研究生: |
吳齊祥 Chi-Hsiang Wu |
---|---|
論文名稱: |
用在鈣鈦礦太陽能電池中非富勒烯小分子電子傳輸材料的合成與鑑定 Synthesis and Characterization of Small Molecular Non-Fullerene Electron Transporting Materials for Perovskite Solar Cells |
指導教授: |
陳錦地
Chin-Ti Chen 戴龑 Yian Tai |
口試委員: |
陳錦地
Chin-Ti Chen 戴龑 Yian Tai 林建村 Jiann-T'suen Lin |
學位類別: |
碩士 Master |
系所名稱: |
工程學院 - 化學工程系 Department of Chemical Engineering |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 218 |
中文關鍵詞: | 非富勒稀 、小分子 、電子傳輸材料 |
外文關鍵詞: | non-fullerene, small molecular, electron transporting material |
相關次數: | 點閱:412 下載:1 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇碩士論文設計並合成兩系列用在鈣鈦礦太陽能電池電子傳輸層的小分子電子傳輸材料,系列一為具有立體結構之非富勒烯小分子電子傳輸材料4BT、2H2FBT、2F2HBT、4FBT,以2,2’-聯二噻吩 (2,2’-bithiophene) 為主體,並在3、3’、5、5’位置分別接上2,1,3-苯并噻二唑(2,1,3-Benzothiadiazole, BT) 及5,6-二氟-2,1,3-苯並噻二唑(5,6-Difluoro-2,1,3-benzothiadiazole, FBT) 等強拉電子基,藉由立體障礙使中心兩噻吩扭轉開來進而形成立體的分子結構。立體的分子結構除了具有三維的傳輸電子能力,且能改善分子間聚集的情況,進而改善薄膜的表面形貌。本系列化合物將與目前常用的傳電子材料富勒烯衍生物PC61BM進行比較,並探討扭曲的三維立體分子結構的小分子化合物是否能夠作為取代PC61BM作為良好的電子傳輸材料。
第二系列為以苝二亞醯胺 (perylene diimide, PDI )及萘二亞醯胺 (naphthalene diimide, NDI) 作為主體的小分子電子傳輸材料,NDI及PDI因結構為平面共軛分子,因此有很好的導電度及傳電子能力,且具有強拉電子基醯亞胺 (imide),具有良好的拉電子能力,並有夠深的LUMO能階,被廣泛被料利用於鈣鈦礦太陽能電池中的傳電子材料,本系列將PDI及NDI主體兩端延伸出末端帶有胺基的長碳鏈,並在胺基上進行離子化,即本系列化合物NDIN、NDINO、NDINMe、PDIN、PDINO、PDINMe,探討對末端胺基不同離子態,對傳電子能力的影響,並了解其是否能夠作為鈣鈦礦太陽能電池中的電子傳輸材。
In this work, we designed and synthesized two series of small molecular electron transporting material for perovskite solar cell. The first part are a series of non-fullerene small molecular electron transporting material with 3D molecule structure, which is 4BT、2H2FBT、2F2HBT、4FBT. These non-fullerene electron transporting material have a 3,3’,5,5’-tetrasubstituted 2,2’-bithiophene central core structure, having four benzothiadiazole (BT) or difluorobenzothiadiazole (FBT) groups as the electron accepting unit. Due to the steric hindrance of 3,3’-disubstituted 2,2’-bithiophene, the molecule exhibits a highly twisted 3D molecular structure with non-planarity. The twisted non-planar molecules are expected to have improved thin film morphology by reducing the aggregation of molecules, and good electron mobilities because of transporting electrons in three-dimension directions. The most widely used electron acceptor, fullerene derivatives PC61BM ,will be compared with these series of electron acceptor, to investigate whether the twisted 3D non-fullerene small molecular electron acceptor can replace PC61BM as an electron transporting material for perovskite solar cell.
The second part are s series of naphthalene diimide (NDI) derivatives and perylene diimide (PDI) derivative. The PDIs and NDIs provide high electron mobilities and conductivities due to the rigid planar -skeletons. The strong electron affinity of the imide parts let NDIs and PDIs have low LUMO energy level. In this series, we tested NDIs and PDIs with different functionalized amino group as the terminal substituent at the imide-positions, which are NDIN、NDINO、NDINMe、PDIN、PDINO、PDINMe.
We will investigate the effect of different terminal amino group on electron transporting properties, understanding whether they are suitable electron transporting materials for perovskite solar cell.
1. https://www.e-education.psu.edu/eme807/node/649
2. http://www.thesolarspark.co.uk/the-science/renewable-energy/
3. 劉智生、洪儒生,科學發展,2009,439,69,國科會。
4. https://commons.wikimedia.org/wiki/File:Solar_Spectrum.png
5. https://www.laserfocusworld.com/articles/2009/05/photovoltaics-measuring-the-sun.html
6. Becquerel, A. E.; Hebd. Seances, C. R. Acad. Sci. 1839, 561.
7. (1) Choubey, P.C.; Oudhia, A.; Dewangan, R. Recent Research in Science and Technology, 2012, 4, 99.
(2) Srinivas, B.; Balaji, S.; Nagendra Babu, M.; Reddy, Y.S. International Journal of Engineering Research-Online, 2015, 3, 178.
8. http://greenergy-tw.com/info1.html
9. https://zh.wikipedia.org/wiki/%E6%9F%B4%E5%8F%AF%E6%8B%89%E6%96%AF%E5%9F%BA%E6%B3%95
10. Green, M. A.; Emery, K.; Hishikawa, Y.; Warta, W. Prog. Photovolt: Res. Appl., 2008, 16, 61.
11. Contreras, M. A.; Ramanathan, K.; AbuShama, J.; Hasoon, F.; Young, D. L.; Egaas , B.; Nouf, R. Prog. Photovolt: Res. Appl., 2005, 13, 209.
12. Fthenakis, V. M.; Moskowitz, P. D. Prog. Photovolt: Res. Appl., 1995, 3, 295
13. Tang, C.-W.; Albrecht, A. C. J. Appl. Phys. Lett., 1975, 62, 2138.
14. Tang, C.-W. J. Appl. Phys. Lett., 1986, 48, 183.
15. Forrest, S. R. MRS Bull. 2005, 30, 28.
16. Hiramoto, M.; Fujiwara, H.; Yokoyama, M. J. Appl. Phys. Lett., 1991, 58, 1062.
17. Sariciftci, N. S.; Smailowitz, L.; Heeger, A. J.; Wudl, F. Science, 1992, 258, 1474.
18. Yu, G.; Gao, J.; Hummenlen, J. C.; Wudl, F.; Heeger, A. J. Science, 1995, 270, 1789.
19. Che, X. -Z.; Xiao, X.; Zimmerman, J. D.; Fan, D.-J.; Forrest, S. R. Adv. Energy Mater. 2014, 4, 14400568.
20. https://www.laserfocusworld.com/articles/print/volume-48/issue-06/features/transition-metal-oxides-increase-organic-solar-cell-power-conversion.html
21. O’Regan, B., Grätzel, M. Nature, 1991, 353, 737.
22. Nazeeruddin, M. K.; Kay, A.; Rodicio, I.; Humphary-Baker, R.; Muller, E.; Lisks, P.; Vlachopoulos, N.; Grätzel, M. J. Am. Chem. Soc. 1993, 115, 6382-6390.
23. lto, S.; Zakeeruddin, S.; Humphry-Baker, R.; Liska, P.; Charvet, R.; Comte P.; Nazeeruddin, M. K.; Pechy, P.; Takata, M.; Miura, H.; Uchida, S.; Grätzel, M. Adv. Mater. 2006, 18, 1202.
24. Bach, U.; Lupo, D.; Comte, P.; Moser, J. E.; Welssortel, F.; Salbeck, J.; Spreltzer, H.; Grätzel, M. Nature, 1998, 395, 585.
25. Burschka, J.; Dualeh, A.; Kessler, F.; Baranoff, E.; Cevey-Ha, N.-L.; Yi, C.; Nazerruddin, M. K.; Grätzel, M. J. Am. Chem. Soc. 2011, 133, 18042.
26. Chung, I.; Lee, B.-H.; He, J.-Q.; Chang, R. P. H.; Kanatzidis, M. G. Nature, 2012 485, 486.
27. Best research-cell efficiencies from NREL
https://www.nrel.gov/pv/national-center-for-photovoltaics.html
28. https://www.solarpowerworldonline.com/2014/08/perovskite-next-big-thing-thin-film-solar-cells/
29. Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. J. Am. Chem. Soc., 2009, 131, 6050.
30. Kim, H. S.; Lee, C. R.; Lm, K. B.; Moehl, T.; Machioro, A.; Moon, S. J.; Humphry-Baker, R.; Yum, J. H.; Moser, J. E.; Grätzel, M, and Park, N. G. Scientific Reports, 2012, 2, 591.
31. Lee, M. M.; Teuscher, J.; Miyasaka, T.; Murakami, T. N.; Snaith, H. J. Science, 2012, 338, 643.
32. Burschika, J.; Pellet, N.; Moon, S.-J.; Humphry-Baker, R.; Gao, P.; Nazeeruddin, M. K.; Grätzel, M. Nature, 2013, 499, 316.
33. Liu, M.; Johnston, M. B.; Snaith. H. J. Nature, 2013, 501, 395.
34. Chen, Q.; Zhou, H.-P.; Hong, Z.; Duan, H.-S.; Wang, H.-H.; Liu, Y.-S.; Li, G.; Yang, Y. J. Am. Chem. Soc., 2014, 136, 622.
35. Gao, P.; Grätzel, M.; Nazeeruddin, M. K. Energy Environ. Sci. 2014, 7, 2448.
36. Chueh, C.-C.; Li, C.-Z.; Jen, A. K.-Y. Energy Environ. Sci, 2015, 8, 1160.
37. Song, Z.-N.; Watthage, S. C.; Phillips, A. B.; Heben, M. J. J. Photon. Energy, 2016, 6, 022001.
38. Leijtens, T.; Lauber, B.; Eperon, G. E.; Stranks, S. D., Snaith, H. J. J. Phys. Chem. Lett. 2014, 5, 1096.
39. Eperon, G. E.; Burlakov, V. M.; Docampo, P.; Goriely, A.; Snaith, H. J. Adv. Funct. Mater., 2014, 24, 151.
40. Yang, W. S.; Noh, J. H.; Jeon, N. J.; Kim, Y. C.; Ryu, S. C.; Seo, J. W.; Seok, S. I. Science, 2015, 348, 1234.
41. Zhou, H.; Chen. Q.; Li, G.; Luo, S.; Song, T.-B., Duan, H.-S.; Hong, Z.; You, J.; Liu, Y.; Yang, Y. Science, 2014, 345, 542.
42. Dong, Q.; Yuan, Y.; Shao, Y.; Fang, Y.; Wang, Q.; Huang, J. Energy Environ. Sci., 2015, 8, 2464.
43. Park, J. H.; Seo, J.; Park, S.; Shin, S. S., Kim, Y. C.; Jeon, N. J.; Shin, H.-W.; Ahn. T. K.; Noh, J. H.; Yoon, S. C.; Hwang, C. S.; Seok, S. I. Adv. Mater., 2015, 27, 4013
44. Chen, W.; Wu, Y.; Yue, Y.; Liu; J.; Zhang, W.; Yang, X.; Chen, H.; Bi, E.; Ashraful, I.; Grätzel, M.; Han, L. Science, 2015, 350, 944.
45. Wang, J.-Y.; Liu, K.; Zhan, X.-W. Chem. Rev., 2016, 116, 14675.
46. Gubbala, S.; Chakrapani, V.; Kumar, V.; Sunkara M. K. Adv. Funct. Mater., 2008, 18, 2411.
47. Zhang, Q.; Dandeneau, C. S.; Zhou, X.; Cao, G. Adv. Mater., 2009, 21, 4087.
48. Son, D. Y.; Im, J. H.; Kim, H. S.; Park, N. G. J. Phys. Chem. C, 2014, 118, 16567.
49. Liu, D.; Kelly, T. L. Nat. Photonics, 2013, 8, 133.
50. Dong, X.; Hu, H.; Lin, B.; Ding, J.; Yuan, N. Chem. Commun., 2014, 50, 14405.
51. Song, J.; Zheng, E.; Bian, J.; Wang, X.-F.; Sanehira, T. Y.; Miyasaka, T. J. Mater. Chem. A, 2015, 3, 10837
52. Ke, W., Fang, G.; Liu, Q.; Xiong, L.; Qin, P.; Tao, H.; Wang, J.; Lei, H.; Li, B.; Wan, J. J. Am., Chem. Soc., 2015, 137, 6730.
53. Correa Baena, J. P.; Steier, L.; Tress, W.; Saliba, M.; Neutzner, S., Matsui, T.; Giordano, F.; Jacobsson, J.; Srimath Kandada, A. R.; Zakeeruddin, S. M.; Petrozza, A.; Abate, A.; Mohammad, N.; Grätzel, M.; Hagfeldt, A. Energy Environ. Sci., 2015, 8, 2928.
54. Wang, K.; Shi, Y.; Dong, Q.; Li, Y.; Wang, S.; Yu, X.; Wu, M.; Ma, T. J. Phys. Chem. Lett., 2015, 6, 755.
55. Miller, N. C.; Sweetnam, S.; Hoke, E. T.; Gysel, R.; Miller, C. E.; Bartelt, J. A.; Xie, X.; Toney, M. F.; McGehee, M. D. Nano. Lett., 2012, 12, 1566.
56. Venkateswararao A.; Liu, S.-W.; Wong, K.-T. Mater. Sci. Eng. R Rep, 2018, 124, 1.
57. Duan, Y.; Xu, X.; Yan, H.; Wu, W.; Li, Z.; Peng, Q. Adv. Mater., 2017, 29, 1605115
58. Lee, J.; Singh, R.; Sin, D. H.; Kim, H. G.; Song, K. C.; Cho, K. Adv. Mater., 2016, 28, 69.
59. Fan, B.; Meng, D.; Peng, D.; Lin, S.; Wang, Z.; Sun, Y. Sci. China Chem., 2016, 59, 1658.
60. Akbulatov, A. F.; Frolova, L. A.; Griffin, M. P.; Gearba, L. R.; Dolocan A.; Bout, D. A. V.; Tsarev, S.; Katz, E. A.; Shesrakov, A. F.; Stevenson K. J.; Troshin, P. A. Adv. Energy Mater., 2017, 7, 1700476.
61. Jung, S.-K.; Heo, J. H.; Lee, D. W.; Lee, S.-C.; Lee, S.-H.; Yoon, W.; Im, S. H.; Kim, J. H.; Kwon, O-.P. Adv, Funct. Mater., 2018, 28, 1800346.
62. Zhang, H.; Xue, L.; Han, J.; Fu, Y. Q.; Shen, Y.; Zhang, Z.; Li, Y.; Wang, M. J. Mater. Chem. A, 2016, 4, 8724.
63. Zhu, Z.; Xu, J.-Q.; Chueh, C.-C.; Liu, H.; Li, Z.; Li, X.; Chen, H.; Jen, A. K.-Y. Adv. Mater., 2016, 28, 10786.
64. Wu, J.-L.; Huang, W.-K.; Chang, Y.-C.; Tsai, B.-C.; Hsiao, Y.-C.; Chang, C.-Y.; Chen. C.-T., Chen, C.-T. J. Mater. Chem. A, 2017, 5, 12811.
65. Cheng, M.; Li, Y.; Liu, P.; Zhang, F.; Hajian, A.; Wang, H.; Li, J.; Wang, L.; Kloo, L.; Yang, X.; Sun, L. Sol. RRL, 2017, 1, 1700046.
66. Zhang, H.; Xue, L.; Han, J.; Fu, Y. Q.; Shen, Y.; Zhang, Z.; Li, Y.; Wang, M. J. Mater. Chem. A, 2016, 4, 8724.
67. Sun, C.; Wu, Z.; Yip, H.-Y.; Zhang, H.; Jiang, X.-F.; Xue, Q.; Hu, Z.; Shen, Y.; Wang, M.; Huang, F.; Cao, Y. Adv. Energy Mater., 2016, 6, 1501534.
68. Yang, G.; Tao, H.; Qin, P.; Ke, W.; Fang, G. J. Mater. Chem. A., 2016, 4, 3970.
69. Jinchu, I.; Sreekala C. O.; Sreelatha, K. S. Mater. Sci. Forum., 2014, 741, 39.