簡易檢索 / 詳目顯示

研究生: 阮高明福
Nguyen Cao Minh Phuc
論文名稱: JEFFAMINE®改性BMI/BTA作為鋰離子電池添加劑的研究
Investigation of JEFFAMINE® modified BMI/BTA as the additive in lithium-ion battery
指導教授: 陳崇賢
Chorng-Shyan Chern
Quoc-Thai Pham
Quoc-Thai Pham
口試委員: 許榮木
陳崇賢
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 78
中文關鍵詞: 鋰離子電池雙馬來酰亞胺巴比妥酸Jeffamine®
外文關鍵詞: lithium-ion battery, N,N’-bismaleimide-4,4’-diphenylmethane, barbituric acid, Jeffamine®
相關次數: 點閱:269下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鋰離子電池由於其優異的循環效率和相當高的能量密度,在任何電子設備的發展和成功中起著至關重要的作用。 然而,在研究上仍然存在許多困難,例如,理解並改善導致電池功率和比容量衰减的降解過程,以及修改和表徵新的化合物,用於改善電化學特性、减少有害物質和降低成本。 在這種情況下,電池單元測試是檢查鋰離子電池效能的基本且相當重要的技術。
    第一部分探討了雙馬來酰亞胺 (BMI)/巴比妥酸 (BTA) [2/1 (mol/mol)]添加劑加入Jeffamine®(BJB)後對鋰離子電池的影響。將不同的添加量的BJB添加劑(1%、1.2% 和1.5%相對於正極活性材料)加入正極活性材料中(LiNi0.8Co0.1Mn0.1O2 (LNCM811)),評估鋰傳輸過程的動力學。為了評估這些添加劑對電池性能的影響,在本論文中還分析了常溫(25 ℃)和不同C倍率下的充放電測試;循環伏安法(CV);電化學阻抗譜 (EIS) 以及擴散係數的計算、EIS 模型擬合和高溫 (55oC) 下的儲存穩定性結果。因此,低負載重量的 LNCM811 與 1% 的 BJB 2/1/1 (mol/mol/mol) 的組合顯示出比其他百分比的添加劑、Benchmark (BMI/BTA 2/1 mol/mol)和沒有添加劑(Blank)樣品更好的電化學性能。
    此外,第二部分將提供在NMP和BTA 存在下,BMI 與 Jeffamine 的非等溫聚合動力學的定量信息。具體而言,該數據通過差示掃描量熱法(DSC)和凝膠滲透色譜法(GPC)檢查。無模型和模型擬合方法均用於證明等轉化活化能(Eα)和指前因子(Aα),平均分別為74.4 kJ mol-1和1.32x1011 min-1;反應模型為 f(α) = 2.401(1-α)[-ln(1-α)]1.401/2.401。另一方面,當α介於0.1和0.9之間時,Eα從大約 84 kJ/mol 逐漸降低到超過 65 kJ/mol。


    Lithium-ion batteries play a crucial part in the evolution and success of any electrical gadgets due to their potential cycling efficiency, and their fairly high energy ability. However, there are still numerous research hurdles existing, for instance, comprehending and limiting the degradation processes that cause the batteries power and specific capacity decay, as well as modifying and characterizing new formula for improving the electrochemistry characteristics, harmful mitigation, and costs reduction. In this scenario, battery cell testing is not only a basic but also extremely significant technique to inspect the lithium-ion batteries performance.
    In the first part, the effects on lithium-ion battery of N,N’-bismaleimide-4,4’-diphenylmethane (BMI)/barbituric acid (BTA) [2/1 (mol/mol)] with the presence and absence of Jeffamine® (BJB) were applied. Simultaneously, the different additive amounts compare to the active material – LiNi0.8Co0.1Mn0.1O2, (LNCM811), which are 1% - 1.2% and 1.5%, were used to assess the dynamics of the lithium transport procedure. To evaluate the effect of these additives on the battery performance, the thesis also analyzes charge and discharge tests at normal temperature (25oC), high temperature (55oC), and at different C-rates; cyclic voltammetry (CV); electrochemical impedance spectroscopy (EIS) as well as the calculation in diffusion coefficience, EIS model fitting and the storage stability at high temperature (55oC) results. Consequently, the combination of LNCM811 at low loading weight with 1% of BJB 2/1/1 (mol/mol/mol) shows better electrochemical properties than the other percentages of additive, Benchmark (BMI/BTA 2/1 mol/mol) and the one without additive (blank).
    In addition, the second part will provide quantitative information on the kinetics of non-isothermal polymerization of BMI with Jeffamine in the existence of N-Methyl-2-pyrrolidone (NMP) and BTA. Specifically, this data is inspected by the differential scanning calorimetry (DSC) and gel permeation chromatography (GPC). Both model-free and model-fitting methods were used to demonstrate the isoconversional activation energy (E_α) and pre-exponential factor (A_α) , which are 74.4 kJ.mol-1 and 1.32x1011 min-1 on average, respectively; and the reaction model is f(α) = 2.401 (1- α)[-ln〖(1-α)]〗^(1.401/2.401). On the other hand, E_α gradually decreases from around 84 kJ/mol to over 65 kJ/mol when α ranges between 0.1 and 0.9.

    摘要 i ABSTRACT iii ACKNOWLEDGEMENT v TABLE OF CONTENT vii LIST OF FIGURES ix LIST OF TABLES xii CHAPTER 1 INTRODUCTION 14 1.1 Introduction 14 1.2 Thesis objectives and content 15 CHAPTER 2 LITERATURE REVIEW 16 2.1 Introduction 16 2.2 Lithium-ion battery's working principle 17 2.3 Positive electrode materials 18 2.4 Anode material 20 2.5 Separator 21 2.6 Electrolyte 23 2.7 Lithium-ion battery safety and experimental motivation 24 CHAPTER 3 EXPERIMENTAL 29 3.1 Material and chemicals 29 3.2 Equipments and apparatus 30 3.3 Research location 31 3.4 BJB 2/1/1 additive preparation 32 3.5 Benchmark additive preparation: 32 3.6 Electrode preparation 32 3.7 Lithium-ion battery cell preparation for coincell testing: 36 3.8 DSC testing sample preparation 37 3.9 SEM testing sample preparation 37 CHAPTER 4 RESULT AND DISCUSSION 38 4.1 Electrochemical results at 25oC 38 4.2 Electrochemical results at 55oC 57 4.3 Kinetics data analysis for the BJB 2/1/1 additive 59 CHAPTER 5 CONCLUSION AND FUTURE WORKS 68 REFERENCES 70

    [1] Feng, X., J. Sun, M. Ouyang, F. Wang, X. He, L. Lu, and H. Peng, Characterization of penetration induced thermal runaway propagation process within a large format lithium ion battery module. Journal of Power Sources, 2015. 275: p. 261-273.
    [2] Haregewoin, AM, AS Wotango, and B.-J. Hwang, Electrolyte additives for lithium ion battery electrodes: progress and perspectives. Energy & Environmental Science, 2016. 9(6): p. 1955-1988.
    [3] Wang, Q., B. Mao, SI Stoliarov, and J. Sun, A review of lithium ion battery failure mechanisms and fire prevention strategies. Progress in Energy and Combustion Science, 2019. 73: p. 95-131.
    [4] Zhu, J.-P., Q.-b. Xu, and G. Yang, Synthesis and electrochemical properties of modification LiNi1/3Co1/3Mn1/3O2 cathode materials for Li-ion battery. Journal of Nanoscience Nanotechnology, 2012. 12(3): p. 2534-2538.
    [5] Liu, HK, GX Wang, Z. Guo, J. Wang, and K. Konstantinov, Nanomaterials for lithium-ion rechargeable batteries. Journal of Nanoscience Nanotechnology, 2006. 6( 1): p. 1-15.
    [6] Jo, YN, K. Prasanna, SJ Park, and CW Lee, Characterization of Li-rich xLi2MnO3•(1− x) Li [MnyNizCo1− y− z] O2 as cathode active materials for Li-ion batteries. Electrochimica Acta, 2013. 108: p. 32-38.
    [7] Ilango, PR, T. Subburaj, K. Prasanna, YN Jo, and CW Lee, Physical and electrochemical performance of LiNi1/3Co1/3Mn1/3O2 cathodes coated by Sb2O3 using a sol–gel process. Materials Chemistry and Physics, 2015 158: p. 45-51.
    [8] Min, K., S.-W. Seo, YY Song, HS Lee, and E. Cho, A first-principles study of the preventive effects of Al and Mg doping on the degradation in LiNi0.8Co0.1Mn0.1O2 cathode materials. Physical Chemistry Chemical Physics, 2017. 19(3): p. 1762-1769.
    [9] Zhang, L., H. Wang, L. Wang, and Y. Cao , High electrochemical cathode performance of hollow corn-like LiNi 0.8 Co 0.1 Mn 0.1 O 2 material for lithium-ion batteries. Applied Surface Science, 2018. 450: p. 461-467.
    [10] Zhang, Y., H. Xie, H. Jin, Q. Zhang, Y. Li, X. Li, K. Li, and C. Bao, Research Status of Spinel LiMn2O4 Cathode Materials for Lithium Ion Batteries. IOP Conference Series: Earth and Environmental Science, 2020. 603(1): p. 012051.
    [11] Kasireddy, SR, B. Gangaja, SV Nair, and D. Santhanagopalan, Mn4+ rich surface enabled elevated temperature and full-cell cycling performance of LiMn2O4 cathode material. Electrochimica Acta, 2017. 250: p. 359-367.
    [12] Wang, H.-Q., F.-Y. Lai, Y. Li, X.-H. Zhang, Y.-G. Huang , S.-J. Hu, and Q.-Y. Li, Excellent stability of spinel LiMn2O4-based cathode materials for lithium-ion batteries. Electrochimica Acta, 2015. 177: p. 290-297.
    [13] Tsai, Y.-W., R. Santhanam, B.-J. Hwang, S.-K. Hu, and H.-S. Sheu, Structure stabilization of LiMn2O4 cathode material by bimetal dopants. Journal of Power Sources , 2003. 119: p. 701-705.
    [14] Tang, D., Y. Sun, Z. Yang, L. Ben, L. Gu, and X. Huang, Surface structure evolution of LiMn2O4 cathode material upon charge/discharge . Chemistry of Materials, 2014. 26(11): p. 3535-3543.
    [15] Qing, R., M.-C. Yang, YS Meng, and W. Sigmund, Synthesis of LiNixFe1− xPO4 solid solution as cathode materials for lithium ion batteries. Electrochimica Acta, 2013. 108: p. 827-832.
    [16] Delacourt, C., P. Poizot, S. Levasseur, and C. Masquelier, Size effects on carbon-free LiFePO4 powders: The key to superior energy density. Electrochemical Solid State Letters, 2006. 9(7): p. A352.
    [17] Whittingham, MS, Ultimate limits to intercalation reactions for lithium batteries. Chemical Reviews, 2014. 114(23): p. 11414-11443.
    [18] Zaghib, K., A. Guerfi, P. Hovington, A. Vijh, M. Trudeau, A. Mauger, J. Goodenough, and C. Julien, Review and analysis of nanostructured olivine-based lithium receargeable batteries: Status and trends. Journal of Power Sources, 2013. 232: p. 357-369.
    [19] Padhi, AK, KS Nanjundaswamy, and JB Goodenough, Phospho‐olivines as positive‐electrode materials for rechargeable lithium batteries. Journal of The Electrochemical Society, 1997. 144(4): p. 1188.
    [20] Yao, J., S. Bewlay, K. Konstantionv, V. Drozd, R. Liu, X. Wang, H. Liu, and G. Wang, Characterisation of olivine-type LiMnxFe1− xPO4 cathode materials. Journal of Alloys Compounds, 2006. 425(1-2): p. 362-366.
    [21] Novikova, S. and A. Yaroslavtsev, Cathode materials based on olivine lithium iron phosphates for lithium-ion batteries. Reviews on Advanced Materials Science, 2017. 49(2): p. 129-139.
    [22] Herle, PS, B. Ellis, N. Coombs, and LF Nazar, Nano-network electronic conduction in iron and nickel olivine phosphates. Nature Materials, 2004. 3(3) : p. 147-152.
    [23] Yamada, A. and S.-C. Chung, Crystal Chemistry of the Olivine-Type Li (MnyFe1− y) PO4 and (MnyFe1− y) PO4 as Possible 4 V Cathode Materials for Lithium Batteries . Journal of The Electrochemical Society, 2001. 148(8): p. A960.
    [24] Molenda, J., W. Ojczyk, and J. Marzec, Electrical conductivity and reaction with lithium cathode of LiFe1− yMnyPO4 olivine-type materials. Journal of Power sources, 2007. 174(2): p. 689-694.
    [25] Xu, B., D. Qian, Z. Wang, and YS Meng, Recent progress in cathode materials research for advanced lithium ion batteries. Materials Science and Engineering: R: Reports, 2012. 73(5-6): p. 51-65.
    [26] Susai, FA, D. Kovacheva, A. Chakraborty, T. Kravchuk, R. Ravikumar, M. Talianker, J. Grinblat, L. Burstein, Y. Kauffmann, and DT Major, Improving performance of LiNi0.8Co0.1Mn0.1O2 cathode materials for lithium-ion batteries by doping with molybdenum-ions: theoretical and experimental studies. ACS Applied Energy Materials, 2019. 2(6): p. 4521-4534.
    [27] Qian, J., WA Henderson, W . Xu, P. Bhattacharya, M. Engelhard, O. Borodin, and J.-G. Zhang, High rate and stable cycling of lithium metal anode. Nature Communications, 2015. 6(1): p. 1-9.
    [28] Wang, H., Y. Liu, Y. Li, and Y. Cui, Lithium metal anode materials design: interphase and host. Electrochemical Energy Reviews, 2019. 2(4): p. 509-517.
    [29] Zhang, W.-J., A review of the electrochemical performance of alloy anodes for lithium-ion batteries. Journal of Power Sources, 2011. 196(1): p. 13-24.
    [30] Zhao, Y., X. Li, B. Yan, D. Xiong, D. Li, S. Lawes, and X. Sun, Recent developments and understanding of novel mixed transition‐metal oxides as anodes in lithium ion batteries. Advanced Energy Materials, 2016. 6 (8): p. 1502175.
    [31] Lu, Y., L. Yu, and XWD Lou, Nanostructured conversion-type anode materials for advanced lithium-ion batteries. Chem, 2018. 4(5): p. 972-996 32.
    Nitta, N. and G. Yushin, High‐capacity anode materials for lithium‐ion batteries: choice of elements and structures for active particles. Particle & Particle Systems Characterization, 2014. 31(3): p. 317-336 .
    [33] Lee, H., M. Yanilmaz, O. Toprakci, K. Fu, and X. Zhang, A review of recent developments in membrane separators for rechargeable lithium-ion batteries. Energy & Environmental Science, 2014. 7(12) : p. 3857-3886.
    [34] Huang, X., Separator technologies for lithium-ion batteries. Journal of Solid State Electrochemistry, 2011. 15(4): p. 649-662.
    [35] Yang, M. and J. Hou, Membranes in lithium ion batteries. Membranes, 2012. 2(3): p. 367-383.
    [36] Francis, CF, IL Kyratzis, and AS Best, Lithium‐Ion Battery Separators for Ionic‐Liquid Electrolytes: A Review. Advanced Materials, 2020. 32(18): p. 1904205.
    [37] Zhu, G., X. Jing, D. Chen, and W. He, Novel composite separator for high power density lithium-ion battery. International Journal of Hydrogen Energy, 2020. 45(4): p. 2917-2924
    [38] Miao, R., B. Liu, Z. Zhu, Y. Liu, J. Li, X. Wang, and Q. Li, PVDF-HFP-based porous polymer electrolyte membranes for lithium-ion batteries. Journal of Power Sources, 2008. 184(2): p. 420-426.
    [39] Costa, CM, Y.-H. Lee, J.-H. Kim, S.-Y. Lee, and S. Lanceros-Méndez, Recent advances on separator membranes for lithium-ion battery applications: From porous membranes to solid electrolytes. Energy Storage Materials, 2019. 22: p. 346-375.
    [40] Tan, S., YJ Ji, ZR Zhang, and Y. Yang , Recent Progress in Research on High‐Voltage Electrolytes for Lithium‐Ion Batteries. ChemPhysChem, 2014. 15(10): p. 1956-1969.
    [41] Taggougui, M., M. Diaw, B. Carré, P. Willmann, and D. Lemordant, Solvents in salt electrolyte: Benefits and possible use as electrolyte for lithium-ion battery. Electrochimica acta, 2008. 53(17) : p. 5496-5502.
    [42] Jow, TR, K. Xu, O. Borodin, and M. Ue, Electrolytes for lithium and lithium-ion batteries. Vol. 58. 2014: Springer.
    [43] Ravdel, B., K. Abraham, R. Gitzendanner, J. DiCarlo, B. Lucht, and C. Campion, Thermal stability of lithium-ion battery electrolytes. Journal of Power Sources, 2003. 119: p. 805-810.
    [44] Wang, Q ., L. Jiang, Y. Yu, and J. Sun, Progress of enhancing the safety of lithium ion battery from the electrolyte aspect. Nano Energy, 2019. 55: p. 93-114.
    [45] Wang, Q., P. Ping, X. Zhao, G. Chu, J. Sun, and C. Chen, Thermal runaway caused fire and explosion of lithium ion battery. Journal of Power Sources, 2012. 208: p. 210-224.
    [46] Golubkov, AW, S. Scheikl, R. Planteu, G. Voitic, H. Wiltsche, C. Stangl, G. Fauler, A. Thaler, and V. Hacker, Thermal runaway of commercial 18650 Li- ion batteries with LFP and NCA cathodes–impact of state of charge and overcharge. RSC Advances, 2015. 5(70): p. 57171-57186.
    [47] Lyu, P., X. Liu, J. Qu, J. Zhao , Y. Huo, Z. Qu, and Z. Rao, Recent advances of thermal safety of lithium ion battery for energy storage. Energy Storage Materials, 2020.
    [48] Chombo, PV and Y. Laoonual, A review of safety strategies of a Li-ion battery. Journal of Power Sources, 2020. 478: p. 228649.
    [49] Feng, X., M. Ouyang, X. Liu, L. Lu, Y. Xia, and X. He, Thermal runaway mechanism of lithium ion battery for electric vehicles: A review. Energy Storage Materials, 2018. 10: p. 246-267.
    [50] Ghiji, M., V. Novozhilov, K. Moinuddin, P. Joseph, I. Burch, B. Suendermann, and G. Gamble, A Review of Lithium-Ion Battery Fire Suppression. Energies, 2020. 13(19): p. 5117.
    [51] Xie, Yin & Jin, Yongcheng & Xiang, Lan. (2017). Understanding Mn-Based Intercalation Cathodes from Thermodynamics and Kinetics. Crystals. 7. 221. 10.3390/cryst7070221.
    [52] Kong, L., Li, Y. & Feng, W. Strategies to Solve Lithium Battery Thermal Runaway: From Mechanism to Modification. Electrochem. Energy Rev. 4, 633–679 (2021). https://doi.org/10.1007/s41918-021-00109-3
    [53] T. Li, X.-Z. Yuan, L. Zhang, D. Song, K. Shi, C. Bock, Degradation Mechanisms and Mitigation Strategies of Nickel-Rich NMC-Based Lithium-Ion Batteries, Electrochemical Energy Reviews, 3 (2019) 43-80.
    [54] G.L. Xu, X. Liu, A. Daali, R. Amine, Z. Chen, K. Amine, Challenges and Strategies to Advance High‐Energy Nickel‐Rich Layered Lithium Transition Metal Oxide Cathodes for Harsh Operation, Advanced Functional Materials, 30 (2020) 2004748.
    [55] T.-F. Yi, J. Mei, Y.-R. Zhu, Key strategies for enhancing the cycling stability and rate capacity of LiNi0.5Mn1.5O4 as high-voltage cathode materials for high power lithium-ion batteries, Journal of Power Sources, 316 (2016) 85-105.
    [56] Y. Liu, Y. Zhu, Y. Cui, Challenges and opportunities towards fast-charging battery materials, Nature Energy, 4 (2019) 540-550.
    [57] T.R. Jow, S.A. Delp, J.L. Allen, J.-P. Jones, M.C. Smart, Factors Limiting Li+ Charge Transfer Kinetics in Li-Ion Batteries, Journal of The Electrochemical Society, 165 (2018) A361-A367.
    [58] Wu K, Li Q, Dang RB, Deng X et al (2019) A novel syn-thesis strategy to improve cycle stability of LiNi0.8Mn0.1Co0.1O2 at high cut-off voltages through core-shellstructuring. Nano Res 12:2460–2467
    [59] Lu HQ, Zhou HT, Ann MS et al (2013) High capacityLi[Ni0.8Co0.1Mn0.1]O2 synthesized by sol-gel and co-pre-cipitation methods as cathode materials for lithium-ion batteries. Solid State Ion 249–250:105–111
    [60] Li Y, Li XH, Wang ZL et al (2018) An ostwald ripeningroute towards Ni-rich layered cathode material with cobalt- rich surface for lithium ion battery. Sci China Mater 61:719–727
    [61] Tianbiao, Zeng & Zhang, Chuhong. (2020). An effective way of co-precipitating Ni2+, Mn2+ and Co2+ by using ammonium oxalate as precipitant for Ni-rich Li-ion batteries cathode. Journal of Materials Science. 55. 10.1007/s10853-020-04753-w.
    [62] T. Sattar, S.J. Sim, B.S. Jin, H.S. Kim, Dual function Li-reactive coating from residual lithium on Ni-rich NCM cathode material for Lithium-ion batteries, Scientific reports, 11 (2021) 18590.
    [63] C. Zhang, S. Liu, J. Su, C. Chen, M. Liu, X. Chen, J. Wu, T. Huang, A. Yu, Revealing the role of NH4VO3 treatment in Ni-rich cathode materials with improved electrochemical performance for rechargeable lithium-ion batteries, Nanoscale, 10 (2018) 8820-8831.
    [64] S. Vyazovkin, A.K. Burmham, J.M. Criado, L.A. Perez-Maqueda, C. Popescu, N. Sbirrazzuoli, ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data, Thermochim. Acta 520 (2011) 1–19.
    [65] A.Khawam,D.R.Fanagan,Solid-statekineticmodels:basicsandmathematicaland fundamentals, J. Phys. Chem. B 110 (2006) 17315–17328.
    [66] L.A.Perez-Maqueda,J.M.Criado,P.E.Sanchez-Jimenez,Combinedkineticanalysis of solid-state reaction: a powerful tool for the simultaneous determination of kinetic parameters and the kinetic model without previous assumption on reaction mechanism, J. Phys. Chem. A 110 (2006) 12456–12462.
    [67] J. Sestak, G. Berggern, Study of the kinetics of the mechanism of the solid-state reaction at increasing temperatures, Thermochim. Acta 3 (1971) 1–12.
    [68] P. Ramadass, B. Haran, R. White, B.N. Popov, Capacity fade of Sony 18650 cells cycled at elevated temperatures: Part I. Cycling performance, Journal of power sources, 112 (2002) 606-613.
    [69] L. Bodenes, R. Naturel, H. Martinez, R. Dedryvère, M. Menetrier, L. Croguennec, J.-P. Pérès, C. Tessier, F. Fischer, Lithium secondary batteries working at very high temperature: Capacity fade and understanding of aging mechanisms, Journal of Power Sources, 236 (2013) 265-275.

    無法下載圖示 全文公開日期 2024/09/29 (校內網路)
    全文公開日期 2024/09/29 (校外網路)
    全文公開日期 2032/09/29 (國家圖書館:臺灣博碩士論文系統)
    QR CODE