簡易檢索 / 詳目顯示

研究生: 吳芸瑄
Yun-Hsuan Wu
論文名稱: 具寬電壓增益之三階全橋LLC諧振轉換器之研製
Development of Three-Level Full-Bridge LLC Resonant Converter with Wide Voltage Gain
指導教授: 劉益華
Yi-Hua Liu
口試委員: 王順忠
Shun-Chung Wang
邱煌仁
Huang-Jen Chiu
鄧人豪
Jen-Hao Teng
楊宗振
Zong-Zhen Yang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 114
中文關鍵詞: 電動車寬電壓增益三階全橋 LLC 諧振轉換器
外文關鍵詞: Electric vehicle, Wide voltage gain, Three-level full-bridge LLC resonant converter
相關次數: 點閱:159下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

在綠色能源的提倡下,電動車已成為發展的趨勢,而良好的車載充電器需具備高輸入電壓、電流和高功率密度的要求,本論文研製一種新型寬範圍高壓電動車用之快速充電器架構,其為具有寬電壓增益操作範圍之三階全橋LLC諧振轉換器。模式控制上基於定頻的脈波寬度和振幅調變控制策略,分為高(三階)、中(不對稱振幅)、低(傳統相移)電壓增益三種操作模式,每種操作模式可藉由調整個別的工作責任週期(高、低增益模式)或相移角(中增益模式)來穩定輸出電壓,並將開關操作頻率固定於諧振頻率,使所有開關和二極體均可柔性切換,達到高效率之目的;而寬電壓增益範圍可滿足更高輸入電壓和更寬的負載輸出等操作需求;固定操作頻率則可改善傳統LLC轉換器因頻率操作範圍大使電感、變壓器和濾波器不易設計和輕載效率低之缺點。本研究實作一840 W之三階全橋LLC諧振轉換器雛型,輸入電壓範圍為350 V至450 V,輸出電壓範圍為157 V至420 V。由實驗結果可得知,轉換器可依照輸入電壓及輸出電壓範圍,操作於所提之三種增益模式,並能於電壓變動時進行模式間之轉換。各模式操作下轉換器均可達到ZVS導通及ZCS截止,其最高效率可達93.41%。


With the promotion of green energy, electric vehicles have become a developing trend, and a good on-board charger requires high input voltage, current and high power density. This study realizes a novel converter topology suitable for being used as on-board charger of electric vehicles; it is a three-level full-bridge LLC resonant converter with a wide voltage gain operating range. The mode control is based on the fixed-frequency pulse width and amplitude modulation control strategy, which is divided into three operation modes in voltage gain: high voltage gain mode (three-level), medium voltage gain mode (asymmetric amplitude), and low voltage gain mode (conventional phase shift). Each operation mode can stabilize the output voltage by adjusting the duty cycle (high and low gain mode) or phase shift (medium gain mode). Also, it fixes the switching frequency at the resonance frequency so that all switches and diodes can achieve soft-switching to attain high efficiency. Fixing the operation frequency can improve the shortcomings found in LLC converters: the low light load efficiency and the difficulty in designing magnetic components such as inductors, transformers and filters due to the larger frequency operating range. This research implements a prototype of an 840 W three-level full-bridge LLC resonant converter, with an input voltage range of 350 V to 450 V and an output voltage range of 157 V to 420 V. According to the experimental results, the converter can successfully operate in the three gain modes proposed in accordance with the ratio of input voltage and output voltage. It can switch between modes when the voltage changes. The converter can achieve ZVS turn-on and ZCS turn-off in each mode, and the highest efficiency can reach 93.41% .

摘要 I Abstract II 誌謝 III 目錄 VII 圖目錄 IX 表目錄 XII 第一章 緒論 1 1.1研究背景與動機 1 1.2研究目的 2 1.3文獻探討 3 1.4章節概述 5 第二章 三階全橋LLC諧振轉換電路架構與操作原理 6 2.1三階全橋諧振轉換器操作模式分析 7 2.1.1 高電壓增益模式分析(HG_Mode) 8 2.1.2 中電壓增益模式分析(MG_Mode) 11 2.1.3 低電壓增益模式分析(LG_Mode) 16 2.2各模式之電壓增益推導 19 2.2.1 高電壓增益模式推導(HG_Mode) 19 2.2.2 中電壓增益模式推導(MG_Mode) 21 2.2.3 低電壓增益模式推導(LG_Mode) 22 第三章 硬體電路規格與設計 24 3.1電路規格 24 3.2 電路元件參數設計與選用 24 3.2.1 變壓器設計 24 3.2.2 諧振槽設計 28 3.2.3 功率元件的選用 30 3.2.4輸出濾波電容設計 30 3.2.5隔離驅動IC及週邊電路 31 3.2.6電壓/電流感測元件 32 第四章 數位控制器韌體設計 33 4.1轉換器韌體架構 33 4.2數位處理器控制核心與周邊 33 4.2.1 中斷 35 4.2.2 PWM控制模組 36 4.2.3 ADC和DAC模組 37 4.3程式流程及設計 39 4.4PWM中斷及各增益模式轉換控制策略 40 4.5數位PID運算 42 第五章 實驗結果與分析 45 5.1三階LLC轉換器實驗平台 45 5.1.1電路規格與設備介紹 45 5.1.2測試條件的統整 47 5.2實驗波形之量測 48 5.2.1各模式邊界範圍 48 5.2.2模式邊界的轉換 73 5.2.3固定模式下LLC變載 77 5.2.4轉換器效率量測數據 83 第六章 結論與未來展望 86 6.1結論 86 6.2未來展望 87 6.2.1展望之可行性分析 88 參考文獻 91 符號彙編 97

[1]張玉圓:“減碳趨勢推動各國電動車政策”,工業技術研究院工業技術與資訊月刊,350期,2021年04月號。
[2]謝騄璘、曾郁茜、石育賢、蕭瑞聖:“綠色經濟順勢而起,新能源車勢在必行”, IEK Topics 2018.
[3]Z. Menyang, Y. Yan, and C. C. Mi, “Analytical approach for the power management of blended-mode plug-in hybrid electric vehicles,” IEEE Trans. Veh. Technol., vol. 61, no. 4, pp. 1554–1566, May 2012.
[4]H. Wang, S. Dusmez, and A. Khaligh, “Maximum Efficiency Point Tracking Technique for LLC-Based PEV Chargers Through VariABle DC Link Control,” IEEE Trans. Ind. Electron., vol. 61, no. 11, pp. 6041–6049, Nov. 2014.
[5]B. Li, F. C. Lee, Q. Li, and Z. Liu, “Bi-directional on-board charger architecture and control for achieving ultra-high efficiency with wide battery voltage range,” in Proc. IEEE Applied Power Electronics Conference and Exposition (APEC), Tampa, FL, Mar. 2017, pp. 3688–3694.
[6]Junjun Deng, Siqi Li, Sideng Hu, Chunting Chris Mi, and Ruiqing Ma, “Design Methodology of LLC Resonant Converters for Electric Vehicle Battery Chargers,” IEEE Transactions On Vehicular Technology, vol. 63, no. 4, pp. 1581-1592, May. 2014.
[7]J.-H. Kim, I.-O. Lee, and G.-W. Moon, “Integrated Dual Full-Bridge Converter with Current-Doubler Rectifier for EV Charger,” IEEE Trans. Power Electron., vol. 31, no. 2, pp. 942–951, Feb. 2016.
[8]F. Musavi, M. Craciun, D. S. Gautam, W. Eberle, and W. G. Dunford, “An LLC Resonant DC-DC Converter for Wide Output Voltage Range Battery Charging Applications,” IEEE Trans. Power Electron., vol. 28, no. 12, pp. 5437–5445, Dec. 2013.
[9]H.-G. Han, Y.-J. Choi, S.-Y. Choi, and R.-Y. Kim, “A High Efficiency LLC Resonant Converter with Wide Ranged Output Voltage Using Adaptive Turn Ratio Scheme for a Li-Ion Battery Charger,” in Proc. IEEE Vehicle Power and Propulsion Conference (VPPC), Hangzhou, China, Oct. 2016, pp. 1–6.
[10]L. Lam and P. Bauer, “Practical Capacity Fading Model for Li-Ion Battery Cells in Electric Vehicles,” IEEE Trans. Power Electron., vol. 28, no. 12, pp. 5910–5918, Dec. 2013.
[11]H. N. Vu and W. Choi, “A Novel Dual Full-Bridge LLC Resonant Converter for CC and CV Charges of Batteries for Electric Vehicles,” IEEE Trans. Ind. Electron., vol. 65, no. 3, pp. 2212-2225, Mar. 2018.
[12]J. Deng, S. Li, S. Hu, C. Mi, and R. Ma, “Design methodology of LLC resonant converters for electric vehicle battery chargers,” IEEE Trans. Veh. Technol., vol. 63, no. 4, pp. 1581–1592, May 2014.
[13]J.-W. Kim and G.-W. Moon, “A New LLC Series Resonant Converter with a Narrow Switching Frequency Variation and Reduced Conduction Losses,” IEEE Trans. Power Electron., vol. 29, no. 8, pp. 4278–4287, Aug. 2014.
[14]W. Inam, K. K. Afridi, and D. J. Perreault, “Variable Frequency Multiplier Technique for High-Efficiency Conversion Over a Wide Operating Range,” IEEE J. Emerg. Sel. Top. Power Electron., vol. 4, no. 2, pp. 335–343, Jun. 2016.
[15]S. M. S. I. Shakib and S. Mekhilef, “A Frequency Adaptive Phase Shift Modulation Control Based LLC Series Resonant Converter for Wide Input Voltage Applications,” IEEE Trans. Power Electron., vol. 32, no. 11, pp. 8360–8370, 2017.
[16]T. Jiang, J. Zhang, X. Wu, K. Sheng, and Y. Wang, “A Bidirectional Three-Level LLC Resonant Converter with PWAM Control,” IEEE Trans. Power Electron., vol. 31, no. 3, pp. 2213–2225, 2016.
[17]余智淳,「三階相移控制轉換器之輕載效率改善」,國立臺北科技大學電機工程系碩士班碩士學位論文,民國一百零八年七月。
[18]J.R. Pinheiro and I. Barbi, “The three-level ZVS PWM converter-a new concept in high voltage DC-to-DC conversion,’’ in Proc. The International Conference on Industrial Electronics, Control, Instrumentation, and Automation, San Diego, CA, USA, Nov. 1992, pp. 173–178.
[19]侯旭琦,「三階相移式零電壓切換電源轉換器之研製」,國立成功大學電機工程學系碩士論文,民國九十五年六月。
[20]E. Deschamps and I. Barbi, “A New DC-to-DC ZVS PWM Converter for High Input Voltage Applications,’’ in Proc. PESC 98 Record. 29th Annual IEEE Power Electronics Specialists Conference, Fukuoka, Japan, May. 1998, pp. 967–972.
[21]E. Deschamps and I. Barbi, “A Flying-Capacitor ZVS PWM 1.5 kW DC-to-DC Converter with Half of the Input Voltage Across the Switches,’’ in Proc. IEEE Transactions on Power Electronics, Sept. 2000, vol. 15, no. 5, pp.855-860.
[22]Francisco Canales, Peter M. Barbosa, José M. Burdio, and Fred C. Lee, “A Zero Voltage Switching Three-Level DC/DC Converter,” INTELEC. Twenty-Second International Telecommunications Energy Conference, Phoenix, AZ, USA, Sept. 2000, vol. 27, no. 3, pp.512-517.
[23]Byeong-Mun Song, R. McDowell, and A. Bushnell, “A Three-Level DC-DC Converter with Wide-Input Voltage Operations for Ship-Electric-Power-Distribution Systems,’’ 14th IEEE International Pulsed Power Conference, Dallas, TX, June. 2003, pp. 1309–1312.
[24]I. Lee, “Hybrid Dc–Dc Converter with Phase-Shift or Frequency Modulation for NEV Battery Charger,” IEEE Trans. Ind. Electron., vol. 63, no. 2, pp. 884-893, 2016.
[25]H. Haga and F. Kurokawa, “Modulation Method of a Full-Bridge Three-Level LLC Resonant Converter for Battery Charger of Electrical Vehicles,” IEEE Trans. Power Electron., vol. 32, no. 4, pp. 2498–2507, Apr. 2017.
[26]Y. Jeong, J.-K. Kim, J.-B. Lee, and G.-W. Moon, “An Asymmetric Half-Bridge Resonant Converter Having a Reduced Conduction Loss for DC/DC Power Applications with a Wide Range of Low Input Voltage,” IEEE Trans. Power Electron., vol. 32, no. 10, pp. 7795–7804, Oct. 2017.
[27]X. Sun, Y. Shen, Y. Zhu, and X. Guo, “Interleaved Boost-Integrated LLC Resonant Converter with Fixed-Frequency PWM Control for Renewable Energy Generation Applications,” IEEE Trans. Power Electron., vol. 30, no. 8, pp. 4312–4326, Aug. 2015.
[28]Y. Jeong, G. Moon, and J.-K. Kim, “Analysis On Half-Bridge LLC Resonant Converter by Using Variable Inductance for High Efficiency and Power Density Server Power Supply,” in Proc. IEEE Applied Power Electronics Conference and Exposition (APEC), Tampa, FL, Mar. 2017, pp. 170–177.
[29]Z. Liang, R. Guo, G. Wang, and A. Huang, “A New Wide Input Range High Efficiency Photovoltaic Inverter,” in Proc. IEEE Energy Conversion Congress and Exposition (ECCE), Atlanta, GA, Spet. 2010, pp. 2937–2943.
[30]B.-C. Kim, K.-B. Park, and G.-W. Moon, “Asymmetric PWM Control Scheme During Hold-Up Time for LLC Resonant Converter,” IEEE Trans. Ind. Electron., vol. 59, no. 7, pp. 2992–2997, Jul. 2012.
[31]N. Shafiei, M. Ordonez, M. Craciun, C. Botting, and M. Edington, “Burst Mode Elimination in High-Power LLC Resonant Battery Charger for Electric Vehicles,” IEEE Trans. Power Electron., vol. 31, no. 2, pp. 1173–1188, Feb. 2016.
[32]S. De Simone, C. Adragna, C. Spini, and G. Gattavari, “Design-oriented steady-state analysis of LLC resonant converters based on FHA,” in Proc. Int. SPEEDAM, 2006, pp. 200–207.
[33]林正宏、郭書瑋、鄭世仁、邱煌仁、羅有綱、李俊毅及陳永松,「1 kW全橋相移式升壓型零電壓切換轉換器之研製」,中華民國第三十一屆電力工程研討會發表之論文,台灣台南,2010年10月,764-769頁。
[34]Texas Instruments, “Designing an LLC Resonant Half-Bridge Power Converter,” Texas Instruments Power Supply Design Seminar, SLUP263, 2010.
[35]Infineon, “Resonant LLC Converter: Operation and Design 250W 33 Vin 400Vout Design Example,” Application note, AN 2012-09, Sept. 2012.
[36]Infineon, “650V CoolMOSTM CFD2 Power Transistor,” Data Sheet, 2011.
[37]Infineon, “500 V Superjunction MOSFET for consumer and lighting applications,” Application Note, AN 2012-04, Feb. 2016.
[38]Texas Instruments, “UCC53x0 Single-Channel Isolated Gate Drivers,” Data Sheet, 2019.
[39]Ashish Gokhale and Silicon Labs:“電容隔離光耦隔離器vs.數位隔離器”,EDN電子技術設計平面雜誌,2018年10月。
[40]EPARC,「電力電子學總論」,全華圖書,2011年6月。
[41]Texas Instruments, “The TMS320F28004x Microcontroller: A Comparison to the TMS320F2806x and TMS320F2803x Microcontrollers,” Technical Brief, SPRT731A, Jan. 2018.
[42]Texas Instruments,“TMS320F28004x Real-Time Microcontroller,” Technical Reference Manual, SPRUI33D, 2020.

[43]曾建銘,「基於最佳化軌跡控制之全橋LLC諧振轉換器輕載效率改善技術」,國立臺灣科技大學電機工程系碩士學位論文,民國一百零九年一月。
[44]呂宗翰,「全橋LLC諧振轉換器輕載效率改善技術」,國立臺灣科技大學電機工程系碩士學位論文,民國一百零七年六月。
[45]李昱伸,「鋰電池主動式平衡器研製」,國立臺灣科技大學電機工程系碩士學位論文,民國一百一十年一月。
[46]時立中,「高效率全橋轉換器之多模式控制技術」,國立臺灣科技大學電機工程系博士學位論文,民國一百零七年十月。
[47]阮新波,「三電平直流變換器及其軟開關技術(簡體書)」,科學出版社,2006。
[48]ROHM:“全 SiC 功率模組 運用要點:閘極驅動”,電源設計技術資訊網站,2019 年 01 月 24 號。

無法下載圖示 全文公開日期 2024/10/20 (校內網路)
全文公開日期 2025/10/20 (校外網路)
全文公開日期 2026/10/20 (國家圖書館:臺灣博碩士論文系統)
QR CODE