簡易檢索 / 詳目顯示

研究生: 鄭湘蓉
HSIANG-JUNG CHENG
論文名稱: 理論計算在硒摻雜對於Li10GeP2S12固態電解質化學穩定性之影響
Theoretical Study on the Interaction of Water with Li10GeP2S12 Solid Electrolyte: Effects of Selenium Doping on Chemical Stability
指導教授: 江志強
Jyh-Chiang Jiang
口試委員: 蔡明剛
黃炳照
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 91
中文關鍵詞: 鋰離子電池硫化物固態電解質化學穩定性離子擴散係數
外文關鍵詞: Lithium-Ion Battery, sulfide electrolyte, chemical stability, diffusion coefficient
相關次數: 點閱:268下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

全固態鋰離子電池使用固態電解質,可以簡化電池設計,且能避免爆炸性反應,因此在下一代鋰電池中得到廣泛應用。然而,硫化物固態電解質的化學穩定性低,容易在環境中與水發生水解反應,而產生硫化氫,進而降低電池性能,並衍生出安全問題。在此研究中,我們使用密度泛函理論的計算,來探討LGPS (203)表面與水分子形成硫化氫的可能反應途徑,並藉由元素摻雜來抑制硫化氫在表面上的生成。計算結果顯示在LGPS (203)表面的水,其第一個氫氧鍵會在室溫下自發斷鍵,亦即LGPS (203)表面對於水具有高反應性。此外,進一步的計算結果證實在LGPS (203)表面摻雜硒原子可以有效抑制硫化氫形成,透過將硒元素摻雜表面可使水的氫氧鍵更穩定,在室溫下不會自發斷鍵。另外,我們使用分子動力學模擬 (AIMD),探討硒元素摻雜對於LGPS中電子導電率和離子擴散係數的影響。計算結果發現LGPS在摻雜硒原子後有效抑制硫化氫的生成和低電子導電度的特性,使得硒元素摻雜彌補其些微降低LGPS離子導電度的缺點。基於這些計算結果,我們闡明了水分子與LGPS電解質之間的基本相互作用。我們期望藉由理論計算找到合適的摻雜元素,進而提升LGPS固態電解質的離子導電性和化學穩定性,開發出更具潛力的固態電解質。


Solid-state rechargeable lithium batteries using solid electrolytes have attracted much attention for next-generation lithium-ion batteries. It simplifies the battery design and more tolerant of the reactions with explosive natures. Among the different novel solid electrolytes, sulfide-based electrolytes such as Li10GeP2S12 has strengthened the field, as the ionic conductivity could reach the analogous to that of the commercial organic liquid electrolytes. However, sulfide electrolytes have low chemical stability in the air atmosphere and undergo a hydrolysis reaction with H2O and produce H2S gas, thereby degrade battery performance and create safety issues. In this study, we have used density functional theory calculations to explore the possible reaction mechanisms of H2S formation on LGPS (203) surface with H¬2O molecules. We find that the first O-H bond cleavage of H2O spontaneously occurred at room temperature, revealing the high reactivity of LGPS (203) surface towards H2O. Besides, our calculations indicated that the doping of the selenium atom on the LGPS (203) surface could significantly suppress the H2S formation. We also explored the electronic conductivity and diffusivity of selenium-doped LGPS bulk using ab initio molecular dynamics (AIMD) simulations. The selenium-doped LGPS bulk could remain the property of low electronic conductivity, but the ionic conductivity and structural stability are decreased to compensate for the improvement of chemical stability. Based on these theoretical results, we elucidate the fundamental interaction between the moisture and LGPS electrolytes. We expect that a suitable concentration of selenium dopant on LGPS could provide an ideal solid electrolyte with excellent chemical stability and sufficient ionic conductivity for next-generation battery technologies.

Abstract I 摘要 III Contents V List of Figures VII List of Tables X Chapter 1. Introduction 1 1.1 Lithium-Ion Battery 1 1.2 The working principle of Lithium-ion Battery 3 1.3 Main components of Li-ion Battery 5 1.3.1 Anode 6 1.3.2 Cathode 8 1.3.3 Electrolyte 9 1.3.4 Interfaces between solid electrolyte and electrodes 16 1.4 Present study 17 Chapter 2. Theoretical Methodology 19 2.1 DFT calculations 19 2.2 Surface model 23 Chapter 3. Results and discussion 28 3.1 H2O hydrolysis reaction on LGPS (203) surface 28 3.1.1 H2O adsorption on LGPS (203) surface 28 3.1.2 Reaction mechanism of H2O with LGPS (203) 34 3.2 Effects of Se doping on LGPS (203) surface 38 3.2.1 H2O adsorption on LGPS (203) surface 38 3.2.2 Reaction mechanism of H2O with LGPS (203) 44 3.2.3 Effective area of the selenium dopant on the LGPS (203) surface 54 3.3 Diffusivity of LGPS 56 3.3.1 Selenium doped on LGPS bulk 56 3.3.2 Diffusivity 61 Chapter 4. Conclusion 65 Reference 67 Appendix 74  

Reference
1. Ritchie, H.; Roser, M., CO₂ and Greenhouse Gas Emissions. Our World in Data 2017.
2. Terada, N.; Yanagi, T.; Arai, S.; Yoshikawa, M.; Ohta, K.; Nakajima, N.; Yanai, A.; Arai, N., Development of Lithium Batteries for Energy Storage and Ev Applications. J Power Sources 2001, 100, 80-92.
3. Ratnakumar, B. V.; Smart, M. C.; Kindler, A.; Frank, H.; Ewell, R.; Surampudi, S., Lithium Batteries for Aerospace Applications: 2003 Mars Exploration Rover. J Power Sources 2003, 119, 906-910.
4. Cano, Z. P.; Banham, D.; Ye, S. Y.; Hintennach, A.; Lu, J.; Fowler, M.; Chen, Z. W., Batteries and Fuel Cells for Emerging Electric Vehicle Markets. Nat Energy 2018, 3, 279-289.
5. Megahed, S.; Ebner, W., Lithium-Ion Battery for Electronic Applications. J Power Sources 1995, 54, 155-162.
6. Tarascon, J. M.; Armand, M., Issues and Challenges Facing Rechargeable Lithium Batteries. Nature 2001, 414, 359-367.
7. Stassen, I.; Hambitzer, G., Metallic Lithium Batteries for High Power Applications. J Power Sources 2002, 105, 145-150.
8. Nishi, Y., Lithium Ion Secondary Batteries; Past 10 Years and the Future. J Power Sources 2001, 100, 101-106.
9. Lo, W. T.; Yu, C.; Leggesse, E. G.; Nachimuthu, S.; Jiang, J. C., Understanding the Role of Dopant Metal Atoms on the Structural and Electronic Properties of Lithium-Rich Li1.2Ni0.2Mn0.6O2 Cathode Material for Lithium-Ion Batteries. J Phys Chem Lett 2019, 10, 4842-4850.
10. Abe, K.; Yoshitake, H.; Kitakura, T.; Hattori, T.; Wang, H. Y.; Yoshio, M., Additives-Containing Functional Electrolytes for Suppressing Electrolyte Decomposition in Lithium-Ion Batteries. Electrochim Acta 2004, 49, 4613-4622.
11. Sriana, T.; Leggesse, E. G.; Jiang, J. C., Novel Benzimidazole Salts for Lithium Ion Battery Electrolytes: Effects of Substituents. Phys Chem Chem Phys 2015, 17, 16462-16468.
12. Lee, J. H.; Yoon, C. S.; Hwang, J.-Y.; Kim, S.-J.; Maglia, F.; Lamp, P.; Myung, S.-T.; Sun, Y.-K., High-Energy-Density Lithium-Ion Battery Using a Carbon-Nanotube–Si Composite Anode and a Compositionally Graded Li[Ni0.85Co0.05Mn0.10]O2 Cathode. Energ Environ Sci 2016, 9, 2152-2158.
13. Van der Ven, A.; Deng, Z.; Banerjee, S.; Ong, S. P., Rechargeable Alkali-Ion Battery Materials: Theory and Computation. Chem. Rev. 2020.
14. Peled, E.; Menkin, S., Review-Sei: Past, Present and Future. J Electrochem Soc 2017, 164, A1703-A1719.
15. Li, H.; Huang, X. J.; Chen, L. Q.; Wu, Z. G.; Liang, Y., A High Capacity Nano-Si Composite Anode Material for Lithium Rechargeable Batteries. Electrochem Solid St 1999, 2, 547-549.
16. Nitta, N.; Wu, F. X.; Lee, J. T.; Yushin, G., Li-Ion Battery Materials: Present and Future. Mater Today 2015, 18, 252-264.
17. Yoshio, M.; Wang, H.; Fukuda, K.; Umeno, T.; Abe, T.; Ogumi, Z., Improvement of Natural Graphite as a Lithium-Ion Battery Anode Material, from Raw Flake to Carbon-Coated Sphere. J Mater Chem 2004, 14, 1754-1758.
18. Lu, J.; Chen, Z.; Pan, F.; Cui, Y.; Amine, K., High-Performance Anode Materials for Rechargeable Lithium-Ion Batteries. Renew. Sust. Energ. Rev. 2018, 1, 35-53.
19. Xu, W.; Wang, J. L.; Ding, F.; Chen, X. L.; Nasybutin, E.; Zhang, Y. H.; Zhang, J. G., Lithium Metal Anodes for Rechargeable Batteries. Energ Environ Sci 2014, 7, 513-537.
20. Wen, K. H.; Liu, L. L.; Chen, S. M.; Zhang, S. J., A Bidirectional Growth Mechanism for a Stable Lithium Anode by a Platinum Nanolayer Sputtered on a Polypropylene Separator. Rsc Adv 2018, 8, 13034-13039.
21. Lee, H., et al., Suppressing Lithium Dendrite Growth by Metallic Coating on a Separator. Adv. Funct. Mater. 2017, 27, 1704391.
22. Kim, J. S.; Kim, D. W.; Jung, H. T.; Choi, J. W., Controlled Lithium Dendrite Growth by a Synergistic Effect of Multilayered Graphene Coating and an Electrolyte Additive. Chem Mater 2015, 27, 2780-2787.
23. Shin, W. K.; Kannan, A. G.; Kim, D. W., Effective Suppression of Dendritic Lithium Growth Using an Ultrathin Coating of Nitrogen and Sulfur Codoped Graphene Nanosheets on Polymer Separator for Lithium Metal Batteries. Acs Appl Mater Inter 2015, 7, 23700-23707.
24. Deng, K.; Qin, J.; Wang, S.; Ren, S.; Han, D.; Xiao, M.; Meng, Y., Effective Suppression of Lithium Dendrite Growth Using a Flexible Single-Ion Conducting Polymer Electrolyte. Small 2018, 14, 1801420.
25. Mizushima, K.; Jones, P. C.; Wiseman, P. J.; Goodenough, J. B., Lixcoo2 "(Oless-Thanxless-Than-or-Equal-To1) - a New Cathode Material for Batteries of High-Energy Density. Mater Res Bull 1980, 15, 783-789.
26. Xia, H.; Meng, Y.; Lu, L.; Ceder, G., Electrochemical Behavior and Li Diffusion Study of LiCoO₂ Thin Film Electrodes Prepared by Pld. 2007.
27. Liu, Q., et al., Approaching the Capacity Limit of Lithium Cobalt Oxide in Lithium Ion Batteries Via Lanthanum and Aluminium Doping. Nat Energy 2018, 3, 936-943.
28. Li, L.; Lee, K.; Lu, L., Li -Rich Layer-Structured Cathode Materials for High Energy Li -Ion Batteries. Funct Mater Lett 2014, 07, 1430002.
29. Doeff, M., Batteries: Overview of Battery Cathodes. 2012; pp 709-739.
30. Kamaya, N., et al., A Lithium Superionic Conductor. Nat Mater 2011, 10, 682-686.
31. Li, Q.; Chen, J.; Fan, L.; Kong, X.; Lu, Y., Progress in Electrolytes for Rechargeable Li-Based Batteries and Beyond. Green Energy Environ. 2016, 1, 18-42.
32. Zhang, S. S., A Review on Electrolyte Additives for Lithium-Ion Batteries. J Power Sources 2006, 162, 1379-1394.
33. Yu, C.; Ganapathy, S.; Eck, E. R. H. v.; Wang, H.; Basak, S.; Li, Z.; Wagemaker, M., Accessing the Bottleneck in All-Solid State Batteries, Lithium-Ion Transport over the Solid-Electrolyte-Electrode Interface. Nat Commun 2017, 8, 1086.
34. Balakrishnan, P. G.; Ramesh, R.; Kumar, T. P., Safety Mechanisms in Lithium-Ion Batteries. J Power Sources 2006, 155, 401-414.
35. Abada, S.; Marlair, G.; Lecocq, A.; Petit, M.; Sauvant-Moynot, V.; Huet, F., Safety Focused Modeling of Lithium-Ion Batteries: A Review. J Power Sources 2016, 306, 178-192.
36. Kotobuki, M.; Kanamura, K.; Sato, Y.; Yoshida, T., Fabrication of All-Solid-State Lithium Battery with Lithium Metal Anode Using Al2O3-Added Li7La3Zr2O12 Solid Electrolyte. J Power Sources 2011, 196, 7750-7754.
37. Nagao, M.; Hayashi, A.; Tatsumisago, M., High-Capacity Li2S–Nanocarbon Composite Electrode for All-Solid-State Rechargeable Lithium Batteries. J Mater Chem 2012, 22, 10015-10020.
38. Quartarone, E.; Mustarelli, P., Electrolytes for Solid-State Lithium Rechargeable Batteries: Recent Advances and Perspectives. Chem Soc Rev 2011, 40, 2525-2540.
39. Cao, C.; Li, Z.-B.; Wang, X.-L.; Zhao, X.-B.; Han, W.-Q., Recent Advances in Inorganic Solid Electrolytes for Lithium Batteries. Front. Energy Res. 2014, 2.
40. Goodenough, J. B.; Hong, H. Y. P.; Kafalas, J. A., Fast Na+-Ion Transport in Skeleton Structures. Mater Res Bull 1976, 11, 203-220.
41. Weiss, M.; Weber, D. A.; Senyshyn, A.; Janek, J.; Zeier, W. G., Correlating Transport and Structural Properties in Li1+xAlxGe2–x(PO4)3 (LAGP) Prepared from Aqueous Solution. Acs Appl Mater Inter 2018, 10, 10935-10944.
42. Epp, V.; Ma, Q.; Hammer, E.-M.; Tietz, F.; Wilkening, M., Very Fast Bulk Li Ion Diffusivity in Crystalline Li1.5Al0.5Ti1.5(PO4)3 as Seen Using Nmr Relaxometry. Phys Chem Chem Phys 2015, 17, 32115-32121.
43. DeWees, R.; Wang, H., Synthesis and Properties of Nasicon-Type LATP and LAGP Solid Electrolytes. Chemsuschem 2019, 12, 3713-3725.
44. Meesala, Y.; Chen, C. Y.; Jena, A.; Liao, Y. K.; Hu, S. F.; Chang, H.; Liu, R. S., All-Solid-State Li-Ion Battery Using Li1.5Al0.5Ge1.5(PO4)(3) as Electrolyte without Polymer Interfacial Adhesion. J Phys Chem C 2018, 122, 14383-14389.
45. Hong, H. Y. P., Crystal Structure and Ionic Conductivity of Li14Zn(GeO4)4 and Other New Li+ Superionic Conductors. Mater Res Bull 1978, 13, 117-124.
46. Meesala, Y.; Jena, A.; Chang, H.; Liu, R.-S., Recent Advancements in Li-Ion Conductors for All-Solid-State Li-Ion Batteries. ACS Energy Letters 2017, 2, 2734-2751.
47. Murugan, R.; Thangadurai, V.; Weppner, W., Fast Lithium Ion Conduction in Garnet-Type Li7La3Zr2O12. Angew. Chem. Int. Ed. 2007, 46, 7778-7781.
48. Kanno, R.; Hata, T.; Kawamoto, Y.; Irie, M., Synthesis of a New Lithium Ionic Conductor, Thio-Lisicon–Lithium Germanium Sulfide System. Solid State Ion 2000, 130, 97-104.
49. Hayashi, A.; Noi, K.; Sakuda, A.; Tatsumisago, M., Superionic Glass-Ceramic Electrolytes for Room-Temperature Rechargeable Sodium Batteries. Nat Commun 2012, 3, 856.
50. Yamauchi, A.; Sakuda, A.; Hayashi, A.; Tatsumisago, M., Preparation and Ionic Conductivities of (100 − x)(0.75Li2S·0.25P2S5)·xLiBH4 Glass Electrolytes. J Power Sources 2013, 244, 707-710.
51. Machida, N.; Shigematsu, T., An All-Solid-State Lithium Battery with Sulfur as Positive Electrode Materials. Chem. Lett. 2004, 33, 376-377.
52. Tatsumisago, M., Glassy Materials Based on Li2S for All-Solid-State Lithium Secondary Batteries. Solid State Ion 2004, 175, 13-18.
53. Kanno, R.; Maruyama, M., Lithium Ionic Conductor Thio-Lisicon - the Li2S-Ges2-P2S5 System. J Electrochem Soc 2001, 148, A742-A746.
54. Wang, Z. Q.; Wu, M. S.; Liu, G.; Lei, X. L.; Xu, B.; Ouyang, C. Y., Elastic Properties of New Solid State Electrolyte Material Li10GeP2S12: A Study from First-Principles Calculations. Int J Electrochem Sc 2014, 9, 562-568.
55. Kanazawa, K.; Yubuchi, S.; Hotehama, C.; Otoyama, M.; Shimono, S.; Ishibashi, H.; Kubota, Y.; Sakuda, A.; Hayashi, A.; Tatsumisago, M., Mechanochemical Synthesis and Characterization of Metastable Hexagonal Li4sns4 Solid Electrolyte. Inorg. Chem. 2018, 57, 9925-9930.
56. Zhang, Z.; Zhang, J.; Sun, Y.; Jia, H.; Peng, L.; Zhang, Y.; Xie, J., Li4-xSbxSn1-xS4 Solid Solutions for Air-Stable Solid Electrolytes. J Energy Chem 2020, 41, 171-176.
57. Kuhn, A.; Gerbig, O.; Zhu, C.; Falkenberg, F.; Maier, J.; Lotsch, B. V., A New Ultrafast Superionic Li-Conductor: Ion Dynamics in Li11si2ps12 and Comparison with Other Tetragonal Lgps-Type Electrolytes. Phys Chem Chem Phys 2014, 16, 14669-14674.
58. Xu, Z.; Chen, R.; Zhu, H., A Li2CuPS4 Superionic Conductor: A New Sulfide-Based Solid-State Electrolyte. J Mater Chem A 2019, 7, 12645-12653.
59. Zhou, P.; Wang, J.; Cheng, F.; Li, F.; Chen, J., A Solid Lithium Superionic Conductor Li11AlP2S12 with a Thio-Lisicon Analogous Structure. Chem Commun 2016, 52, 6091-6094.
60. Bron, P.; Johansson, S.; Zick, K.; Schmedt auf der Günne, J.; Dehnen, S.; Roling, B., Li10SnP2S12: An Affordable Lithium Superionic Conductor. J Am Chem Soc 2013, 135, 15694-15697.
61. Sun, Y.; Suzuki, K.; Hara, K.; Hori, S.; Yano, T.-a.; Hara, M.; Hirayama, M.; Kanno, R., Oxygen Substitution Effects in Li10GeP2S12 Solid Electrolyte. J Power Sources 2016, 324, 798-803.
62. Liang, J., et al., Li10Ge(P1–xSbx)2S12 Lithium-Ion Conductors with Enhanced Atmospheric Stability. Chem Mater 2020, 32, 2664-2672.
63. Hayashi, A.; Muramatsu, H.; Ohtomo, T.; Hama, S.; Tatsumisago, M., Improved Chemical Stability and Cyclability in Li2S–P2S5–P2O5–ZnO Composite Electrolytes for All-Solid-State Rechargeable Lithium Batteries. J Alloy Compd 2014, 591, 247-250.
64. Hayashi, A.; Muramatsu, H.; Ohtomo, T.; Hama, S.; Tatsumisago, M., Improvement of Chemical Stability of Li3PS4 Glass Electrolytes by Adding MxOy (M = Fe, Zn, and Bi) Nanoparticles. J Mater Chem A 2013, 1, 6320-6326.
65. Xie, D.; Chen, S.; Zhang, Z.; Ren, J.; Yao, L.; Wu, L.; Yao, X.; Xu, X., High Ion Conductive Sb2O5-Doped Β-Li3PS4 with Excellent Stability against Li for All-Solid-State Lithium Batteries. J Power Sources 2018, 389, 140-147.
66. Liu, G.; Xie, D.; Wang, X.; Yao, X.; Chen, S.; Xiao, R.; Li, H.; Xu, X., High Air-Stability and Superior Lithium Ion Conduction of Li3+3xP1-xZnxS4-xOx by Aliovalent Substitution of ZnO for All-Solid-State Lithium Batteries. Energy Storage Mater. 2019, 17, 266-274.
67. Ohtomo, T.; Hayashi, A.; Tatsumisago, M.; Kawamoto, K., Characteristics of the Li2O–Li2S–P2S5 Glasses Synthesized by the Two-Step Mechanical Milling. J. Non-Cryst. Solids 2013, 364, 57-61.
68. Kozen, A. C.; Lin, C.-F.; Pearse, A. J.; Schroeder, M. A.; Han, X.; Hu, L.; Lee, S.-B.; Rubloff, G. W.; Noked, M., Next-Generation Lithium Metal Anode Engineering Via Atomic Layer Deposition. ACS Nano 2015, 9, 5884-5892.
69. Han, X., et al., Negating Interfacial Impedance in Garnet-Based Solid-State Li Metal Batteries. Nat Mater 2017, 16, 572-579.
70. Luo, W., et al., Transition from Superlithiophobicity to Superlithiophilicity of Garnet Solid-State Electrolyte. J Am Chem Soc 2016, 138, 12258-12262.
71. Wang, C., et al., Conformal, Nanoscale ZnO Surface Modification of Garnet-Based Solid-State Electrolyte for Lithium Metal Anodes. Nano Lett 2017, 17, 565-571.
72. Cheng, X.-B.; Zhang, R.; Zhao, C.-Z.; Zhang, Q., Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review. Chem. Rev. 2017, 117, 10403-10473.
73. Ohtomo, T.; Hayashi, A.; Tatsumisago, M.; Kawamoto, K., Glass Electrolytes with High Ion Conductivity and High Chemical Stability in the System LiI-Li2O-Li2S-P2S5. Electrochemistry 2013, 81, 428-431.
74. Nam, K.; Chun, H.; Hwang, J.; Han, B., First-Principles Design of Highly Functional Sulfide Electrolyte of Li10−xSnP2S12−xClx for All Solid-State Li-Ion Battery Applications. ACS Sustain. Chem. Eng. 2020, 8, 3321-3327.
75. Kresse, G.; Furthmüller, J., Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set. Phys. Rev. B 1996, 54, 11169-11186.
76. Kresse, G.; Furthmüller, J., Efficiency of Ab-Initio Total Energy Calculations for Metals and Semiconductors Using a Plane-Wave Basis Set. Comput. Mater. Sci. 1996, 6, 15-50.
77. Blöchl, P. E., Projector Augmented-Wave Method. Phys. Rev. B 1994, 50, 17953-17979.
78. Kresse, G.; Joubert, D., From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method. Phys. Rev. B 1999, 59, 1758-1775.
79. Perdew, J. P.; Yue, W., Accurate and Simple Density Functional for the Electronic Exchange Energy: Generalized Gradient Approximation. Phys. Rev. B 1986, 33, 8800-8802.
80. Perdew, J. P.; Burke, K.; Ernzerhof, M., Generalized Gradient Approximation Made Simple. Phys Rev Lett 1996, 77, 3865-3868.
81. Uberuaga, B.; Jonsson, H., A Climbing Image Nudged Elastic Band Method for Finding Saddle Points and Minimum Energy Paths. J. Chem. Phys. 2000, 113, 9901-9904.
82. Nose, S., A Unified Formulation of the Constant Temperature Molecular-Dynamics Methods. J Chem Phys 1984, 81, 511-519.
83. Hoover, W. G., Canonical Dynamics - Equilibrium Phase-Space Distributions. Phys Rev A 1985, 31, 1695-1697.
84. Han, F.; Gao, T.; Zhu, Y.; Gaskell, K. J.; Wang, C., A Battery Made from a Single Material. Adv. Mater. 2015, 27, 3473-3483.
85. Mo, Y.; Ong, S. P.; Ceder, G., First Principles Study of the Li10GeP2S12 Lithium Super Ionic Conductor Material. Chem Mater 2012, 24, 15-17.
86. Ong, S. P.; Mo, Y.; Richards, W. D.; Miara, L.; Lee, H. S.; Ceder, G., Phase Stability, Electrochemical Stability and Ionic Conductivity of the Li10±1mp2x12 (M = Ge, Si, Sn, Al or P, and X = O, S or Se) Family of Superionic Conductors. Energ Environ Sci 2013, 6, 148-156.
87. Song, S.; Yan, Z.; Wu, F.; Zhang, X.; Xiang, Y., Electrochemical Stability and Ionic Conductivity of Solid Electrolytes Based on Li10GeP2S12-X a X (a=O, Se. X=0, 0.2, 0.4, 0.6, 0.8, 1). IOP Conference Series: Earth and Environmental Science 2020, 461, 012074.
88. Yang, K.; Dong, J.; Zhang, L.; Li, Y.; Wang, L., Dual Doping: An Effective Method to Enhance the Electrochemical Properties of Li10GeP2S12-Based Solid Electrolytes. J. Am. Ceram. Soc. 2015, 98, 3831-3835.
89. Kim, J.; Yoon, Y.; Eom, M.; Shin, D., Characterization of Amorphous and Crystalline Li2S–P2S5–P2Se5 Solid Electrolytes for All-Solid-State Lithium Ion Batteries. Solid State Ion 2012, 225, 626-630.


無法下載圖示 全文公開日期 2025/08/27 (校內網路)
全文公開日期 2025/08/27 (校外網路)
全文公開日期 2025/08/27 (國家圖書館:臺灣博碩士論文系統)
QR CODE