簡易檢索 / 詳目顯示

研究生: 許世旻
Shih-Min Hsu
論文名稱: 具雲端SCADA管理之定置型儲能櫃研製
Design and Implementation of Immobile Energy Storage Rack with Cloud SCADA Management
指導教授: 林長華
Chang-Hua Lin
口試委員: 陳貽評
Yi-Ping Chen
黃仲欽
Jonq-Chin Hwang
劉華棟
Hwa-Dong Liu
林長華
Chang-Hua Lin
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 160
中文關鍵詞: 再生能源儲能系統電池管理系統SCADA 監控系統削峰填谷
外文關鍵詞: Renewable energy, ESS, BMS, SCADA system, Peak-cutting and valley-filling
相關次數: 點閱:607下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文研製一套具雲端SCADA管理之定置型儲能櫃,主要是針對一120串1並(120S1P)具容量為108 kWh的儲能櫃,在能源供應和負載需求之間進行匹配與管理。所提是一種基於雲端SCADA的管理系統,該系統利用雲端平台來監控和控制定置型儲能櫃,不僅可以實時監測、保護儲能櫃的運行狀態,收集電芯溫度、電芯充放電狀態等數據,並將數據上傳至雲端資料庫中進行分析。
    此外,本文所提之儲能系統管理單元與傳統建置於地端的方式不同,透過無線通訊技術作為資料及命令的傳輸方式,使得雲端SCADA監控平台直接對儲能櫃進行遠程設置和操作,使用者可以即時對儲能櫃進行監控。最後,在儲能櫃裡的電池管理系統提出混合式的電芯平衡策略來改善電池模組不平衡的現象,並利用台電所公布之用電曲線資料,探討儲能櫃在實際應用於不同削峰填谷控制中,其可用容量及時間電價的差異。


    This thesis aims to implement an energy storage rack with cloud-based SCADA management. It focuses primarily on a 120S1P energy storage rack with a capacity of 108 kWh. The aim is to match and manage the energy supply and load requirements. The proposed system is a cloud-based SCADA management system that utilizes cloud platforms to monitor and control the fixed-type energy storage cabinet. It enables real-time monitoring and protection of the operational status of the energy storage rack, collects data such as cell temperature and charge-discharge status, and uploads the data to a cloud database for analysis.
    Additionally, the energy storage system management unit proposed in this article differs from the traditional on-site deployment method. It utilizes wireless communication technology to transmit data and commands, allowing the cloud-based SCADA monitoring platform to configure and operate the energy storage rack directly. Users can monitor the storage cabinet in real time. Lastly, a hybrid cell balancing strategy is proposed for the battery management system within the storage cabinet to improve the issue of battery module imbalance. The article also explores the differences in available capacity and time-based electricity pricing for the energy storage rack in various peak shaving and valley filling control applications, utilizing the load curve data published by the power company.

    摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VII 表目錄 XIII 第一章 緒論 1 1.1 研究背景 1 1.2 文獻探討 2 1.3 論文架構 4 第二章 定置型儲能櫃與雲端技術介紹 6 2.1 定置型儲能櫃簡介與架構 6 2.2 各式電芯種類介紹 8 2.2.1 本文所使用之電芯規格 9 2.2.2 電芯容量與充放電特性 12 2.3 電芯電量平衡技術簡介 15 2.3.1 被動式電芯電量平衡架構 18 2.3.2 主動式電芯電量平衡架構 19 2.3.3 電芯電量均衡器 21 2.4 本文應用於定置型儲能櫃之電芯電量平衡架構 23 2.5 儲能系統之削峰填谷介紹 28 2.6 雲端技術之用途與目的 29 2.7 雲端系統架構 30 2.8 雲端設備介紹 32 2.9 後端技術介紹 34 2.9.1 Docker介紹 34 2.9.2 Node-red介紹 35 2.9.3 資料庫介紹 37 2.9.4 InfluxDB介紹 38 2.10 前端技術介紹 40 2.11 SCADA功能介紹 41 第三章 定置型儲能櫃設計與實現 43 3.1 系統架構 43 3.2 電池管理系統 44 3.2.1 主/被動平衡電路之系統架構 44 3.2.2 電池管理系統監測功能 49 3.2.3 電池管理系統保護功能 60 3.3 控制核心設計 62 3.3.2 充/放電電流監測電路 63 3.3.3 繼電器驅動電路設計 64 3.3.4 儲能系統保護電路 66 3.4 儲能系統之電源規劃 67 第四章 數位化控制與儲能管理單元設計考量 69 4.1 數位控制晶片之設計 69 4.1.1 數位控制晶片STM32G474VET6介紹 70 4.1.2 程式編輯與開發環境介紹 72 4.2 雲端SCADA功能架構 74 4.3 儲能系統管理單元與電池管理系統傳輸功能 77 4.3.1 串列週邊介面 81 4.3.2 非同步收發傳輸器 85 4.3.3 Modbus通訊協定 88 4.4 電芯電量平衡策略設計與控制流程 92 4.5 人機介面設計與實現 99 第五章 定置型儲能櫃實測 101 5.1 系統測試環境介紹 101 5.1.1 系統規格 102 5.1.2 定置型儲能櫃用電負載說明 104 5.1.3 時間電價與用電負載分析 106 5.1.4 負載功率等比例降額說明 108 5.2 電芯電量平衡電路之模擬與實測波形 109 5.2.1 電芯充電平衡 110 5.2.2 電芯被動平衡 115 5.2.3 電池管理系統電芯電量平衡實測結果 118 5.3 儲能系統削峰填谷實測 119 5.3.1 系統之操作狀態說明 120 5.3.2 電芯電量平衡於削峰填谷控制設計 123 5.3.3 情境一執行削峰填谷控制 124 5.3.4 情境二執行削峰填谷控制 127 5.3.5 情境成果比較 129 第六章 結論與未來展望 130 6.1 結論 130 6.2 未來展望 131 參考文獻 132

    [1]行政院能源減碳辦公室, “綠能科技產業創新推動方案進度及成果,” 2018/01/18.[Online], Available: https://reurl.cc/QLNWb2
    [2]經濟部能源局, “經濟成長力道強 2025年再生能源裝置量目標不變,” 2022/01/03.[Online], Available: https://reurl.cc/OAa173
    [3]黃至弘,“淺談我國綠能科研投入情況,”綠能科技產業推動中心技術發展組, 2020/02/17.[Online], Available: https://reurl.cc/9G01Vj
    [4]經濟部能源局, “綠能科技產業創新推動方案,” 2017/12/07.[Online], Available: https://reurl.cc/lonZQA
    [5]"2021 United Nations Climate Change Conference the Glasgow Climate Pact," [Online]. Available: https://ukcop26.org/the-glasgow-climate-pact/.
    [6]H. Qian, J. Zhang, J. -S. Lai and W. Yu, "A high-efficiency grid-tie battery energy storage system," IEEE Transactions on Power Electronics, vol. 26, no. 3, pp. 886-896, March 2011, doi: 10.1109/TPEL.2010.2096562.
    [7]X. Li and S. Wang, "Energy management and operational control methods for grid battery energy storage systems," CSEE Journal of Power and Energy Systems, vol. 7, no. 5, pp. 1026-1040, Sept. 2021, doi: 10.17775/CSEEJPES.2019.00160.
    [8] D. Zhang, S. Zhang, L. Teng, W. Kong, X. Peng and M. Liu, "Research on a peak-cutting and valley-filling Optimal Algorithm Based on Communication Power Supply," IEEE International Telecommunications Energy Conference (INTELEC), Turino, Italy, 2018, pp. 1-5, doi: 10.1109/INTLEC.2018.8612399.
    [9] S. Gangatharan, M. Rengasamy, R. M. Elavarasan, N. Das, E. Hossain and V. M. Sundaram, "A Novel Battery Supported Energy Management System for the Effective Handling of Feeble Power in Hybrid Microgrid Environment," IEEE Access, vol. 8, pp. 217391-217415, 2020, doi: 10.1109/ACCESS.2020.3039403.
    [10] A. Perez, R. Moreno, R. Moreira, M. Orchard and G. Strbac, "Effect of Battery Degradation on Multi-Service Portfolios of Energy Storage," IEEE Transactions on Sustainable Energy, vol. 7, no. 4, pp. 1718-1729, Oct. 2016, doi: 10.1109/TSTE.2016.2589943.
    [11]M. Preindl, "A Battery Balancing Auxiliary Power Module With Predictive Control for Electrified Transportation," IEEE Transactions on Industrial Electronics, vol. 65, no. 8, pp. 6552-6559, Aug. 2018, doi: 10.1109/TIE.2017.2682030.
    [12]J. -N. Shen, J. -J. Shen, Y. -J. He and Z. -F. Ma, "Accurate State of Charge Estimation With Model Mismatch for Li-Ion Batteries: A Joint Moving Horizon Estimation Approach," IEEE Transactions on Power Electronics, vol. 34, no. 5, pp. 4329-4342, May 2019, doi: 10.1109/TPEL.2018.2861730.
    [13]G. R. Sylvestrin, H. F. Scherer and O. Hideo Ando Junior, "Hardware and Software Development of an Open Source Battery Management System," IEEE Latin America Transactions, vol. 19, no. 7, pp. 1153-1163, July 2021, doi: 10.1109/TLA.2021.9461844.
    [14]H. Kim and K. G. Shin, "DESA: Dependable, Efficient, Scalable Architecture for Management of Large-Scale Batteries," IEEE Transactions on Industrial Informatics, vol. 8, no. 2, pp. 406-417, May 2012, doi: 10.1109/TII.2011.2166771.
    [15] F. Baronti, C. Bernardeschi, L. Cassano, A. Domenici, R. Roncella and R. Saletti, "Design and Safety Verification of a Distributed Charge Equalizer for Modular Li-Ion Batteries," IEEE Transactions on Industrial Informatics, vol. 10, no. 2, pp. 1003-1011, May 2014, doi: 10.1109/TII.2014.2299236.
    [16]H. Dai, G. Zhao, M. Lin, J. Wu and G. Zheng, "A Novel Estimation Method for the State of Health of Lithium-Ion Battery Using Prior Knowledge-Based Neural Network and Markov Chain," IEEE Transactions on Industrial Electronics, vol. 66, no. 10, pp. 7706-7716, Oct. 2019, doi: 10.1109/TIE.2018.2880703.
    [17]M. Cacciato, G. Nobile, G. Scarcella and G. Scelba, "Real-Time Model-Based Estimation of SOC and SOH for Energy Storage Systems," IEEE Transactions on Power Electronics, vol. 32, no. 1, pp. 794-803, Jan. 2017, doi: 10.1109/TPEL.2016.2535321.
    [18]Y. Zhou, M. Huang and M. Pecht, "An Online State of Health Estimation Method for Lithium-ion Batteries Based on Integrated Voltage," 2018 IEEE International Conference on Prognostics and Health Management (ICPHM), Seattle, WA, USA, 2018, pp. 1-5, doi: 10.1109/ICPHM.2018.8448947.
    [19]Q. Yu, R. Xiong, C. Lin, W. Shen and J. Deng, "Lithium-Ion Battery Parameters and State-of-Charge Joint Estimation Based on H-Infinity and Unscented Kalman Filters," IEEE Transactions on Vehicular Technology, vol. 66, no. 10, pp. 8693-8701, Oct. 2017, doi: 10.1109/TVT.2017.2709326.
    [20]Z. Ma et al., "Multilayer SOH Equalization Scheme for MMC Battery Energy Storage System," IEEE Transactions on Power Electronics, vol. 35, no. 12, pp. 13514-13527, Dec. 2020, doi: 10.1109/TPEL.2020.2991879.
    [21]T. Gallien, H. Krenn, R. Fischer, S. Lauterbach, B. Schweighofer and H. Wegleiter, "Magnetism Versus LiFePO4 Battery’s State of Charge: A Feasibility Study for Magnetic-Based Charge Monitoring," IEEE Transactions on Instrumentation and Measurement, vol. 64, no. 11, pp. 2959-2964, Nov. 2015, doi: 10.1109/TIM.2015.2437634.
    [22]A. Bavand, S. A. Khajehoddin, M. Ardakani and A. Tabesh, "Online Estimations of Li-Ion Battery SOC and SOH Applicable to Partial Charge/Discharge," IEEE Transactions on Transportation Electrification, vol. 8, no. 3, pp. 3673-3685, Sept. 2022, doi: 10.1109/TTE.2022.3162164.
    [23]N. Li, F. Gao, T. Hao, Z. Ma and C. Zhang, "SOH Balancing Control Method for the MMC Battery Energy Storage System," IEEE Transactions on Industrial Electronics, vol. 65, no. 8, pp. 6581-6591, Aug. 2018, doi: 10.1109/TIE.2017.2733462.
    [24]D. Xiao et al., "Reduced-Coupling Coestimation of SOC and SOH for Lithium-Ion Batteries Based on Convex Optimization," IEEE Transactions on Power Electronics, vol. 35, no. 11, pp. 12332-12346, Nov. 2020, doi: 10.1109/TPEL.2020.2984248.
    [25]Z. Xia and J. A. Abu Qahouq, "State-of-Charge Balancing of Lithium-Ion Batteries With State-of-Health Awareness Capability," IEEE Transactions on Industry Applications, vol. 57, no. 1, pp. 673-684, Jan.-Feb. 2021, doi: 10.1109/TIA.2020.3029755.
    [26]隨意窩, “電動產業的世界 貨櫃儲能組,” 2018/05/15.[Online], Available: https://reurl.cc/RrRvdx
    [27]Eletronics Hub, “What are the Different Types of Batteries?,” .[Online], Available: https://reurl.cc/ErYGzK
    [28]Battery University,“Summary Table of Lithium-based Batteries,” BU216, 2020-11-20. [Online], Available: https://reurl.cc/mLrL5M
    [29]台達電子, “工商型「斜槓」儲能系統選型與規劃攻略,” 2020/09/21.[Online], Available: https://reurl.cc/vdGkkA
    [30]CATL, “Product Specification of 280Ah Cell Datasheet”
    [31]V lithium, “EVE 3.2V 280Ah LiFePO4 Prismatic Battery Cell,”.[Online], Available: https://reurl.cc/OAQVr3
    [32]大規模鋰離子電池管理系統,李建林譯,機械工業出版社,2016/10
    [33]百盈能源科技, “鋰電池及保護板選擇要注意什麼事項?,” 2021/09/23.[Online], Available: https://reurl.cc/zZjqQ6
    [34]C. Pinto, J. V. Barreras, E. Schaltz and R. E. Araújo, "Evaluation of Advanced Control for Li-ion Battery Balancing Systems Using Convex Optimization," IEEE Transactions on Sustainable Energy, vol. 7, no. 4, pp. 1703-1717, Oct. 2016, doi: 10.1109/TSTE.2016.2600501.
    [35]P. A. Cassani and S. S. Williamson, "Design, Testing, and Validation of a Simplified Control Scheme for a Novel Plug-In Hybrid Electric Vehicle Battery Cell Equalizer," IEEE Transactions on Industrial Electronics, vol. 57, no. 12, pp. 3956-3962, Dec. 2010, doi: 10.1109/TIE.2010.2050750.
    [36]S. R. Raman, X. D. Xue and K. W. E. Cheng, "Review of charge equalization schemes for Li-ion battery and super-capacitor energy storage systems," 2014 International Conference on Advances in Electronics Computers and Communications, Bangalore, India, 2014, pp. 1-6, doi: 10.1109/ICAECC.2014.7002471.
    [37]N. Ghaeminezhad, Q. Ouyang, X. Hu, G. Xu and Z. Wang, "Active Cell Equalization Topologies Analysis for Battery Packs: A Systematic Review," IEEE Transactions on Power Electronics, vol. 36, no. 8, pp. 9119-9135, Aug. 2021, doi: 10.1109/TPEL.2021.3052163.
    [38]陳寧賢,“鋰電池模組內外平衡之設計與實現,”國立臺灣科技大學電機工程系碩士學位論文,民國一百零九年七月。
    [39]N. Ghaeminezhad, Q. Ouyang, X. Hu, G. Xu and Z. Wang, "Active Cell Equalization Topologies Analysis for Battery Packs: A Systematic Review," IEEE Transactions on Power Electronics, vol. 36, no. 8, pp. 9119-9135, Aug. 2021, doi: 10.1109/TPEL.2021.3052163.
    [40]台灣電力公司,“用戶資訊,” 112年4月01日. [Online], Available: https://www.taipower.com.tw/tc/page.aspx?mid=214&cid=125&cchk=12fb56e1-acb5-44d1-ae05-63c965cde2b3
    [41]L. Yu, T. Jiang, and Y. Zou, “Real-Time Energy Management for Cloud Data Centers in Smart Microgrids,” IEEE Access, vol. 4, pp. 941 - 950, March 2016.
    [42]Mell P., Grance T. “Effectively and Securely Using the Cloud Computing Paradigm”. NIST Information Technology Laboratory, 2010.
    [43]B. Daniel, M. Thomas, and W. Stefan “Platform as a Service (PaaS),” Business & Information Systems Engineering: Vol. 3: Iss. 6, 381-384., 2011
    [44]M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski, G. Lee, D. Patterson, A. Rabkin, I. Stoica, M. Zaharia, “A View of Cloud Computing”, Communications of the ACM, Vol. 53 No. 4, Pages 50-58, April 2010
    [45]E. Codds, “A relational model of data for large shared data banks,” 1970.
    [46]K. Rudolph, “A Comparison of NoSQL Time Series Databases”, 2015.
    [47]InfulxDB, “InfluxDB line protocol reference | InfluxDB OSS 1.8 Documentation,” [Online].Available: https://docs.influxdata.com/influxdb/v1.8/write_protocols/line_protocol_reference/.
    [48]”DB Engines Ranking Trend Popularity,”. [Online] Available: https://db-engines.com/en/ranking_trend
    [49]Skedler, “Everything You Need to Know about Grafana,” [Online]. Available:
    https://www.skedler.com/blog/everything-you-need-to-know-about-grafana/
    [50]Linear Technology, “LTC6803-2/LTC6803-4 Multicell Battery Stack Monitor Datasheet”
    [51]Texas Instruments,“ISO7741-Q1 Datasheet”
    [52]Allegro MicroSystems, ACS712ELCTR-20A-T Datasheet”
    [53]Murata Manufacturing Co, “NXFT15WF104FA1B025 Datasheet”
    [54]LEM,“HTFS-200-P Datasheet”
    [55]Tyco Electronics,“EV200AAANA”
    [56]經濟部,“513及517停電事故檢討報告”
    [57]L. G. Roberts and B. D. Wessler, “Computer network development to achieve resource sharing,” in Proceedings of the May 5-7, 1970, spring joint computer conference, New York, NY, USA, May 1970, pp. 543–549. doi: 10.1145/1476936.1477020.
    [58]李宥霖 ,“具雙向返馳轉換器之主動式電池平衡系統控制策略,”國立臺灣科技大學電機工程系 碩士學位論文,民國一百零八年七月。
    [59]昇陽電芯,“產品特性與優勢”. [Online], Available: https://reurl.cc/ogrg2j
    [60]蔡汶峰,“鋰離子電池儲存與鋰金屬沉澱之探討,”國立臺灣大學工學院應用力學研究所碩士論文,民國一零八年七月。
    [61]台灣電力公司,“低壓電力時間電價表,” 112年4月01日. [Online], Available: https://taipowerdsm.taipower.com.tw/low-volt

    無法下載圖示 全文公開日期 2033/07/27 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE