簡易檢索 / 詳目顯示

研究生: 邱仁軍
JEN-CHUN CHIU
論文名稱: 含三氟甲基拉電子基之新型共軛高分子 Poly(p-biphenylenevinylene)的合成與表徵
Synthesis and Characterization of Novel Conjugated Poly(p-biphenylenevinylene) Containing Electron-withdrawing Trifluoromethyl Group
指導教授: 陳志堅
Jyh-Chien Chen
口試委員: 許應舉
Ying-Gev Hsu
王英靖
Ing-Jing Wang
劉貴生
Guey-Sheng Liou
蕭勝輝
Sheng-Huei Hsiao
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 70
中文關鍵詞: 共軛型高分子扭曲式聯苯
外文關鍵詞: conjugated polymer, twisted biphenyl
相關次數: 點閱:199下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以Horner-Emmons和Gilch兩種方法,成功合成了主鏈上含有扭曲式聯苯結構的π-共軛碳-碳雙鍵高分子。此聯苯結構為2及2’位置含有三氟甲基的扭曲式聯苯結構,這些扭曲式聯苯結構,已被證明在提昇全芳香族剛硬棒狀聚合物的溶解度有極佳的效果並且仍能保有高耐熱性。在提昇π-共軛碳-碳雙鍵高分子的溶解度上,這是一種新的方法。我們合成了三種新型單體2,2’-Bis(trifluoromethyl)-4,4’-biphenyldicarbaldehyde (6)、2,2’-bis(trifluoromethyl)-4,4’-bis(bromomethyl)biphenyl (8)及2,2’-bis(trifluoromethyl)-4,4’-bis(diethyl methylenephosphonate)biphenyl (9)。並以Horner-Emmons反應和Gilch反應合成新型π-共軛碳-碳雙鍵高分子poly[2,2’-bis(trifluoromethyl)-4,4’-(p-biphenylenevinylene)] (簡稱為CF3-PBPV),分別以PH系列和PG系列表示之。並利用Horner-Emmons反應中兩種單體的莫耳數比,及Gilch反應中添加2,2,6,6-tetramethylpiperidine-1-oxyl(TEMPO)自由基捕捉劑,分別得到不同分子量的PH-1、PH-2和PH-3及PG-1和PG-2。它們的GPC分子量(Mn)介於15000和149000 g/mole之間。我們也發現這些高分子的溶解度與其分子量有關,當分子量小於30000 g/mole,這些高分子於濃度為2.0 g/dL時,室溫下可溶於一般有機溶劑,例如:DMF、DMAc、NMP,相較於未取代的poly(p-phenylenevinylene) (PPV)溶解度有明顯之提昇。從model compound的1H NMR研判PH系列結構上很少有缺陷,其雙鍵幾乎都是以反式(trans)狀態存在,而PG系列則具有較多缺陷。在UV-Visible吸收光譜中PH-1和PG-1最大吸收波長分別為341 nm和321 nm。光激發螢光光譜(PL)顯示,PH-1和PG-1最大放射波長皆為395 nm。它們的玻璃轉移溫度(DSC)分別為231和234 ℃,5 %熱重損失溫度分別為417和405 ℃,顯示極佳的熱穩定性。廣角X-ray繞射測量顯示PH-1和PG-1皆為非晶相。以循環伏安法(cyclic votalmmetry, CV)測量,CF3-PBPV的能隙約為2.90 eV,具有高電子親和力(ELUMO約-3.04 eV)及高的游離能(EHOMO約-5.94 eV)。由於CF3-PBPV具有高玻璃轉移溫度和非晶相的特性,故提供了作為有機發光材料應用的可能性。此外,我們也對單體(8)以Gilch reaction進行聚合的反應機構提出了一些探討。從1H NMR圖譜及分子量隨著TEMPO加入所產生的變化,我們推論以單體(8)進行Gilch反應生成共軛高分子的過程,是自由基及陰離子聚合兩種機構並存的。


    The objective of this study is to introduce twisted biphenyl structure containing trifluoromethyl groups at 2 and 2’ positions into the main chain of the π-conjugated polymer. The incorporation twisted biphenyl structure has been proven to enhance the solubility of entire aromatic rod-like polymer effectively.This is a new method to improve the poor solubility of π-conjugated polymers. The novel π-conjugated polymers(CF3-PBPV) in this study were synthesized by using three new compounds, 2,2'-Bis(trifluoromethyl)-4,4'-biphenyldicarbaldehyde(6) 、2,2'-Bis(trifluoromethyl)-4,4'-bis(bromomethyl)biphenyl(8) and 2,2'-Bis(trifluoromethyl)-4,4'-bis(diethyl methylenephosphonate)biphenyl(9),through Gilch and Horner-Emmons reactions.We change monomer's molar ratio in Horner-Emmons reactions and add TEMPO in Gilch reaction to obtain different molecular weight PH-1,PH-2,PH-3 and PG-1,PG-2,respectively. The formed polymers have relatively high molecular weights in the range of 15000 to 149000 g/mole.These polymer's solubility is related to its molecular weight, when the molecular weight is smaller than 30000 g/mole under the room temperature could be dissolved in the common organic solvent (DMF, DMAc, NMP).PH-1 and PG-1 shows the glass transition at 231 and 234 ℃(by DSC),and the 5% decomposition temperature at 417 and 405 ℃,respectively.From UV-visible spectrometric analysis,PH-1 and PG-1 shows the maximum absorptions wavelength(λmax) at 341 and 321 nm.From photoluminesce spectrum,the formed polymer shows maximum emission at wavelength 395 nm.Wide angle X-ray diffraction exhibits PH-1 and PG-1 are amorphous.The energy gap (Eg) is 2.90 eV,calculated by cyclic voltammetry.These polymers exhibit high electronegativity(-3.04 eV)and high ionization potential(-5.94 eV).Because CF3-PBPV has the high glass transition temperature and the amorphous characteristic, therefore it could be applicable for organic luminescent material.

    摘要…………………………………………………………………………………….I 目錄………….………………………………………………………………………..II Figure 索引…………...……………………………………………………………..III Scheme 索引……..………………………………………………………………….IV Table索引…………………………….……………………………………………...VI 第一章 緒論……………………………………………………..………………........1 1.1 前言...……………………………………………………………………….….....1 1.2 有機電激發光的發展歷程………………...…………………………….…….…2 1.3 基礎理論………………...………...………………….…….…………………….3 1.3.1 能帶理論……...…………………………….……….…………………….3 1.3.2 共軛高分子的導電理論………………….……….……………………....4 1.3.3 螢光與磷光理論…………….……….……………………………………5 1.3.4 影響螢光特性的因素…….……….………………………………………6 1.4 元件發光原理…...…………………………….……….…………………………7 1.5 元件結構…...………………………………….……….…………………………7 1.6 應用於PLED的高分子系統……………….……….……………………………8 第二章 共軛高分子文獻回顧………………………………………………..…..…..9 2.1 前言……………………………...………………………………………..…..…..9 2.2 PPV及其衍生物的合成方法……………………………………………………..9 2.2.1 縮合聚合反應……………………………………………………………10 Wessling route……………..……………………………………………………10 Sulfinyl and Sulfonyl route……………………………………………………..10 Gilch reaction…………………….……………………………………………..11 Horner-Emmons reaction and Wittig reaction…………………………………..12 2.2.2 金屬交叉偶合反應…………………………………………..…………..13 Heck coupling…………………………………………..………………………14 Suzuki coupling………………………………..……………..…………………14 Stille coupling…………………………………………..……………………….16 2.2.3 Acyclic Diene Metathesis(ADMET) ……………..………………………16 2.3 聚合反應的反應機構和立體化學……………………………………………...17 Horner-Emmons reaction………………………………..……………………...17 Gilch-related reaction………………………………..…………………….........20 2.4 poly(p-biphenylenevinylene) (PBPV)的文獻回顧…..…………………………..24 2.5 研究動機………………………………………………………………………...26 第三章 實驗………………………………………………………………………....27 3.1 實驗儀器………………………………………………………………………...27 3.2 實驗藥品………………………………………………………………………...28 3.3 單體與Model compound合成……………..…………………………………...30 3.4 高分子的合成…………………………………………………………………...34 第四章 結果與討論…………………………………………………………………36 4.1 合成與表徵………………………………………………………...……………36 4-2 熱學性質………………………………………………………………………...59 4.3 光學特性………………………………………………………….......................61 4.4 電化學特性……………………………………………………………………...63 第五章 結論…………………………………………………………………………66 參考文獻……………………………………………………………………………..67

    1. Pope, M.; Kallmann, H. P.; Magnante, P. J. Chem. Phys. 1963, 38, 2042.
    2. Tang, C. W.; Van Slyke, S. A. Appl. Phys. Lett. 1987, 51, 913.
    3. Burroughes, J. H.; Bradley, D. D. C.; Brown, A. R.; Marks, R. N.; Mackay, K.; Friend, R. H.; Burns, P. L.; Holmes, A. B. Nature 1990, 347, 539.
    4. Braun, D.; Heeger, A. J. Appl. Phys. Lett. 1991, 58, 1982.
    5. 陳德請, 近代光電顯示工程導論. 全華, 2006.
    6. 陳文章, 國立台灣大學陳文章教授授課講義. 網路資源.
    7. Kim, D. Y.; Cho, H. N.; Kim, C. Y. Prog. Polym. Sci. 2000, 25, 1089.
    8. Akcelrud, L. Prog. Polym. Sci. 2003, 28, 875.
    9. Kyllo, E. M.; Gustafson, T. L.; Wang, D. K.; Sun, R. G.; Epstein, A. J. Synth. Met. 2001, 116, 189.
    10. Aguiar, M.; Karasz, F. E.; Akcelrud, L. Macromolecules 1995, 28, 4598.
    11. Morin, J.-F.; Leclerc, M. Macromolecules 2002, 35, 8413.
    12. Cho, N. S.; Park, J. H.; Lee, S. K.; Lee, J.; Shim, H. K.; Park, M. J.; Hwang, D. H.; Jung, B. J. Macromolecules 2005, 39, 177.
    13. Hide, F.; Diaz-Garcia, M. A.; Schwartz, B. J.; Andersson, M. R.; Pei, Q.; Heeger, A. J. Science 1996, 273, 1833.
    14. Tessler, N.; Denton, G. J.; Friend, R. H. Nature 1996, 382, 695.
    15. Hou, J.; Tan, Z.; Yan, Y.; He, Y.; Yang, C.; Li, Y. J. Am. Chem. Soc. 2006, 128, 4911.
    16. Sun, B.; Marx, E.; Greenham, N. C. Nano Lett. 2003, 3, 961.
    17. Coakley, K. M.; McGehee, M. D. Chem. Mater. 2004, 16, 4533.
    18. Kietzke, T.; Egbe, D. A. M.; Horhold, H.-H.; Neher, D. Macromolecules 2006, 39, 4018.
    19. Kietzke, T.; Horhold, H.-H.; Neher, D. Chem. Mater. 2005, 17, 6532.
    20. Lee, K.; Cho, J. C.; DeHeck, J.; Kim, J. Chem. Commun. 2006, 1983.
    21. Cheng, F; Zhang,G. W.; Lu, X. M.; Huang, Y. Q.; Chen, Y.; Zhou, Y.; Fan, Q. L.; Huang, W. Macromol. Rapid Commun. 2006, 27, 799.
    22. Kim, Y. M.; Lim, E.; Kang, I.-N.; Jung, B.-J.; Lee, J.; Koo, B. W.; Do, L.-M.; Shim, H.-K. Macromolecules 2006, 39, 4081.
    23. Li, Y.; Wu, Y.; Ong, B. S. Macromolecules 2006, 39, 6521.
    24. Weychardt, H.; Plenio, H. Organometallics 2008, 27, 1479.
    25 Nomura, K.; Miyamoto, Y.; Morimoto, H.; Geerts, Y. J. Polym. Sci., Part A: Polym. Chem 2005, 43, 6166.
    26. Schlick, H.; Stelzer, F.; Tasch, S.; Leising, G. t. J. Mol. Catal. A: Chem. 2000, 160, 71.
    27. Rehahn, M.; Schlüter, A.-D. Makromol. Chem. Rapid Commun. 1990, 11, 375-379.
    28. Ahn, T.; Song, S.-Y.; Shim, H.-K. Macromolecules 2000, 33, 6764.
    29. Kim, J. H.; Lee, H. Synth. Met. 2003, 139, 471.
    30. Kim, J. H.; Lee, H. Synth. Met. 2004, 143, 13.
    31. Sarker, A. M.; Ding, L.; Lahti, P. M.; Karasz, F. E. Macromolecules 2002, 35, 223.
    32. Lynch, P. J.; O'Neill, L.; Bradley, D.; Byrne, H. J.; McNamara, M. Macromolecules 2007, 40, 7895.
    33. Lux, A.; Holmes, A. B.; Cervini, R.; Davies, J. E.; Moratti, S. C.; Grüner, J.; Cacialli, F.; Friend, R. H. Synth. Met. 1997, 84, 293.
    34. Zhang, C.; Sun, J.; Li, R.; Black, S.; Sun, S.-S. Synth. Met. 2010, 160, 16.
    35. Wang, H.; Sun, Y.; Qi, Z.; Kong, F.; Ha, Y.; Yin, S.; Lin, S. Macromolecules 2008, 41, 3537.
    36. Jin, Y.; Song, S.; Park, S. H.; Park, J.-A.; Kim, J.; Woo, H. Y.; Lee, K.; Suh, H. Polymer 2008, 49, 4559.
    37. Lee, S. H.; Jang, B.-B.; Tsutsui, T. Macromolecules 2002, 35, 1356.
    38. Jin, Y.; Kim, J. Y.; Song, S.; Xia, Y.; Kim, J.; Woo, H. Y.; Lee, K.; Suh, H. Polymer 2008, 49, 467.
    39. Pan, M.; Bao, Z.; Yu, L. Macromolecules 1995, 28, 5151.
    40. Kim, J. H.; Lee, H. Chem. Mater. 2002, 14, 2270.
    41. You, W.; Wang, L.; Wang, Q.; Yu, L. Macromolecules 2002, 35, 4636.
    42. Lopez, L.; Strohriegl, P.; Stübinger, T. Macromol. Chem. Phys. 2002, 203, 1926.
    43. Zou, Y.; Hou, J.; Yang, C.; Li, Y. Macromolecules 2006, 39, 8889.
    44. Yoshikawa, E. K. C.; Roman, L. S.; Hümmelgen, I. A.; Gruber, J. Synth. Met. 2003, 135-136, 3.
    45. Péres, L. O.; Utley, J. H. P.; Gruber, J. Electrochem. Commun. 2004, 6, 1141.
    46. Gruber, J.; Li, R. J. Mater. Chem. 1999, 9, 1461.
    47. Stenger-Smith, J. D.; Lenz, R. W.; Wegner, G. Polymer 1989, 30, 1048.
    48. Roex, H.; Adriaensens, P.; Vanderzande, D.; Gelan, J. Macromolecules 2003, 36, 5613.
    49. Becker, H.; Spreitzer, H.; Ibrom, K.; Kreuder, W. Macromolecules 1999, 32, 4925.
    50. Becker, H.; Spreitzer, H.; Kreuder, W.; Kluge, E.; Schenk, H.; Parker, I.; Cao, Y. Adv. Mater. 2000, 12, 42.
    51. Chuah, B. S.; Geneste, F.; Holmes, A.; Martin, R.; Rost, H; Cacialli, F.; Friend, R.; Hörhold, H.; Pfeiffer, S; Hwang, D. H. Macromol. Symp. 2000, 154, 177.
    52. Egbe, D. A. M.; Kietzke, T.; Carbonnier, B.; Muhlbacher, D.; Horhold, H.-H.; Neher, D.; Pakula, T. Macromolecules 2004, 37, 8863.
    53. Liao, L.; Pang, Y.; Ding, L.; Karasz, F. E. Macromolecules 2001, 34, 6756.
    54. Brenda, M.; Greiner, A.; Heitz, W. Makromol. Chem. 1990, 191, 1083.
    55. Koch, F.; Heitz, W. Macromol. Chem. Phys. 1997, 198, 1531.
    56. Uenishi, J.; Beau, J. M.; Armstrong, R. W.; Kishi, Y. J. Amer. Chem. Soc. 1987, 109, 4756.
    57. Thorn-Csányi, E.; Kraxner, P. Macromol. Rapid Commun. 1995, 16, 147.
    58. Thorn-Csányi, E.; Kraxner, P. Macromol. Chem. Phys. 1997, 198, 3827.
    59. Nomura, K.; Yamamoto, N.; Ito, R.; Fujiki, M.; Geerts, Y. Macromolecules 2008, 41, 4245.
    60. Horner, L.; Hoffmann, H.; Wippel, H. G.; G. Klahre. Chem. Ber. 1959, 92, 2499.
    61. Wadsworth, W. S.; Emmons, W. D. J. Am. Chem. Soc. 1961, 83, 1733.
    62. Horner, L.; Klink, W.; Hoffmann, H. Chem. Ber. 1963, 96, 3133.
    63. Sasaki, K. Bull. Chem. Soc. Jpn. 1966, 39, 2703.
    64. Sasaki, K. Bull. Chem. Soc. Jpn. 1967, 40, 2967.
    65. Sasaki, K. Bull. Chem. Soc. Jpn. 1967, 40, 2968.
    66. Kinstle, T. H.; Mandanas, B. Y. Chem. Commun. 1968, 1699.
    67. McGreer, D. E.; Chiu, N. W. K. Can. J. Chem. 1968, 46, 2225.
    68. Schwalm, T.; Rehahn, M. Macromolecules 2007, 40, 3921.
    69. Kornblum, N.; Kendall, D. L. J. Am. Chem. Soc. 1952, 74, 5782.
    70. Lahti, P. M.; Modarelli, D. A.; Denton, F. R.; Lenz, R. W.; Karasz, F. E. J. Am. Chem. Soc. 1988, 110, 7258.
    71. Issaris, A.; Vanderzande, D.; Gelan, J. Polymer 1997, 38, 2571.
    72. Hontis, L.; Van Der Borght, M.; Vanderzande, D.; Gelan, J. Polymer 1999, 40, 6615.
    73. Hsieh, B. R.; Yu, Y.; VanLaeken, A. C.; Lee, H. Macromolecules 1997, 30, 8094.
    74. Neef, C. J.; Ferraris, J. P. Macromolecules 2000, 33, 2311.
    75. Hontis, L.; Vrindts, V.; Lutsen, L.; Vanderzande, D.; Gelan, J. Polymer 2001, 42, 5793.
    76. Wiesecke, J.; Rehahn, M. Angew. Chem. Int. Ed. 2003, 42, 567.
    77. Wiesecke, J.; Rehahn, M. Macromol. Rapid Commun. 2007, 28, 78.
    78. Chen, Z. K.; Pan, J. Q.; Xiao, Y.; Lee, N. H. S.; Chua, S. J.; Huang, W. Thin Solid Films 2000, 363, 98.
    79. Van Der Borght, M.; Adriaensens, P.; Vanderzande, D.; Gelan, J. Polymer 2000, 41, 2743.
    80. Martelock, H.; Greiner, A.; Heitz, W. Makromol. Chem. 1991, 192, 967.
    81. Gruber, J.; Li, R. W. Eur. Polym. J. 2000, 36, 923.
    82. Wang, S.Y. Ph. D. Dissertation, The University of Akron, 1995.
    83. Johnson, E. L.; Chem. Abstr. 1957, 51, 6169.
    84. Sun, Q.; Deng, Y.; Chen, J.; Tang, B. Z. Eur. Polym. J. 2005, 41, 481.
    85. Tsai, F. C.; Chang, C. C.; Liu, C. L.; Chen, W. C.; Jenekhe, S. A. Macromolecules 2005, 38, 1958.
    86. Kraft, A.; Grimsdale, A. C.; Holmes, A. B. Angew. Chem. Int. Ed. 1998, 37, 402.
    87. Chaieb, A.; Khoukh, A.; Brown, R.; François, J.; Dagron-Lartigau, C. Opt. Mater. 2007, 30, 318.
    88. Xu, B.; Pan, Y.; Zhang, J.; Peng, Z. Synth. Met. 2000, 114, 337.
    89. Oelkrug, D.; Tompert, A.; Egelhaaf, H.-J.; Hanack, M.; Steinhuber, E.; Hohloch, M.; Meier, H.; Stalmach, U. Synth. Met. 1996, 83, 231.
    90. Sarker, A. M.; Strehmel, B.; Neckers, D. C. Macromolecules 1999, 32, 7409.
    91. Sarker, A. M.; Ding, L.; Lahti, P. M.; Karasz, F. E. Macromolecules 2001, 35, 223.
    92. Brédas, J. L.; Heeger, A. J. Chem. Phys. Lett. 1994, 217, 507.
    93. Liu, Y.; Yu, G.; Li, Q.; Zhu, D. Synth. Met. 2001, 122, 401.
    94. Lee, H. S.; Chen, Z. K.; Chua, S. J.; Lai, Y. H.; Huang, W. Thin Solid Films 2000, 363, 106.
    95. Greenham, N. C.; Moratti, S. C.; Bradley, D. D. C.; Friend, R. H.; Holmes, A. B. Nature 1993, 365, 628.

    無法下載圖示 全文公開日期 2015/07/14 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE