簡易檢索 / 詳目顯示

研究生: 林雅琪
Ya-Chi Lin
論文名稱: 正癸酸暨正十二烷基胺界劑吸附動力學探討
A Study on the Adsorption Kinetics of Decanoic Acid and Dodecylamine
指導教授: 林析右
Shi-Yow Lin
口試委員: 陳立仁
Li-Jen Chen
楊明偉
MingWei Yang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 55
中文關鍵詞: 正癸酸正十二烷基胺吸附動力學
外文關鍵詞: Adsorption Kinetics, Decanoic Acid, Dodecylamine
相關次數: 點閱:225下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用影像數位化懸掛氣泡測量儀,量測離子型與非離子型界劑水溶液於不同NaCl濃度下吸附至氣-液界面所造成的表面張力變化,再以質傳理論模式來探討其吸附動力學。本研究所探討之界面活性劑分別為陰離子型的正癸酸(C10 acid)、非離子型的正癸醇界面活性劑(C10OH),與陽離子型的正十二烷基胺界面活性劑(DDA)。
    本研究使用吸附等溫線(分別為非離子型Langmuir、離子型Langmuir、離子型Frumkin、非離子型Frumkin、離子型generalized Frumkin及非離子型generalized Frumkin模型)來模擬各界劑分子在不同NaCl濃度下之動態暨平衡表面張力。
    若假設質傳機制為擴散控制,以ionic-gF模型模擬之結果最能描述正癸酸動態張力曲線;non-gF與ionic-gF模型皆能適切地模擬平衡張力曲線。
    正癸醇於0 mM與100 mM NaCl濃度下,使用non-F與non-gF模型模擬所得到之擴散係數均接近Wilke-Chang equation計算所得之理論擴散係數(D= 5.70×10-6 cm2/s)。故我們推測在非離子界劑水溶液加入鹽類,對界劑吸附速率的影響可忽略不計。
    陽離子型界劑DDA水溶液在溫度為25oC、濃度大於6.03×10-8 mol/cm3 時,在動態張力為43.9 mN/m處有一plateau區域;推論DDA單分子層在此張力下存在一液-氣界面相變化。另外,在長時間的動態張力量測實驗中,動態張力曲線會先降至一最低點,而後回升至一定值(~72mN/m)後不再變化;我們猜測DDA界劑分子在本體相的濃度隨吸附程序之進行會越來越低,可能是DDA分子吸附到固-液界面上。因此,本研究藉由蠕動幫浦不斷交換在鍍上疏水基模的石英盒中的實驗待測溶液,以維持水溶液中之本體相濃度,待固-液界面吸附達平衡後,再利用懸掛氣泡法來量測液-氣界面張力變化情形,以得到較準確的動態表面張力曲線。
    添加50 mM NaCl之DDA水溶液在濃度小於1.31x10-8 mol/cm3時,混合控制之吸附速率常數為一定值,故我們合理的推測DDA於低濃度時其吸附程序為混合控制。


    The dynamic/equilibrium surface tensions of three aqueous surfactant solutions (anionic surfactant 1-decanoic acid, nonionic surfactant 1-decanol, and cationic surfactant dodecylamine DDA) were measured by using a video-enhanced pendant bubble tensiometer. The theoretical ST profiles using the nonionic and ionic models (Langmuir, Frumkin and generalized Frumkin models) were compared with the experimental data of equilibrium and dynamic surface tensions in order to study the adsorption mechanism of these three surfactant molecules.
    For 1-decanoic acid aqueous, a diffusivity of 5.50×10-6 cm2/s was obtained from the fit between the dynamic surface tension and the theoretical ST curves using ionic-gF model. The adsorption kinetics for 1-decanoic acid in aqueous 500 mM NaCl solution was found to be diffusion controlled with a diffusivity of 12.5×10-6 cm2/s.
    For 1-decanol aqueous, a diffusivity of 6.60×10-6 cm2/s was obtained from the best-fit for aqueous solution without NaCl and a diffusivity of 6.14×10-6 cm2/s was obtained for aqueous solution without 100 mM NaCl.
    There exists a plateau region at γ = 43.9 mN/m in the dynamic surface tension profiles of aqueous DDA solutions at 25oC. This plateau implies the existence of a phase transition for the DDA molecules adsorbed at air-water interface. A strange behavior was observed for DDA solution: γ(t) decreases from 72 mN/m (the surface tension of solvent) at t = 0, reaches a minimum γ, then increases with time and reach 72 mN/m. This special γ(t) relaxation implies that DDA molecules prefer to adsorb on solid surface instead of air-water interface. Therefore, two squirm pumps were used for exchanging DDA solution in the quartz cell before the ST measurement to maintain a constant bulk DDA concentration.

    摘要 Abstract 目錄 圖目錄 表目錄 第一章 簡介 1.1界面活性劑的特性 1.2界面活性劑分類 1.3研究主題 第二章 文獻回顧 2.1界劑分子在氣-液界面之吸附行為 2.2非離子型界劑分子之質傳理論 2.2.1 Langmuir adsorption model 2.2.2 Frumkin and generalized Frumkin models 2.3離子型界劑分子之質傳理論 2.4 界劑水溶液之表面張力量測 第三章 張力量測方法 3.1 懸掛氣泡影像數位化測量儀 3.1.1懸掛氣泡法量測界面張力之理論 3.1.2懸掛氣泡影像數位化測量儀 3.2其它實驗儀器 3.3實驗藥品 3.4實驗方法 3.4.1溶液配製 3.4.2懸掛氣泡影像數位化測量儀之實驗流程 第四章 正癸酸之吸附行為探討 4.1 正癸酸之實驗結果 4.2正癸酸之決定模式與參數 4.3 結果討論 第五章 正癸醇之吸附行為探討 5.1 正癸醇之實驗結果 5.2正癸醇之決定模式與參數 5.3 結果討論 第六章 DDA + 50 mM NaCl之吸附行為探討 6.1 DDA水溶液 6.2 DDA+50 mM NaCl之實驗結果 6.3 決定模式與參數 第七章 結論與建議 參考文獻

    1. 張有義、郭蘭生編譯,〝膠體及界面化學入門〞,高立圖書有限公司,第四章(1999).
    2. D. Myers, “Surfaces, Interfaces, and Colloids: Principles and Applications”; Wiley-Vichy: New York, (1999).
    3. 刈米孝夫 〝界面活性劑的原理與應用〞,王鳳英編譯:高立圖書有限公司,第一章、第七章(1990)。
    4. 李雅琪,〝聚氧乙烯系非離子型界劑之吸附暨聚集行為研究〞,國立臺灣大學化學工程所博士論文(2002)。
    5. B. J. Palla, D. O. Shah, “Correlation of dispersion stability with surfactant concentration and abrasive particle size for chemical mechanical polishing (cmp) slurries,” J. Dispersion Sci. Technol, 2000, 21, 491.
    6. T. M. Pan, T. F. Lei, C. C. Chen, “Reliability Models of Data Retention and Read-Disturb in 2-Bit Nitride Storage Flash Memory Cells,” IEEE Electron Device Letters, 2000, 21, 338.
    7. J. T. Davies, “Adsorption of long-chain ions I,” Proc. R. SOC. London, 1958, a245,417.
    8. J. T. Davies, “Adsorption of long-chain ions Ⅱ,” Proc. R. SOC. London, 1958, a245 426.
    9. S. S. Dukhin, R. Miller, G. Kretzschmar, “On the theory of adsorption kinetics of ionic surfactants at fluid interfaces. The effect of the electric double layer under quasi-equilibrium conditions on adsorption kinetics,” Colloid Polym. Sci., 1983, 261, 335.
    10. R. Miller, S. S. Dukhin, G. Kretzschmar, “On the theory of adsorption kinetics of ionic surfactants at fluid interfaces. Numerical calculations of the influence of a quasiequilibrium electric double layer,” Colloid Polym. Sci., 1985, 263, 420.
    11. R. P. Borwanker, D. T. Wasan, “On the theory of adsorption kinetics of ionic surfactants at fluid interfaces 2.Numerical calculations of the influence of a quasi-equilibrium electric double layer,” Chem. Eng. Sci., 1986, 41, 199.
    12. R. P. Borwanker, D. T. Wasan, “The kinetics of adsorption of ionic surfactants at gas-liquid surfaces,” Chem. Eng. Sci., 1988, 43, 1323.
    13. S. S. Dukhin, R. Miller, “On the theory of adsorption kinetics of ionic surfactants at fluid interfaces 3.Generalization of the model,” Chem. Eng. Sci., 1991, 269, 923.
    14. C. H. Chang, E. I. Franses, “Modified Langmuir-Hinselwood kinetics for dynamic adsorption of surfactants at the air water interface,” Colloids Surfaces, 1992, 69, 189.
    15. C. H. Chang, E. I. Franses, “Dynamic surface tension behavior of aqueous solutions of N-dodecyl-N,N dimethyl aminobetaine chlorohydrate,” Colloid Polym. Sci, 1994, 272, 447.
    16. C. A. MacLeod, C. J. Radke, “Charge effects in the transient adsorption of ionic,” Langmuir, 1994, 10, 3555.
    17. S. S. Datwani, K. J. Stebe, “Surface tension of an anionic surfactant: equilibrium, dynamics, and analysis for Aerosol-OT,” Langmuir, 2001, 17, 4287.
    18. V. N. Truskett, C. A. Rosslee, N. L. Abbott, “Redox-dependent surface tension and surface phase transitions of a ferrocenyl surfactant: equilibrium and dynamic analyses with fluorescence images,” Langmuir, 19.
    19. S. Hachisua, “Equation of state of ionized monolayers,” J. Colloid Interface Sci., 1970, 33, 445.
    20. V. V. Kalinin, C. J. Radke, “An ion-binding model for ionic surfactant adsorption at aqueous-fluid interfaces,” Colloids Surf. A., 1996, 114, 337.
    21. H. Diamant, and D. Andelman, “Kinetics of surfactant adsorption at fluid-fluid Interfaces,” J. Phys. Chem., 1996, 100, 13732.
    22. H. Diamant, and D. Andelman, “Kinetics of surfactant adsorption at fluid-fluid Interfaces,” J. Phys. Chem., 1996, 100, 13732.
    23. P. Warszynski, W. Barzyk, K. Lunkenheimer, H. Fruhner, “Surface tension and surface potential of Na n-Dodecyl sulfate at the air-solution interface: Model and Experiment,” J. Phys. Chem. B, 1998, 102, 10948.
    24. P. A. Kralchevsky, K. D. Danov, G. Broze, A. Mehreteab, “Thermodynamics of ionic surfactant adsorption with account for the counterion binding: effect of Salts of various valency,” Langmuir, 1999, 15, 2351.
    25. K. D. Danov, V. L. Kolev, P. A. Kralchevsky, G. Broze, A. Mehreteab, “Adsorption kinetics of ionic surfactants after a large initial perturbation. Effect of surface elasticity,” Langmuir, 2000, 16, 2942.
    26. A. J. Prosser, E. I. Franses, “Adsorption and surface tension of ionic surfactants at the air–water interface: review and evaluation of equilibrium models,” Colloids Surf. A., 2001, 178, 1.
    27. P. Warszynski, K. Lunkenheimer, G. Czichocki, “Effect of counterions on the adsorption of ionic surfactants at fluid-fluid interfaces,” Langmuir, 2002, 18, 2506.
    28. V. L. Kolev, K. D. Danov, P. A. Kralchevsky, G. Broze, A. Mehreteab, “Comparison of the van der Waals and Frumkin adsorption isotherms for sodium dodecyl sulfate at various salt concentrations,” Langmuir, 2002, 18, 9106.
    29. G. Para, E. Jarek, P. Warszynski, Z. Adamczyk, K. P. Ananthapadmanabhan, A. Lips, “Effect of electrolytes on surface tension of ionic surfactant solutions,” Colloids Surf. A., 2003, 222, 213.
    30. P. A. Kralchevsky, K. D. Danov, V. L. Kolev, G. Broze, A. Mehreteab, “Effect of nonionic admixtures on the adsorption of ionic surfactants at fluid interfaces I. sodium dodecyl sulfate and dodecanol,” Langmuir, 2003, 19, 504.
    31. A. J. Prosser, E. I. Franses, “New thermodynamic/electrostatic models of adsorption and tension equilibria of aqueous ionic surfactant mixtures: application to sodium dodecyl sulfate/sodium dodecyl sulfonate systems,” J. Colloid Interface Sci., 2003, 263, 606.
    32. D. S. Valkovska, G. C. Shearman, C. D. Bain, R. C. Darton, J. Eastoe, “Adsorption of ionic surfactants at an Expanding air-water interface,” Langmuir, 2004, 20, 4436.
    33. T. D. Gurkova, D. T. Dimitrovaa, K. G. Marinovaa, C. Bilke-Crauseb, C. Gerberb, I. B. Ivanov, “Ionic surfactants on fluid interfaces: determination of the adsorption; role of the salt and the type of the hydrophobic phase,” Colloids Surf. A., 2005, 261, 29.
    34. G. Para, E. Jarek, P. Warszynski, “The surface tension of aqueous solutions of cetyltrimethylammonium cationic surfactants in presence of bromide and chloride counterions,” Colloids Surf. A., 2005, 261, 65.
    35. P. Koelsch, H. Motschmann, “Varying the counterions at a charged interface,” Langmuir, 2005, 21, 3436.
    36. I. B. Ivanov, K. P. Ananthapadmanabhan, A. Lips, “Adsorption and structure of the adsorbed layer of ionic surfactants,” Adv. Colloid Interface Sci., 2006, 123, 189.
    37. G. Para, P. Warszynski, A. Lips, “ACationic surfactant adsorption in the presence of divalent ions,” Colloids Surf. A., 2007, 300, 346.
    38. J. Penfold, I. Tucker, R. K. Thomas, D. J. F. Taylor, X. L. Zhang, C. Bell, C. Breward, P. Howell, “The interaction between sodium alkyl sulfate surfactants and the oppositely charged polyelectrolyte, polyDMDAAC, at the air-water interface: the Role of alkyl chain length and electrolyte and comparison with theoretical predictions,” Langmuir, 2007, 23, 3128.
    39. E. D. Manev, S. V. Sazdanova, R. Tsekov, S. I. Karakashev, A. V. Nguyen, “Adsorption of ionic surfactants,” Colloids Surf. A., 2008, 319, 29.
    40. J. Wegrzynska, G. Para, J. Chlebicki, P. Warszynski, K. A. Wilk, “Adsorption of multiple ammonium salts at the air/solution interface,” Langmuir, 2008, 24, 3171.
    41. S. Y. Lin, Ph. D. Dissertation, City University of New York, New York, 1991.
    42. G. D. J. Phillies, “Reactive contribution to the apparent translational diffusion coefficient of a micelle,” J. Phys. Chem. 1981, 85, 3540.
    43. P. C. Hiemenz, Principles of Colloid Surface Chemistry; Marcel Dekker, New York; Chapter 7, 1986.
    44. K. J. Stebe, S. Y. Lin, Dynamic surface tension and surfactant mass transfer kinetics: measurement techniques and analysis, in Handbook of surfaces and interfaces of materials: Surface and interface analysis and properties; Nalwa, H. S., Ed.; Academic Press: San Diego; Chapter 2, 2001.
    45. R. Y. Tsay, S. C. Yan, S. Y. Lin, “Comments on the Adsorption Isotherm and Determination of Adsorption Kinetics,” Rev. Sci. Instrum., 1995, 66, 5065.
    46. J. F. Baret, “State, electrical and rheological properties of model and dioxan isolated lignin films at the air-water interface,” J. Colloid Interface Sci., 1969, 30, 1.
    47. R. Aveyard, D. A. Haydon, An Introduction to the Principles of Surface Chemistry; Cambridge University Press: Cambridge; Chapters 1 and 3, 1973.
    48. V. B. Fainerman, S. V. Lylyk, “Adsorption kinetics of nonanol at the air-water interface: considering molecular interaction or aggregation within surface layer,” Kolloidn. Zh., 1982, 44, 538.
    49. A. Z. Frumkin, “On the adsorption properties of surface-chemically pure aqueous solutions of n-alkyl-dimethyl and n-alkyl-diethyl phosphine oxides,” Phys. Chem. (Leipzig), 1925, 116, 466.
    50. S. Y. Lin, T. L. Lu, W. B. Hwang, “Adsorption and Desorption Kinetics of C12E4 on Perturbed Interfaces,” Langmuir, 1995, 11, 555.
    51. S. Y. Lin, W. J. Wang, C. T. Hsu, “Adsorption Kinetics of Nonanol at the Air-Water Interface: Considering Molecular Interaction or Aggregation within Surface Layer,” Langmuir, 1997, 13, 6211.
    52. Y. C. Lee, Y. B. Liou, R. Miller, H. S. Liu, S. Y. Lin, “Surface equation of state of nonionic cmen surfactants,” Langmuir, 2002, 18, 2686.
    53. D. O. Johnson, K. J. Stebe, “a study of surfactant adsorption kinetics: effect of intermolecular interaction between adsorbed molecules,” J. Colloid Interface Sci., 1996, 182, 526.
    54. J. F. Baret, “Fast adsorption at the liquid-gas interface,” J. Phys. Chem., 1968, 72, 2755.
    55. R. P. Borwankar, D. T. Wasan, “Kinetics of surfactant adsorption at fluid/fluid interfaces: non-ionic surfactants,” Chem. Eng. Sci., 1988, 43, 1323.
    56. D. C. England, J. C. Berg, “Surface fractionation of multicomponent oil mixtures,” AIChE J., 1971, 17, 313.
    57. V. B. Fainerman, “Theory and experiment on the measurement of kinetic rate constants for surfactant exchange at an air/water interface,” Colloid J. USSR, 1977, 39, 91.
    58. R. Miller, K. Lunkenheimer, “Adsorption kinetics measurements of some nonionic surfactants,” Colloid Polymer Sci., 1986, 264, 357.
    59. P. Joos, G. Serrien, “Dynamic surface and interfacial tensions of surfactant and polymer solutions,” J. Colloid Interface. Sci., 1989, 127, 97.
    60. S. Y. Lin, K. Mckeigne, C. Maldarelli, “A study on surfactant adsorption kinetics: effect of bulk concentration on the limiting adsorption rate constant,” Langmuir, 1991, 7, 1055.
    61. S. Y. Lin, K. Mckeigne, C. Malderelli, “Diffusion-controlled surfactant adsorption studied by pendant drop digitization,” AIChE J., 1990, 36, 1785.
    62. C. A. Maclleod, C. J. Radke, “Dynamics of surfactant sorption at the air/water interface: continuous-flow tensiometry,” J. Colloid Interface Sci., 1994, 166, 73.
    63. Shanahan, M. E. R.; Bourgès, C. Int. J. Adhes. Adhes. 1994, 14, 201–205.
    64. Bourgès-Monnier, C.; Shanahan, M. E. R. Langmuir 1995, 11, 2820–2829.
    65. de Gennes, P. G.; Brochard-Wyart, F.; Quéré, D. Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves; Springer, 2003.
    66. Anantharaju, N.; Panchagnula, M. V; Vedantam, S.; Neti, S.; Tatic-Lucic, S. Langmuir 2007, 23, 11673–11676.
    67. Zhang, C.; Zhu, X.; Zhou, L. Chem. Phys. Lett. 2011, 508, 134–138.
    68. Pittoni, P. G.; Chang, C.-C.; Yu, T.; Lin, S. Colloids Surfaces A Physicochem. Eng. Asp. 2013, 432, 89–98.
    69. Nguyen, T. A. H.; Nguyen, A. V; Hampton, M. A.; Xu, Z. P.; Huang, L.; Rudolph, V. Chem. Eng. Sci. 2012, 69, 522–529.
    70. Girard, F.; Antoni, M.; Faure, S.; Steinchen, A. Colloids Surfaces A Physicochem. Eng. Asp. 2008, 323, 36–49.
    71. Orejon, D.; Sefiane, K.; Shanahan, M. E. R. Langmuir 2011, 27, 12834–12843.
    72. Bormashenko, E.; Musin, A.; Zinigrad, M. Colloids Surfaces A Physicochem. Eng. Asp. 2011, 385, 235–240.
    73. P. S. de Laplace, Mechanique Celeste, Supplement to book, 1806, 10.
    74. R. Y. Tsay, T. F. Wu, S. Y. Lin, “Observation of G-LE and LE-LC Phase Transitions of Adsorbed 1-Dodecanol Monolayer from Dynamic Surface-Tension Profiles,” J. Phys. Chem. B, 2004, 108, 18623.
    75. S. S. Datwani, K. J. Stebe, “Surface Tension of an Anionic Surfactant: Equilibrium, Dynamics, and Analysis for Aerosol-OT,” Langmuir, 2001, 17, 4287.
    76. S.Y. Lin, T.L. Lu, W.B. Hwang, “Adsorption Kinetics of Decanol at the Air-Water Interface,” Langmuir, 1995, 11, 555.

    無法下載圖示 全文公開日期 2020/05/20 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE