國立東華大學材料科學與工程研究所, 2005.
23. JV. Crivello, J. L., Epoxy resin chemistry. ACS Symposium Series 1979, 114, 1.
24. 彭志成. 紫外光可硬化之聚胺酯. 國立臺灣大學化學工程研究所, 1998.
25. 楊呈勳. 在 UV 製程中如何固化完全固化. 第三屆量宏 UV 論壇, 2004.
26. 吳采蓉. 應用田口方法於紫外光固化快速原型製程之參數優化. 國立彰化師範大學機電工程學系機電工程研究所, 2010.
27. J. Kindernay, A. B., J. Rudá, V. Jančovičová, Z. Jakubıková, Effect of UV light source intensity and spectral distribution on the photopolymerisation reactions of a multifunctional acrylated monomer. Journal of Photochemistry and Photobiology A: Chemistry 2002, 151 (1), 229-236.
28. De Lin, H. K., Wen‐Fang Shi, Hui‐Ya Yuan, Yong‐Lie Chen, Photopolymerizaton of hyperbranched aliphatic acrylated poly (amide ester). II. Photopolymerization kinetics. Journal of Applied Polymer Science 2001, 82 (7), 1637-1641.
29. Huanyu Wei, H. K., Wenfang Shi, Huiya Yuan, Yonglie Chen, Photopolymerization kinetics of dendritic poly (ether–amide) s. Polymer 2001, 42 (16), 6741-6746.
30. Huiguang Kou, A. A., Wenfang Shi, Photopolymerization kinetics of hyperbranched acrylated aromatic polyester. Journal of Applied Polymer Science 2003, 89 (6), 1500-1504.
31. 石井孝雄, 平., 塗裝與塗料. 完善出版社: 1975.
32. Perera, M., Development of formulations based on acrylate monomers for optical cable applications. Journal of applied polymer science 2001, 82 (12), 3001-3012.
33. K. S. Anseth, S. M. N., C. N. Bowman, Polymeric dental composites: properties and reaction behavior of multimethacrylate dental restorations. Springer: 1995; p 177-217.
34. Kristi S. Anseth, D. J. Q., Polymerizations of multifunctional anhydride monomers to form highly crosslinked degradable networks. Macromolecular Rapid Communications 2001, 22 (8), 564-572.
35. Anandkumar R. Kannurpatti, J. W. A., Christopher N. Bowman, A study of the evolution of mechanical properties and structural heterogeneity of polymer networks formed by photopolymerizations of multifunctional (meth) acrylates. Polymer 1998, 39 (12), 2507-2513.
36. Andrzejewska, E., Sulfur-containing polyacrylates: V. Temperature effects on the photoinitiated polymerization of diacrylates. Polymer 1996, 37 (6), 1039-1045.
37. Cook, W. D., Photopolymerization kinetics of oligo (ethylene oxide) and oligo (methylene) oxide dimethacrylates. Journal of Polymer Science Part A: Polymer Chemistry 1993, 31 (4), 1053-1067.
38. CK. Nguyen, R. S., BT. Cavitt, CE. Hoyle, Sensitized photopolymerization of acrylic systems using 2, 3-substituted maleimides. Abstracts of papers of the american chemical society 2001, 222, U285.
39. Christian Decker, K. M., A new class of highly reactive acrylic monomers, 1. Light‐induced polymerization. Die Makromolekulare Chemie, Rapid Communications 1990, 11 (4), 159-167.
40. Christian Decker, K. M., A new class of highly reactive acrylic monomers, 2. Light‐induced copolymerization with difunctional oligomers. Die Makromolekulare Chemie 1991, 192 (3), 507-522.
41. Christian Decker, K. M., Photopolymerization of multifunctional monomers, 4. Acrylates with carbamate or oxazolidone structure. European Polymer Journal 1991, 403-411.
42. Christian Decker, K. M., Photopolymerization of Multi-Functional Monomers. 5. Polyurethane-Acrylate Resins. European Polymer Journal 1991, 27 (9), 881-889.
43. Kathryn A. Berchtold, J. N., Jeffrey W. Stansbury, Bilge Hacioglu, Eric R. Beckel, Christopher N. Bowman, Novel monovinyl methacrylic monomers containing secondary functionality for ultrarapid polymerization: steady-state evaluation. Macromolecules 2004, 37 (9), 3165-3179.
44. Harini Kilambi, J. W. S., Christopher N. Bowman, Deconvoluting the impact of intermolecular and intramolecular interactions on the polymerization kinetics of ultrarapid mono (meth) acrylates. Macromolecules 2007, 40 (1), 47-54.
45. Harini Kilambi, E. R. B., Kathryn A. Berchtold, Jeffrey W. Stansbury, Christopher N. Bowman, Influence of molecular dipole on monoacrylate monomer reactivity. Polymer 2005, 46 (13), 4735-4742.
46. Harini Kilambi, D. K., Jeffrey W. Stansbury, Christopher N. Bowman, Factors affecting the sensitivity to acid inhibition in novel acrylates characterized by secondary functionalities. Journal of Polymer Science Part A: Polymer Chemistry 2007, 45 (7), 1287-1295.
47. Johan FGA. Jansen, A. A. D., Marko Dorschu, Betty Coussens, Fast monomers: factors affecting the inherent reactivity of acrylate monomers in photoinitiated acrylate polymerization. Macromolecules 2003, 36 (11), 3861-3873.
48. Johan FGA. Jansen, A. A. D., Marko Dorschu, Betty Coussens, Effect of preorganization due to hydrogen bonding on the rate of photoinitiated acrylate polymerization. Photoinitiated Polymerization 2003, 847, 127-139.
49. Hui Lu, J. W. S., Jun Nie, Kathryn A. Berchtold, Christopher N. Bowman, Development of highly reactive mono-(meth) acrylates as reactive diluents for dimethacrylate-based dental resin systems. Biomaterials 2005, 26 (12), 1329-1336.
50. J. Dai, Y. J., X. Liu*, J. Wanga, J. Zhua Synthesis of eugenol-based multifunctional monomers via a thiol–ene reaction and preparation of UV curable resins together with soybean oil derivatives. The Royal Society of Chemistry 2016, 17864.
51. Atul Tiwari, B. R., Reactions and mechanisms in thermal analysis of advanced materials. John Wiley & Sons: 2015.

無法下載圖示 全文公開日期 2021/07/29 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE