簡易檢索 / 詳目顯示

研究生: 陳柏霖
Po-Lin Chen
論文名稱: 利用電子迴旋共振與射頻混成電漿化學氣相沉積系統製備氮摻雜類鑽石碳薄膜
Growth of nitrogen doped DLC thin-film by ECR/RF hybrid plasma chemical vapor deposition system
指導教授: 柯文政
Wen-Cheng Ke
口試委員: 陳衛國
Wei-Kuo Chen
郭東昊
Dong-Hau Kuo
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 69
中文關鍵詞: 類鑽探膜氮摻雜電子迴旋共振射頻混成電漿
外文關鍵詞: DLC, Nitrogen doping, ECR, RF, hybrid plasma
相關次數: 點閱:235下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 類鑽碳膜(Diamond-like carbon, DLC)具有高硬度、高絕緣性、高生物相容性、高化學惰性和導熱性等優點。本研究中,使用ECR電漿與RF電漿組成之混成式電漿化學氣相沉積系統( Hybrid plasma CVD system, HPCVD )沉積類鑽碳膜,氣體通過ECR電漿預解離產生反應氣體自由基,再進入RF電漿環境中成長類鑽碳膜。製備未摻雜之類鑽碳膜,其成長條件為ECR/RF電漿功率分別為650/150 W,甲烷/氫氣流量分別為20/80 sccm,在2 Torr的工作壓力下成長30分鐘。經由拉曼光譜分析,本研究成長之未摻雜類鑽碳薄膜具有D-band(1350 cm-1)和G-band(1580 cm-1)之特徵峰。通入氮氣作為摻雜氣體,發現拉曼光譜在1260 cm-1出現C-N共價鍵之特徵峰,但傅立葉紅外光譜(FTIR)在氮氣流量40及20 sccm 樣品並無發現C-N共價鍵譜峰。而降低到氮氣流量10 sccm出現另一傅立葉紅外光譜在1800cm-1出現C=N鍵結。此外,其D band與G band之強度比(ID/IG ratio)從未摻雜類鑽碳膜之0.33增加至氮摻雜類鑽碳膜之0.59,顯示氮摻雜類鑽碳膜之硬度降低;未摻雜類鑽碳膜光學能隙為4.82 eV,氮摻雜後降至2.26 eV。氮摻雜類鑽碳膜之電阻率相較未摻雜類鑽碳膜可以下降一個數量級可達~106 ohm-cm,壓力由2 Torr降低到1 Torr,傅立葉紅外光譜在1100 cm-1之C-N peak更為明顯,代表製程壓力的降低有利於氮氣摻雜。


    Diamond-like carbon (DLC) exhibits a lot of benefits, such as high hardness, high insulation, biocompatibility, high chemical inertness and thermal conductivity etc that had been widely used in the industry applications. In this study, DLC thin-film was grown by using a homemade hybrid plasma chemical vapor deposition (CVD) system which combined the Electron-Cyclotron-Resonance (ECR) plasma and RF-plasma. The gas precursor can be pre-cracking by ECR-plasma and generated radical for further DLC deposition in the RF-plasma environment. After optimized the growth conditions, DLC thin-film was grown at the plasma power of ECR-plasma/RF-plasma = 650/250 W, working pressure of 2 torr, and CH4/H2 flow rate = 20/80 sccm in 30 min. The characteristic peaks of the Raman spectra at 1350 and 1580 cm-1 which identified as the D-band and G-band in the as-grown DLC-thin films. The characteristic peak at 1260 cm-1 (i.e. C-N covalent bond) was observed in the Raman spectrum for adding nitrogen precursor during the growth of DLC thin-film. In addition, the ratio of D-band to G-band peak intensity of Raman spectra increased from 0.33 for as-grown DLC to 0.59 for nitrogen doping DLC sample. The increasing ID/IG ratio means that the decreasing hardness of nitrogen doping DLC thin-film. The resistivity of nitrogen doping DLC thin-film is ~106 ohm-cm which one-order magnitude lower than the undoped DLC thin-film. The further works should be optimized the growth conditions and the post-annealing process for achieving a high conductivity of nitrogen doping DLC thin-film.

    目錄……………………………………………………………………………………1 中文摘要…………………..…………………………………………………………..2 英文摘要………………………………………………………………………………4 第一章 序論 1-1 前言………………………………………………………………………..3 1-2 研究目的…………………………………………………………………..8 第二章 文獻回顧 2-1 類鑽碳膜的分類...…………………………………………………………...9 2-2 類鑽碳膜的成長機制 .……………………………………….…………….11 2-3 電子迴旋共振化學氣相沉積系統原理 .……………………….………….12 2-3-1 電子迴旋共振與射頻混成電漿系統…....…………………………….17 2-4氮類鑽碳膜的介紹…...……..……………………………………………….21 第三章 實驗方法與步驟 3-1實驗流程 .…………………………………….……………………………..23 3-2試片清洗 .………………………………………….………………………..24 3-3試片成長 .…………………………………………….……………………..25 3-4 分析儀器介紹 .……………………………………….…………………….27 3-4-1 拉曼光譜儀....………………………………………………………….27 3-4-2 場發射掃描式電子顯微鏡…………………………………………….30 3-4-3 紫外光-可見光/近紅外光分析儀……………………………………...30 3-4-4 傅立葉紅外線光譜儀………………………………………………….30 3-4-5二次離子質譜儀……………….……………………….……………….31 3-4-6 四點探針……………………………………………………………….32 第四章 結果與討論 4-1 未摻雜類鑽碳膜成長與光電特性分析 ..………………...………….…….34 4-1-1 以ECRCVD系統成長類鑽碳膜 .…………………...………….……34 4-1-2 混成式電漿系統成長類鑽碳膜………………………...….………….36 4-1-3 混成式電漿系統在不同微波功率下成長類鑽碳膜…..……….……..37 4-1-4 混成式電漿系統在不同氣體比例下成長類鑽碳膜………………….39 4-2 反應氣體流量比對氮摻雜類鑽碳膜之光電特性研究……………………41 4-2-1 邊緣效應……………………………………………………………….44 4-2-2 氮摻雜類鑽碳膜光電物理特性之研究……………………………….45 4-3 退火製程對氮摻雜類鑽碳膜之光電特性研究….…………………………52 4-4 成長壓力對氮摻雜類鑽碳膜之光電特性研究….…………………………57 第五章 結論 ………………………………………………………………….64 參考文獻 …………………………………………………………………………..68

    [1]Aisenberg S, et al. J. Appl . Phys 42 (1971) 2953.
    [2]A. Grill, Plasma deposited diamondlike carbon and related materials IBM J.RES.DEVELOP., 43 (1999) 147.
    [3]鈴木秀人, DLC成膜技術, 2005
    [4]Maurice H. Francombe, Phsics of Thin Film 18 (1994).
    [5]Jes Asmussen, et al. IEEE TRANSACTION ON PLASMA SCIENCE, 25 (1997) 6.
    [6]丁兆元, 任兆杏, 物理學進展, 第12卷第一期(1992)
    [7]J. Robertson, Diamond and related materials., 3 (1994) 361.
    [8]C. Casiraghi, et al., Physcial Review B., 72(2005)085410.
    [9]J. Schwan, et al. J. Appl. Phys., 80 (1996) 440
    [10]J. C. Angus, Science, et al., 241 (1998) 193.
    [11]D. R. Mckenzie, et al., Phys. Rev. Lett., 67 (1991) 773.
    [12]Y. Lifshitz, et al., Phys. Rev. B, 41(1990)1046.
    [13]H. P. Kaukonen, et al. Phys. Rev. Lett., 68 (1992) 620.
    [14]B. A. Pailthorpe, J. Appl. Phys., 70 (1991) 543.
    [15]C. Weissmantal, Thin Soild Films, 92 (1982) 55.
    [16]J. Robertson, Diamond and related materials., 3 (1994) 361.
    [17]D. Korzec, et al., Plasma Sources Sci. Technol., 5 (1996) 216.
    [18]Asmussen J., J. Vac. Sci. Technol., 7 (1989) 883.
    [19]Chen F. F., J. Vac. Sci. Technol., 10 (1992)1389
    [20]Heald M A, et al., (1978) 8.
    [21]Chen F. F. ISBN, (1984) 160.
    [22] Werner F, et al., Sci. Technol. 3 473.
    [23] Suetsugu Y, et al., J. Appl. Phys. 231101.
    [24] Weiland T, et al., Part. Acc. 17 227.
    [25] Engemann J, et al., J. Vac. Sci. Technol. 13 875.
    [26] Zakrzewski Z, et al., Plasma Phys. 16 1195.
    [27] Beenakker C. I. M., Spectrochimica Acta., 31 483.
    [28] Little P. F., et al., Proc. R. Soc., 224 209.
    [29] MacDonald A. D., 1996.
    [30]施漢章, Lecture-note of plasma processing, 2010.
    [31]A. Grill, Cold plasma in materials fabrication.
    [32] G. Fedosenko, et al., Diamond and related materials., 10 (2001) 920.
    [33]M, Grischke, et al., Surface and Coatings Technol., 74 (1995) 739.
    [34]M. Azzi, et al., Surface and Coatings Technol., 204 (2010) 3986.
    [35]廖炳輝, 成功大學化工系碩士論文, 2009
    [36]Liu. A. Y., et al., Phys. Rev., B, 50 (1994) 10362.
    [37]Mauric H. Francombe, Advance in plasma-grown hydrogenated films.
    [38]J. Schwan, et al., J. Appl. Phys., 80 (1996) 44.
    [39]S. Prawer, et al., Diamond Relat. Mater., 5 (1996) 433.
    [40]J. Roberson, Mater. Sci. Eng., 37 (2002) 129.
    [41]Fan-Xin Liu, Kai-Lun Yao and Zu-Li Liu, Appl. Surface Sci., 253 (2007) 6957.
    [42]Schroder, Semiconductor Material and Device Characterization, 3rd ed., Wiley, New Jersey, (2006).
    [43] United States Patent, US5279669A.
    [44]D. L. Smith, Thin Film Deposition, McGraw-Hill, 9 (1995) 526.
    [45]D. Beeman, J. Silverman and R. Lynds, Phys. Rev., 30 (1984) 870.
    [46]A. Richter, H. J. Scheibe and W. pompe, J. Non-cryst. Solid, 88 (1986) 131.
    [47]A. P. Mousinho and R. D. Mansano, Appl. Surf. Sci., 254 (2007) 189.
    [48]J. V. Anguita, et al., J. Appl . Phys., 86 (1999) 6276.
    [49]W. Zhang, et al., Solid State Communication, 126 (2003) 163.
    [50]魏晶宇, 清華大學碩士論文, 2011.
    [51] C. Ronning, et al., Diamond Relat. Mater. 4 (1995) 666.
    [52] Yukihiko Okumura, et al., Proceeding Comb. Inst., 24(2015)2.
    [53]康惠翔, 中興大學碩士論文, 2015.
    [54]Yushi IiJima, et al., A.I.P., 1929 (2017) 020024.
    [55]Nicola Menegazzo, et al., Royal Soc. Chem., 136 (2011) 1831.

    QR CODE