簡易檢索 / 詳目顯示

研究生: 林佳慧
Chia-Hui Lin
論文名稱: 離子型界劑水溶液吸附動力學探討暨固著液滴蒸發行為之研究
A Study on the Adsorption Kinetics of Ionic Surfactants and Evaporation Behavior of Sessile Drop
指導教授: 林析右
Shi-Yow Lin
口試委員: 江佳穎
Chia-Ying Chiang
張鴻奇
Hung-Chi Chang
楊明偉
Ming-Wei Yang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 60
中文關鍵詞: 界面活性劑表面張力吸附動力學固著液滴法接觸角
外文關鍵詞: surfactant, surface tension, adsorption kinetic, sessile drop, contact angle
相關次數: 點閱:252下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用影像數位化懸掛氣泡測量儀,量測離子型界劑於水溶液中吸附至氣-液界面所造成的表面張力變化,再以質傳理論模式來探討其吸附動力學。本研究所探討之界面活性劑分別為陽離子型的正十二胺陽離子型界面活性劑(DDA),與陰離子型的磺基丁二酸鈉二辛酯(AOT)。
    因一般小分子離子型界劑分子之動態表面張力通常在一秒前即達平衡值,極難取得離子型界劑分子在水溶液中之完整的動態表面張力。本研究嘗試在AOT界劑水溶液中添加500 mM NaCl,以期可經實驗量測而獲得較完整之動態表面張力曲線,並進一步藉由懸掛氣泡影像數位化測量儀所量測到的平衡及動態表面張力,來探討離子型界劑AOT之吸附動力學。
    陽離子型界劑DDA水溶液在溫度為25oC、濃度大於6.01×10-8 mol/cm3 時,在動態張力為43.7 mN/m處有一plateau區域;推論DDA單分子層在此張力下存在一液-氣界面相變化。另外,在長時間的動態張力量測實驗中,動態張力曲線會先降至一最低點,而後回升至一定值(~72mN/m)後不再變化;我們猜測DDA界劑分子在本體相的濃度隨吸附程序之進行會越來越低,可能是DDA分子吸附到固-液界面上。因此,本研究藉由蠕動幫浦不斷交換在鍍上疏水基模的石英盒中的實驗待測溶液,以維持水溶液中之本體相濃度,待固-液界面吸附達平衡後,再利用懸掛氣泡法來量測液-氣界面張力變化情形,以得到較準確的動態表面張力曲線。
    本研究使用吸附等溫線(分別為非離子型Langmuir 模式、離子型Langmuir 模式、離子型Frumkin模式及離子型generalized Frumkin模式)來模擬AOT界劑在10 mM及500 mM NaCl水溶液中之動態暨平衡表面張力,所得擴散係數為(1.55±0.3)×10-6 cm2/s。
    本研究之第二部份選用polycarbonate (PC)平板,以不同mesh號數的砂紙研磨,來製備具不同表面粗糙度的PC平板。繼而觀察純水固著液滴於PC平板上,在固定濕度狀況下之蒸發過程,來探討固著純水液滴在不同粗糙度之PC平板上,接觸角之動態變化情形,並進一步探討表面粗糙度對於後退接觸角的影響。另亦探討文獻中提到的strongly pinning之揮發過程中,其固著液滴是否有後退接觸角。


    The dynamic and equilibrium surface tensions for the adsorption of anionic surfactant AOT and cationic surfactant DDA in aqueous solutions onto a clean air-water interface was measured by using a video-enhanced pendant bubble tensionmeter. A comparison between the nonionic and ionic models (Langmuir, Frumkin and generalized Frumkin models) and the equilibrium and dynamic surface tensions of AOT and DDA were performed in order to study the adsorption mechanism and to determine the diffusivity of surfactant molecules. The adsoprion kinetics for AOT in aqueous 500 mM NaCl solution was found to be diffusion controlled with a diffusivity of (1.55±0.3)×10-6 cm2/s.
    A plateau region was observed at dynamic surface tension profile of DDA aqueous solution at γ = 43.7 mN/m at 25oC. The existence of a plateau implied the existence of a liquid expanded and liquid condensed phase transition for the DDA molecules adsorbed at air-water interface.
    In the second part of this study, polycarbonate (PC) substrates with various surface roughness were used on the investigation of the evaporation process in a circumstance of fixed humidity. Relaxation of contact angle was monitored and the pinning phenomenon was studied. The definition of receding contact angle was also discussed at the end of this work.

    摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VI 表目錄 VIII 第一章 簡介 1 1.1界面介紹 1 1.1.1界面活性劑的特性 1 1.1.2界面活性劑分類 3 1.2液滴蒸發介紹 4 1.2.1 接觸角 4 1.2.2 三相線 5 1.3研究主題 5 第二章 文獻回顧 6 2.1界劑分子在氣-液界面之吸附行為 6 2.2非離子型界劑分子之質傳理論 8 2.2.1 Langmuir adsorption model 10 2.2.2 Frumkin and generalized Frumkin models 12 2.3離子型界劑分子之質傳理論 14 2.4 界劑水溶液之表面張力量測 17 2.5 表面粗糙度對動態接觸角之影響探討 17 第三章 張力及接觸角量測方法 19 3.1 懸掛氣泡影像數位化測量儀 19 3.1.1懸掛氣泡法量測界面張力之理論 19 3.1.2硬體設備 21 3.2 固著液滴影像數位化測量儀 23 3.2.1固著液滴影像邊界、接觸角搜尋與理論邊界曲線計算 24 3.3其它實驗儀器 25 3.4實驗藥品 25 3.5實驗方法 26 3.5.1溶液配製 26 3.5.2聚碳酸酯平板處理 27 3.5.3實驗流程 27 第四章 實驗結果 31 4.1 AOT+500 mM NaCl 31 4.1.1 AOT+500 mM NaCl討論 31 4.1.2實驗方法修正 31 4.1.3濃度修正 32 4.1.4 決定模式與參數 36 4.1.5 結果討論 39 4.2 DDA水溶液 40 4.2.1 實驗程序修正 41 4.2.2 決定模式與參數 43 4.3 液滴在PC平板蒸發 46 第五章 結論 55 5.1 結論 55 參考文獻 56

    1. 張有義、郭蘭生編譯,〝膠體及界面化學入門〞,高立圖書有限公司,第四章(1999).
    2. D. Myers, “Surfaces, Interfaces, and Colloids: Principles and Applications”; Wiley-Vichy: New York, (1999).
    3. 刈米孝夫 〝界面活性劑的原理與應用〞,王鳳英編譯:高立圖書有限公司,第一章、第七章(1990)。
    4. 李雅琪,〝聚氧乙烯系非離子型界劑之吸附暨聚集行為研究〞,國立臺灣大學化學工程所博士論文(2002)。
    5. B. J. Palla, D. O. Shah, “Correlation of dispersion stability with surfactant concentration and abrasive particle size for chemical mechanical polishing (cmp) slurries,” J. Dispersion Sci. Technol, 2000, 21, 491.
    6. T. M. Pan, T. F. Lei, C. C. Chen, “Reliability Models of Data Retention and Read-Disturb in 2-Bit Nitride Storage Flash Memory Cells,” IEEE Electron Device Letters, 2000, 21, 338.
    7. J. T. Davies, “Adsorption of long-chain ions I,” Proc. R. SOC. London, 1958, a245,417.
    8. J. T. Davies, “Adsorption of long-chain ions Ⅱ,” Proc. R. SOC. London, 1958, a245 426.
    9. S. S. Dukhin, R. Miller, G. Kretzschmar, “On the theory of adsorption kinetics of ionic surfactants at fluid interfaces. The effect of the electric double layer under quasi-equilibrium conditions on adsorption kinetics,” Colloid Polym. Sci., 1983, 261, 335.
    10. R. Miller, S. S. Dukhin, G. Kretzschmar, “On the theory of adsorption kinetics of ionic surfactants at fluid interfaces. Numerical calculations of the influence of a quasiequilibrium electric double layer,” Colloid Polym. Sci., 1985, 263, 420.
    11. R. P. Borwanker, D. T. Wasan, “On the theory of adsorption kinetics of ionic surfactants at fluid interfaces 2.Numerical calculations of the influence of a quasi-equilibrium electric double layer,” Chem. Eng. Sci., 1986, 41, 199.
    12. R. P. Borwanker, D. T. Wasan, “The kinetics of adsorption of ionic surfactants at gas-liquid surfaces,” Chem. Eng. Sci., 1988, 43, 1323.
    13. S. S. Dukhin, R. Miller, “On the theory of adsorption kinetics of ionic surfactants at fluid interfaces 3.Generalization of the model,” Chem. Eng. Sci., 1991, 269, 923.
    14. C. H. Chang, E. I. Franses, “Modified Langmuir-Hinselwood kinetics for dynamic adsorption of surfactants at the air water interface,” Colloids Surfaces, 1992, 69, 189.
    15. C. H. Chang, E. I. Franses, “Dynamic surface tension behavior of aqueous solutions of N-dodecyl-N,N dimethyl aminobetaine chlorohydrate,” Colloid Polym. Sci, 1994, 272, 447.
    16. C. A. MacLeod, C. J. Radke, “Charge effects in the transient adsorption of ionic,” Langmuir, 1994, 10, 3555.
    17. S. S. Datwani, K. J. Stebe, “Surface tension of an anionic surfactant: equilibrium, dynamics, and analysis for Aerosol-OT,” Langmuir, 2001, 17, 4287.
    18. V. N. Truskett, C. A. Rosslee, N. L. Abbott, “Redox-dependent surface tension and surface phase transitions of a ferrocenyl surfactant: equilibrium and dynamic analyses with fluorescence images,” Langmuir, 19.
    19. S. Hachisua, “Equation of state of ionized monolayers,” J. Colloid Interface Sci., 1970, 33, 445.
    20. V. V. Kalinin, C. J. Radke, “An ion-binding model for ionic surfactant adsorption at aqueous-fluid interfaces,” Colloids Surf. A., 1996, 114, 337.
    21. H. Diamant, and D. Andelman, “Kinetics of surfactant adsorption at fluid-fluid Interfaces,” J. Phys. Chem., 1996, 100, 13732.
    22. H. Diamant, and D. Andelman, “Kinetics of surfactant adsorption at fluid-fluid Interfaces,” J. Phys. Chem., 1996, 100, 13732.
    23. P. Warszynski, W. Barzyk, K. Lunkenheimer, H. Fruhner, “Surface tension and surface potential of Na n-Dodecyl sulfate at the air-solution interface: Model and Experiment,” J. Phys. Chem. B, 1998, 102, 10948.
    24. P. A. Kralchevsky, K. D. Danov, G. Broze, A. Mehreteab, “Thermodynamics of ionic surfactant adsorption with account for the counterion binding: effect of Salts of various valency,” Langmuir, 1999, 15, 2351.
    25. K. D. Danov, V. L. Kolev, P. A. Kralchevsky, G. Broze, A. Mehreteab, “Adsorption kinetics of ionic surfactants after a large initial perturbation. Effect of surface elasticity,” Langmuir, 2000, 16, 2942.
    26. A. J. Prosser, E. I. Franses, “Adsorption and surface tension of ionic surfactants at the air–water interface: review and evaluation of equilibrium models,” Colloids Surf. A., 2001, 178, 1.
    27. P. Warszynski, K. Lunkenheimer, G. Czichocki, “Effect of counterions on the adsorption of ionic surfactants at fluid-fluid interfaces,” Langmuir, 2002, 18, 2506.
    28. V. L. Kolev, K. D. Danov, P. A. Kralchevsky, G. Broze, A. Mehreteab, “Comparison of the van der Waals and Frumkin adsorption isotherms for sodium dodecyl sulfate at various salt concentrations,” Langmuir, 2002, 18, 9106.
    29. G. Para, E. Jarek, P. Warszynski, Z. Adamczyk, K. P. Ananthapadmanabhan, A. Lips, “Effect of electrolytes on surface tension of ionic surfactant solutions,” Colloids Surf. A., 2003, 222, 213.
    30. P. A. Kralchevsky, K. D. Danov, V. L. Kolev, G. Broze, A. Mehreteab, “Effect of nonionic admixtures on the adsorption of ionic surfactants at fluid interfaces I. sodium dodecyl sulfate and dodecanol,” Langmuir, 2003, 19, 504.
    31. A. J. Prosser, E. I. Franses, “New thermodynamic/electrostatic models of adsorption and tension equilibria of aqueous ionic surfactant mixtures: application to sodium dodecyl sulfate/sodium dodecyl sulfonate systems,” J. Colloid Interface Sci., 2003, 263, 606.
    32. D. S. Valkovska, G. C. Shearman, C. D. Bain, R. C. Darton, J. Eastoe, “Adsorption of ionic surfactants at an Expanding air-water interface,” Langmuir, 2004, 20, 4436.
    33. T. D. Gurkova, D. T. Dimitrovaa, K. G. Marinovaa, C. Bilke-Crauseb, C. Gerberb, I. B. Ivanov, “Ionic surfactants on fluid interfaces: determination of the adsorption; role of the salt and the type of the hydrophobic phase,” Colloids Surf. A., 2005, 261, 29.
    34. G. Para, E. Jarek, P. Warszynski, “The surface tension of aqueous solutions of cetyltrimethylammonium cationic surfactants in presence of bromide and chloride counterions,” Colloids Surf. A., 2005, 261, 65.
    35. P. Koelsch, H. Motschmann, “Varying the counterions at a charged interface,” Langmuir, 2005, 21, 3436.
    36. I. B. Ivanov, K. P. Ananthapadmanabhan, A. Lips, “Adsorption and structure of the adsorbed layer of ionic surfactants,” Adv. Colloid Interface Sci., 2006, 123, 189.
    37. G. Para, P. Warszynski, A. Lips, “ACationic surfactant adsorption in the presence of divalent ions,” Colloids Surf. A., 2007, 300, 346.
    38. J. Penfold, I. Tucker, R. K. Thomas, D. J. F. Taylor, X. L. Zhang, C. Bell, C. Breward, P. Howell, “The interaction between sodium alkyl sulfate surfactants and the oppositely charged polyelectrolyte, polyDMDAAC, at the air-water interface: the Role of alkyl chain length and electrolyte and comparison with theoretical predictions,” Langmuir, 2007, 23, 3128.
    39. E. D. Manev, S. V. Sazdanova, R. Tsekov, S. I. Karakashev, A. V. Nguyen, “Adsorption of ionic surfactants,” Colloids Surf. A., 2008, 319, 29.
    40. J. Wegrzynska, G. Para, J. Chlebicki, P. Warszynski, K. A. Wilk, “Adsorption of multiple ammonium salts at the air/solution interface,” Langmuir, 2008, 24, 3171.
    41. S. Y. Lin, Ph. D. Dissertation, City University of New York, New York, 1991.
    42. G. D. J. Phillies, “Reactive contribution to the apparent translational diffusion coefficient of a micelle,” J. Phys. Chem. 1981, 85, 3540.
    43. P. C. Hiemenz, Principles of Colloid Surface Chemistry; Marcel Dekker, New York; Chapter 7, 1986.
    44. K. J. Stebe, S. Y. Lin, Dynamic surface tension and surfactant mass transfer kinetics: measurement techniques and analysis, in Handbook of surfaces and interfaces of materials: Surface and interface analysis and properties; Nalwa, H. S., Ed.; Academic Press: San Diego; Chapter 2, 2001.
    45. R. Y. Tsay, S. C. Yan, S. Y. Lin, “Comments on the Adsorption Isotherm and Determination of Adsorption Kinetics,” Rev. Sci. Instrum., 1995, 66, 5065.
    46. J. F. Baret, “State, electrical and rheological properties of model and dioxan isolated lignin films at the air-water interface,” J. Colloid Interface Sci., 1969, 30, 1.
    47. R. Aveyard, D. A. Haydon, An Introduction to the Principles of Surface Chemistry; Cambridge University Press: Cambridge; Chapters 1 and 3, 1973.
    48. V. B. Fainerman, S. V. Lylyk, “Adsorption kinetics of nonanol at the air-water interface: considering molecular interaction or aggregation within surface layer,” Kolloidn. Zh., 1982, 44, 538.
    49. A. Z. Frumkin, “On the adsorption properties of surface-chemically pure aqueous solutions of n-alkyl-dimethyl and n-alkyl-diethyl phosphine oxides,” Phys. Chem. (Leipzig), 1925, 116, 466.
    50. S. Y. Lin, T. L. Lu, W. B. Hwang, “Adsorption and Desorption Kinetics of C12E4 on Perturbed Interfaces,” Langmuir, 1995, 11, 555.
    51. S. Y. Lin, W. J. Wang, C. T. Hsu, “Adsorption Kinetics of Nonanol at the Air-Water Interface: Considering Molecular Interaction or Aggregation within Surface Layer,” Langmuir, 1997, 13, 6211.
    52. Y. C. Lee, Y. B. Liou, R. Miller, H. S. Liu, S. Y. Lin, “Surface equation of state of nonionic cmen surfactants,” Langmuir, 2002, 18, 2686.
    53. D. O. Johnson, K. J. Stebe, “a study of surfactant adsorption kinetics: effect of intermolecular interaction between adsorbed molecules,” J. Colloid Interface Sci., 1996, 182, 526.
    54. J. F. Baret, “Fast adsorption at the liquid-gas interface,” J. Phys. Chem., 1968, 72, 2755.
    55. R. P. Borwankar, D. T. Wasan, “Kinetics of surfactant adsorption at fluid/fluid interfaces: non-ionic surfactants,” Chem. Eng. Sci., 1988, 43, 1323.
    56. D. C. England, J. C. Berg, “Surface fractionation of multicomponent oil mixtures,” AIChE J., 1971, 17, 313.
    57. V. B. Fainerman, “Theory and experiment on the measurement of kinetic rate constants for surfactant exchange at an air/water interface,” Colloid J. USSR, 1977, 39, 91.
    58. R. Miller, K. Lunkenheimer, “Adsorption kinetics measurements of some nonionic surfactants,” Colloid Polymer Sci., 1986, 264, 357.
    59. P. Joos, G. Serrien, “Dynamic surface and interfacial tensions of surfactant and polymer solutions,” J. Colloid Interface. Sci., 1989, 127, 97.
    60. S. Y. Lin, K. Mckeigne, C. Maldarelli, “A study on surfactant adsorption kinetics: effect of bulk concentration on the limiting adsorption rate constant,” Langmuir, 1991, 7, 1055.
    61. S. Y. Lin, K. Mckeigne, C. Malderelli, “Diffusion-controlled surfactant adsorption studied by pendant drop digitization,” AIChE J., 1990, 36, 1785.
    62. C. A. Maclleod, C. J. Radke, “Dynamics of surfactant sorption at the air/water interface: continuous-flow tensiometry,” J. Colloid Interface Sci., 1994, 166, 73.
    63. M. E. R. Shanahan, C. Bourges, Int. J. Adhes. Adhes. 1994, 14, 201–205.
    64. C. Bourges-Monnier, M. E. R. Shanahan, Langmuir 1995, 11, 2820–2829.
    65. P. G. de Gennes, F. Brochard-Wyart, D. Quere, Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves; Springer, 2003.
    66. N. Anantharaju, M. V. Panchagnula, S. Vedantam, S. Neti, S. Tatic-Lucic, Langmuir 2007, 23, 11673–11676.
    67. C. Zhang, X. Zhu, L. Zhou, Chem. Phys. Lett. 2011, 508, 134–138.
    68. P. G. Pittoni, C.-C Chang,.; T. Yu, S. Lin, Colloids Surfaces A Physicochem. Eng. Asp. 2013, 432, 89–98.
    69. T. A. H. Nguyen, A. V. Nguyen, M. A. Hampton, Z. P. Xu, L. Huang, V. Rudolph, Chem. Eng. Sci. 2012, 69, 522–529.
    70. F. Girard, M. Antoni, S. Faure, A. Steinchen, Colloids Surfaces A Physicochem. Eng. Asp. 2008, 323, 36–49.
    71. D. Orejon, K. Sefiane, M. E. R. Shanahan, Langmuir 2011, 27, 12834–12843.
    72. E. Bormashenko, A. Musin, M. Zinigrad, Colloids Surfaces A Physicochem. Eng. Asp. 2011, 385, 235–240.
    73. P. S. de Laplace, Mechanique Celeste, Supplement to book, 1806, 10.
    74. R. Y. Tsay, T. F. Wu, S. Y. Lin, “Observation of G-LE and LE-LC Phase Transitions of Adsorbed 1-Dodecanol Monolayer from Dynamic Surface-Tension Profiles,” J. Phys. Chem. B, 2004, 108, 18623.
    75. S. S. Datwani, K. J. Stebe, “Surface Tension of an Anionic Surfactant: Equilibrium, Dynamics, and Analysis for Aerosol-OT,” Langmuir, 2001, 17, 4287.
    76. W. J. Musnicki, N. W. Lloyd, R. J. Phillips, S. R. Dungan, “Diffusion of Sodium Dodecyl Sulfate Micelles in Agarose Gels,” J. Colloid Interface Sci., 2011, 356, 165.

    QR CODE