簡易檢索 / 詳目顯示

研究生: 王昭詠
Chao-Yung Wang
論文名稱: 具有再生能源之軟體定義衛星網路效能分析
Performance Analysis of the Software Defined Satellite Network with Renewable Energy
指導教授: 鍾順平
Shun-Ping Chung
口試委員: 林永松
王乃堅
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 222
中文關鍵詞: 軟體定義衛星網路可再生能源有限重傳無限重傳阻塞機率成功送達率
外文關鍵詞: SDSN, renewable energy, finite retransmissions, infinite retransmissions, blocking probability, throughput
相關次數: 點閱:374下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著科技的快速進步,衛星通訊由於具有覆蓋範圍大、可擴展性大和通訊容
    量大等特性,因此,對於我們的日常生活更顯重要。但是,受限於傳統硬體的設
    計和規劃,使得現有的通訊衛星難以做硬體的升級和系統的維護。因此,軟體定
    義衛星網路 ( 成為衛星通訊網路未來發展的趨勢。衛星通訊網路的另一個關
    鍵議題是在能源的消耗。這是因為難以更換衛星中耗盡的電池。所以,應用於衛
    星的可再生能源在我們的研究中被探討。在本研究中,我們提出運用可再生能源
    的 SDSN 的新模型,並著重於該模型的效能評估。在研究中,我們考量了四個情
    境:沒有優先權的單 一節點、沒有優先權且運用無限重傳的三個節點、沒有優先
    權且運用有限重傳的三個節點,和有優先權的單一節點。我們首先推導出四個情
    境的解析模型,並使用疊代演算法求出個別模型的穩態機率分佈和感興趣的效能
    指標。接著我們研究了各種系統參數對效能指標的影響。系統參數包括新封包的
    平均抵達速率、高優先權封包的平均抵達速率、低優先權封包的平均抵達速率、
    能量的平均抵達速率和重傳機率。我們感興趣的效能指標則包含系統的平均封包
    數、佇列的平均封包數、在系統中的平均等待時間、在佇列中的平均等待時間、
    阻塞機率和系統的成功送達率。第三,我們將 有限重傳的效能指標與無限重傳的
    效能指標進行比較。第四,我們將高優先權封包的效能指標與低優先權封包的效
    能指標能進行比較。 最後但非最不重要,我們利用 C 語言撰寫相關模型的電腦模擬
    程式。在大部分情形下解析結果與模擬結果是很接近的。


    The satellite communication becomes more and more important in our daily life with the rapid advance of technology. The satellite communication has the properties of large coverage, large scalability, and large communication capacity. However, the existing satellite communication is hard to upgrade and maintain due to the traditional hardware-based design. The software defined satellite network (SDSN) is expected to be the future trend in satellite communication. Another critical issue in designing satellite communications is energy consumption. This is because it is hard to replace the depleted power source in the space. Therefore, the renewable energy has been applied to satellites to extend the lifetime of satellite batteries. In this research, the new models based on SDSN with renewable energy are proposed, and we focus on the performance evaluation of the proposed SDSN models. In this work, we study four scenarios: one node without priority, three nodes without priority and with infinite retransmissions, three nodes without priority and with finite retransmissions, and one node without priority. First, we derived the analytical models for the scenarios considered. An iterative algorithm is adopted to find the steady state probability distribution and the performance measures of interest. Second, the impact of various system parameters on the performance measures is studied. The system parameters include mean new packet arrival rate, mean high-priority packet arrival rate, mean low-priority packet arrival rate, mean service rate, packet queue capacity, energy queue capacity, routing probability. The performance measures of interest are average number in system, average number in queue, average waiting time in system, average waiting time in queue, blocking probability, throughput. Third, the performance with finite retransmissions is compared with that with infinite retransmissions. Fourth, the performance of high-priority packets is compared with that of low-priority packets. Last but not least, the computer simulation is written to verify the accuracy of the analytical results.

    Contents 1. Introduction 1 2. System model 3 2.1 One node without priority 4 2.2 Three nodes without priority and with infinite retransmissions 4 2.3 Three nodes without priority and with finite retransmissions 4 2.4 One with priority 4 3. Analytical model 5 3.1 One node without priority 5 3.1.1 Model diagram 5 3.1.2 State balance equations 6 3.1.3 Iterative algorithm 8 3.1.4 Performance measures 9 3.2 Three nodes without priority and with infinite retransmissions 14 3.2.1 Model diagram 14 3.2.2 State balance equations 14 3.2.3 Iterative algorithm 18 3.2.4 Performance measures 19 3.3 Three nodes without priority and with finite retransmissions 25 3.3.1 Model diagram 25 3.3.2 State balance equations 26 3.3.3 Iterative algorithm 31 3.3.4 Performance measures 31 3.4 One node with priority 38 3.4.1 Model diagram 38 3.4.2 State balance equations 39 3.4.3 Iterative algorithm 57 3.4.4 Performance measures 58 4. Simulation model 85 4.1 One node with priority 85 4.1.1 Main program 85 4.1.2 Packet arrival subprogram 85 4.1.3 Energy arrival subprogram 86 4.1.4 Departure subprogram 86 4.1.5 Performance measures 87 4.2 Three nodes without priority and with infinite retransmissions 93 4.2.1 Main program 93 4.2.2 Node-1 new packet arrival subprogram 93 4.2.3 Node-n routed packet arrival subprogram 94 4.2.4 Node-n energy arrival subprogram 95 4.2.5 Departure subprogram 95 4.2.6 Performance measures 96 4.3 Three nodes without priority and with finite retransmissions 105 4.3.1 Main program 105 4.3.2 Node-1 new packet arrival subprogram 105 4.3.3 Node-n routed packet arrival subprogram 106 4.3.4 Node-n energy arrival subprogram 107 4.3.5 Node-1 departure subprogram 108 4.3.6 Node-2 departure subprogram 108 4.3.7 Node-3 departure subprogram 109 4.3.8 Performance measures 110 4.4 One node with priority 121 4.4.1 Main program 121 4.4.2 HP packet arrival subprogram 121 4.4.3 LP packet arrival subprogram 122 4.4.4 Energy arrival subprogram 123 4.4.5 Departure subprogram 123 4.3.6 Performance measures 124 5. Numerical results 133 5.1 One node without priority 133 5.1.1 Packet arrival rate 133 5.1.2 Energy arrival rate 140 5.2 Three nodes without priority and with infinite retransmissions 146 5.2.1 New packet arrival rate 146 5.2.2 Energy arrival rate 153 5.2.3 Routing probability 158 5.3 Three nodes without priority and with finite retransmissions 164 5.3.1 New packet arrival rate 164 5.3.2 Energy arrival rate 171 5.3.3 Routing probability 177 5.4 One node with priority 183 5.4.1 Packet arrival rate 184 5.4.2 Energy arrival rate 190 6. Conclusions 197 References 199

    References
    [1] Ramon Ferrús, Oriol Sallent, Toufik Ahmed, and Riccardo Fedrizzi, “Towards SDN/NFV-enabled satellite ground segment systems: End-to-End Traffic Engineering Use Case,” 2017 IEEE International Conference on Communications Workshops (ICC Workshops), DOI: 10.1109/ICCW.2017.7962771, 2017
    [2] Ki-Dong Lee, “Delay Control for Non-Real-Time Data in Interactive Multimedia Satellite Networks,” IEEE Communications Letters, PP.665-667, 2004
    [3] Chenyu Liu and Yongjian Liu, “A Real-Time Distributed Algorithm for Satellite Constellation Routing,” 2018 IEEE 18th International Conference on Communication Technology (ICCT), pp.745-749, 2018
    [4] Lionel Bertaux, Samir Medjiah, Pascal Berthou, Slim Abdellatif, Akram Hakiri, Patrick Gelard, Fabrice Planchou, and Marc Bruyere, “Software Defined Networking and Virtualization for Broadband Satellite Networks,” IEEE Communications Magazine, PP.54-60, 2015
    [5] Bruno Astuto A. Nunes, Marc Mendonca, Xuan-Nam Nguyen, Katia Obraczka, and Thierry Turletti, “A Survey of Software-Defined Networking: Past, Present, and Future of Programmable Networks,” IEEE Communications Surveys & Tutorials, vol.16, no. 3, pp. 1617-1634, 2014.
    [6] Yonghu Zhu, Liang Qian, Lianghui Ding, Feng Yang, Cheng Zhi, and Tao Song, “Software Defined Routing Algorithm in LEO Satellite Networks,” 2017 International Conference on Electrical Engineering and Informatics (ICELTICs), pp.257-262, 2017
    [7] Taixin Li, Huachun Zhou, Hongbin Luo, and Qi Xu, Yue Ye, “Using SDN and NFV to Implement Satellite Communication Networks,” 2016 International Conference on Networking and Network Application (NaNA), pp. 131-134, 2016
    [8] Mohammad Salimi, Soghra Sarkooyeh and Mohammad Hasannia, “Economic Evaluation of Solar Power Satellite System: A Comparison between SPS & Other Renewable Resources,” 2015 7th International Conference on Recent Advances in Space Technologies (RAST), pp. 749-752, 2015
    [9] Muhammad Usman Khan, Anwar Ali, Haider Ali, Muhammad Sadiq Khattak, and Iftikhar Ahmad, “Designing Efficient Electric Power Supply System for Micro-Satellite,” 2016 International Conference on Computing, Electronic and Electrical Engineering (ICE Cube), DOI: 10.1109/ICECUBE.2016.7495225, 2016
    [10] Phaithoon Phromsuphorn, Jeerasuda Koseeyaporn, and Paramote Wardkein, “ Performance Analysis of Soft Switch Network Based on Jackson Network Theory,” 2008 International Conference on Communications, Circuits and Systems, pp.534-537, 2008
    [11] Rick Zhang, Federico Rossi, and Marco Pavone, “Analysis, Control, and Evaluation of Mobility-on-Demand Systems: A Queueing-Theoretical Approach,” IEEE Transactions on Control of Network Systems, pp. 115 – 126, 2018
    [12] Taixin Li, Huachun Zhou, Hongbin Luo, Wei Quan, and Shui Yu, “Modeling software defined satellite networks using queueing theory,” 2017 IEEE International Conference on Communications (ICC), DOI: 10.1109/ICC.2017.7997290, 2017
    [13] Narvada Khedun and Vandana Bassoo, ”Analysis of Priority Queueing with Multichannel in Cognitive Radio Network,” IEEE EUROCON 2015 - International Conference on Computer as a Tool, DOI: 10.1109/EUROCON.2015.7313750, 2015
    [14] Shuaishuai Guo, Dalei Wu, Haixia Zhang, and Dongfeng Yuan, “Queueing Network Model and Average Delay Analysis for Mobile Edge Computing,” 2018 International Conference on Computing, Networking and Communications (ICNC), pp.172-176, 2018
    [15] Xianghua Jia, Ming Xu , Xiao Pan, and Xintao Mao ,“Eclipse Prediction Algorithms for Low-Earth-Orbiting Satellites,” IEEE Transactions on Aerospace and Electronic Systems, pp.2963-2975, 2017
    [16] Vineet K. Srivastava, Jai Kumar, Shivali Kulshrestha, Ashutosh Srivastava, M.K. Bhaskar, Badam Singh Kushvah, Prakash Shiggavi, David A. Vallado, “Lunar Shadow Eclipse Prediction Models for the Earth Orbiting Spacecraft: Comparison and Application to LEO and GEO Spacecrafts,” Acta Astron., vol. 110, pp. 206–213, 2015.

    無法下載圖示 全文公開日期 2024/08/01 (校內網路)
    全文公開日期 2024/08/01 (校外網路)
    全文公開日期 2024/08/01 (國家圖書館:臺灣博碩士論文系統)
    QR CODE