簡易檢索 / 詳目顯示

研究生: 方冠傑
Kuan-Chieh Fang
論文名稱: CoCrFeNi與CoCrFeNiAl0.5高熵合金之相變化研究
The study of phase transformations in CoCrFeNi and CoCrFeNiAl0.5 high entropy alloys
指導教授: 鄭偉鈞
Wei-Chun Cheng
口試委員: 陳士勛
Shih-Hsun Chen
王朝正
Chaur-Jeng Wang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 93
中文關鍵詞: 高熵合金spinodal decomposition有序化相變化L12B2
外文關鍵詞: HEAs, spinodal decomposition, ordering reaction, L12, B2
相關次數: 點閱:241下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

高熵合金是由多種溶質元素且無主要溶劑元素所組成的合金,經由不同的合金元素設計,可獲得極佳的耐高溫氧化、高硬度與耐磨性能等。本研究探討成份為CoCrFeNi與CoCrFeNiAl0.5高熵合金經1050°C固溶處理與低溫恆溫處理的相變化機制。本論文自行熔鑄、熱鍛與冷軋,取得高熵合金薄板。經固溶處理後CoCrFeNi中主要結構為沃斯田體( γ)單相,經700°C恆溫處理後於晶界處有富鉻析出物的產生。CoCrFeNiAl0.5高熵合金中觀察晶粒尺寸比先前研究過的高熵合金還小,其原因可能為B2相過多抑制晶粒成長。合金B晶高溫冷卻後沃斯田體內發生spinodal相分離與有序化相變化,其反應如下:高溫沃斯田體(γ)於冷卻過程中分解為二個低溫沃斯田體(γ'+γ"),其中含高濃度的γ相於更低溫時,經由有序化反應而相轉變為L12相。其總反應式為:γ → γ'+γ"→ γ"+L12。


High-entropy alloys (HEAs) are alloys composed of at least five principal elements. These alloys show some specific features, such as excellent mechanical and high temperature properties, and some of them are yet to be discovered. However, the development of the HEAs requires knowledge of the phase transformations that occur during the alloy producing. Two HEAs, CoCrFeNi and CoCrFeNiAl0.5 were studied on the effect of cooling process including air cooling and water cooling after heating alloys at 1050°C. The as-quenched specimens also isothermally held at 800°C to 600°C at 50°C interval. The results of our study show that CoCrFeNi is of single phase austenite after cooling from high temperature. In CoCrFeNi alloy, Cr-rich phase precipitates at the grain boundary around 700°C. CoCrFeNiAl0.5 is a dual phase major austenite and minor B2 phase after cooling from high temperature. The as-quenched specimens also isothermally held at low temperatures. The results of our study show that the spinodal decompositions occur in CoCrFeNiAl0.5 alloys after heating and cooling from 1323 K, the high temperature austenite ( γ) decomposes into low temperature solute-lean austenite ( γ') and solute-enriched austenite ( γ"). The solute-enriched austenite phase also transforms into the L12 phase via the ordering reaction upon cooling to lower temperature. The occurrence of spinodal decomposition and ordering reaction in the austenite phase of the HEA can be written as follows.γ → γ'+γ"→ γ"+L12.

第一章 前言 1 第二章 文獻回顧 3 2.1擴散型相變化 3 2.2高熵合金的相變化 7 第三章 實驗方法 15 3.1 高熵合金熔鑄 15 3.2 鑄錠加工 16 3.3 熱處理 17 3.4 分析儀器 18 3.5 試片製備流程 24 第四章 結果與討論 35 4.1 CoCrFeNi相變化 35 4.2 CoCrFeNiAl0.5相變化 39 第五章 結論 79 第六章 參考文獻 81

1. D.A. Porter, K.E. Easterling, M. Y. Sherif, “Phase Transformations in Metals and Alloys”, 3rd edition (2008).
2. B. Cantor, I. Chang, P. Knight, A. Vincent, Microstructural development in equiatomic multicomponent alloys, Mater. Sci. Eng., A 375 (2004)
3. N.D. Stepanov, D.G. Shaysultanov, G.A. Salishchev, M.A. Tikhonovsky, E.E. Oleynik, A.S. Tortika, O.N. Senkov, Effect of V content on microstructure and mechanical properties of the CoCrFeMnNiVx high entropy alloys, J. Alloys Compd., 628 (2015).
4. O.N. Senkov, S.V. Senkova, C. Woodward, Effect of aluminum on the microstructure and properties of two refractory high-entropy alloys, Acta Mater., 68 (2014).
5. A.V. Kuznetsov, D.G. Shaysultanov, N.D. Stepanov, G.A. Salishchev, O.N. Senkov, Tensile properties of an AlCrCuNiFeCo high-entropy alloy in as-cast and wrought conditions, Mater. Sci. Eng., A 533 (2012).
6. W.R. Wang, W.L. Wang, S.C. Wang, Y.C. Tsai, C.H. Lai, J.W. Yeh, Effects of Al addition on the microstructure and mechanical property of AlxCoCrFeNi high-entropy alloys, Intermetallics, 26 (2012).
7. B. Gwalani, V. Soni, D. Choudhuri, M. Lee, J.Y. Hwang, S.J. Nam, H. Ryu, S.H. Hong, R. Banerjee, Stability of ordered L12 and B2 precipitates in face centered cubic based high entropy alloys Al0.3CoFeCrNi and Al0.3CuFeCrNi2, Scr. Matall, 123 (2016).
8. W.R. Wang, W.L. Wang, J.W. Yeh, Phases, microstructure and mechanical properties of AlxCoCrFeNi high-entropy alloys at elevated temperatures, J. Alloys Compd, 589 (2014).
9. Feng He, Z.J. Wang, X.L. Shang, Chao Leng, J.J. Li, J.C. Wang, Stability of lamellar structures in CoCrFeNiNbx eutectic high entropy alloys at elevated temperatures Mater. Des. 104 (2016).
10. C.J. Sung, W.C. Cheng, A study of spinodal decomposition and ordering reaction in Al0.5CoCrFeNi2 high entropy alloys, M.S. Thesis, National Taiwan University of Science and Technology (2018).
11. C. Zhang, F. Zhang, H. Diao, Michael C. Gao, Z. Tang, Understanding phase stability of AlCoCrFeNi high entropy alloys, Mater. Des. 425 (2016).
12. Jonathan D. Poplawsky, Peter K. LiawD.E. Laughlin, Spinodal decomposition in Age Hardening Copper-Titanium Alloys, Acta Metall., 23, 329 (1975).
13. W.A. Soffa, D.E. Laughlin, High-strength age hardening copper–titanium alloys: redivivus, Prog. Mat. Sci., 49, 347 (2004).
14. W.A. Soffa, D.E. Laughlin, Decomposition and ordering processes involving thermodynamically first-order order to disorder transformations, Acta Metall., 37, 3019 (1989).
15. C.S. Wang, C.N. Hwang, C.G. Chao, T.F. Liu, Phase transitions in an Fe–9Al–30Mn–2.0 C alloy, Scripta Mater., 57, 809 (2007).
16. H. Warlimont, Order-Disorder Transformation in Alloys, 58 (1974).
17. I.S. Wani, T. Bhattacharjee, S. Sheikh, P.P. Bhattacharjee, S.Guo, N.Tsuji, Tailoring nanostructures and mechanical properties of AlCoCrFeNi2.1 eutectic high entropy alloy using thermo-mechanical processing, Mater. Sci. Eng., A 675(2016).
18. K.H. Huang, J.W. Yeh, A study on multicomponent alloy systems containing equal-mole elements, M.S. Thesis, Thesis National Tsing Hua University (1996).
19. M.H. Tsai, J.W. Yeh, High-entropy alloys: A critical review, Mater. Res. Lett. (2014).
20. J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Adv. Eng. Mat., 6(5), 299 (2004).
21. Y.F. Ye, Q. Wang, J. Lu, C.T. Liu, Y. Yang, High-entropy alloy: challenges and prospects, Mater. Today, 19 (6), 349 (2016).
22. D. William, JR., G. David Rethwisch, “Materials Science and Engineering and Introduction”, (2009).
23. J. Cornide, M. Calvo-Dahlborg, S. Chambreland, L. Asensio Dominguez, Z. Leong, U. Dahlborg, A. Cunliffe, R. Goodall and I. Todd, Combined Atom Probe Tomography and TEM Investigations of CoCrFeNi, CoCrFeNiPdx (x = 0, 5, 1.0, 1.5) and CoCrFeNiSn, Acta Phys Pol, A 128 (2015).
24. H.I. Aaronson, M. Enomoto, J.K. Lee, Mechanisms of Diffusional Phase Transformations in Metals and Alloys, Ch. 6 (2016).
25. Y.S. Lim, D.J. Kim, S.S. Hwang, H.P. Kim, S.W. Kim, Mater. Charact., 96, 28 (2014).
26. Y. Li, Y. Gao, B. Xiao, T. Min, Y. Yang, S. Ma, D. Yi, The electronic, mechanical properties and theoretical hardness of chromium carbides by first-principles calculations, J. Alloys Compd., 509, 5242 (2011).
27. H.J. Chen, W.C. Cheng, “A study of phase transformations in an Al0.5CoCrFeNi2 high entropy alloy”, M.S. Thesis, National Taiwan University of Science and Technology (2005).
28. T.M. Butler, Phase stability and oxidation behavior of AlNiCoCrFe based high-entropy alloys, Ph.D. Thesis, The University of Alabama (2016).
29. K.S. Lee, B. Bae, J.H. Kang, K.R. Lim, Y.S. Na, Multi-phase refining of an AlCoCrFeNi high entropy alloy by hot compression, Mater. Lett. 198, 81 (2017).
30. Z. Tang, O.N. Senkov, C.M. Parish, C. Zhang, F. Zhang, L.J. Santodonato, G. Wang, G. Zhao, F.Q. Yang, P.K. Liawa, Tensile ductility of an AlCoCrFeNi multi-phase high-entropy alloy through hot isostatic pressing (HIP) and homogenization, Mat. Sci. Eng. A, 647, 229 (2015).
31. A. Munitz, S. Salhov, S. Hayun, N. Frage, Heat treatment impacts the micro-structure and mechanical properties of AlCoCrFeNi high entropy alloy, J. Alloys Compd., 683, 221 (2016).
32. T.M. Butler, M.L. Weaver, Oxidation behavior of arc melted AlCoCrFeNi multi-component high-entropy alloys, J. Alloys Compd., 674, 229 (2016).
33. B. Gwalani, D. Choudhuri, V. Soni, Y. Ren, M. Styles, J.Y. Hwang, S. J. Nam, H. Ryu, S.H. Hong, R. Banerjee, Cu assisted stabilization and nucleation of L12 precipitates in Al0.3CuFeCrNi2 fcc-based high entropy alloy, Acta Mater., 129, 170 (2017).
34. T.M. Butler, M.L. Weaver, Investigation of the phase stabilities in AlNiCoCrFe high entropy alloys, J. Alloys Compd., 691, 119 (2017).
35. D.B. Miracle, O.N. Senkov, A critical review of high entropy alloys and related concepts, Acta Mater., 122, 448 (2017).
36. J. Chen, P.Y. Niu, Y.Z. Liu, Y.K. Lu, X.H. Wang, Y.L. Peng, J.N. Liu, Effect of Zr content on microstructure and mechanical properties of AlCoCrFeNi high entropy alloy, Mater. Des., 94, 39 (2016).
37. W.C. Cheng, C.Y. Cheng, C.W. Hsu, D.E. Laughlin, Phase transformation of the L12 phase to kappa-carbide after spinodal decomposition and ordering in an Fe–C–Mn–Al austenitic steel Mat. Sci. Eng. A, 642, 128 (2015).
38. M. Louisa, L. Yatir, M. Abraham, S. Shai, P. Malki, Retardation of the σ phase formation in the AlCoCrFeNi multi-component alloy, Mater. Charact. 148 (2019).

無法下載圖示 全文公開日期 2024/07/22 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE