簡易檢索 / 詳目顯示

研究生: 林淑淇
Shu-Chi Lin
論文名稱: 利用靜電紡絲及快速奈米沉澱技術製備水溶性薑黃素之研究
Water Soluble Curcumin Preparation Via Electrospinning and Flash Nanoprecipitation
指導教授: 李振綱
Cheng-Kang Lee
口試委員: 蔡伸隆
Shen-Long Tsai
楊佩芬
Pei-Fen Yang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 96
中文關鍵詞: 薑黃素靜電紡絲快速奈米沉澱技術奈米顆粒
外文關鍵詞: curcumin, electrospinning, flash nanoprecipitation, nanoparticle
相關次數: 點閱:343下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

薑黃素(curcumin)為天然的多酚類,擁有抗發炎、抗氧化、抗腫瘤、抗菌、抗癌等等效用,且無細胞毒性,但其為水難溶性物質導致生物利用率低,因此為能有效利用薑黃素,改善薑黃素之低水溶解度為首要之務。
本研究分為兩種方法改善薑黃素的低水溶解度,其一為利用靜電紡絲技術製備薑黃素固態分散形式之聚乙烯咯烷酮纖維薄膜(Cur-PVP fiber),Cur-PVP fiber經FTIR-ATR分析,薑黃素於Cur-PVP fiber中與PVP產生分子間氫鍵,而XRD分析可看出薑黃素是以非晶態形式存在,水溶解度分析證實Cur-PVP fiber溶解於水中較純薑黃素在水中之飽和溶液,可明顯提升水中薑黃素濃度,由0.39±0.05μg/mL提升至491.86±31.27μg/mL,溶解速率僅2分鐘就能達到近100%之完全溶解。於抗氧化分析中因薑黃素水中濃度提高有效提升其抗氧化效果,光化學穩定性也因為薑黃素有PVP的保護而提升;此外CIJ-D-M裝置執行快速奈米沉澱技術可產生乙醯澱粉包覆薑黃素之47-58nm奈米顆粒(Cur@AS),在最適化條件下的產率、drug loading capability(DLC)及drug loading encapsulation efficiency (DLE)達92.9%、8.19%及71.0%,在所製備之Cur@AS水溶液中薑黃素濃度較純薑黃素飽和水溶液,可由0.39±0.05μg/mL提升至45.1±0.81μg/mL,因薑黃素水中濃度提高也大幅提升其抗氧化效果,此外,因為薑黃素有乙醯澱粉的包覆光化學穩定性也大幅增加。


Curcumin is a natural occurring phenolic substance, which has wide range of pharmacological activities, such as anti-inflammatory, antioxidant, antitumor, antibacterial and anticancer properties. However, its limited aqueous solubility restricts its bioavailability. Polyvinyl pyrrolidone (PVP) is known as a biocompatible and highly water soluble polymer. Solid dispersion of curcumin in electrospun PVP (CUR-PVP) fibrous mat was prepared to increase its solubility and dissolution rate in aqueous solution. Physical characterizations of CUR-PVP by FE-SEM, FTIR-ATR, and XRD were carried out. The average diameter of CUR-PVP fiber in the mat is about 1μm. CUR-PVP can be easily dissolved in water with significantly improve curcumin solubility from 0.39±0.05μg/mL to 491.86±31.27μg/mL. The enhanced solubility is mainly due to the stable chemical complex interaction between curcumin and PVP. CUR-PVP not only can increase DPPH free radical scavenging activity as well as antioxidant activity measured by CUPRAC assay and ferric thiocyanate method but also curcumin photochemical stability.
Curcumin encapsulated in acetylated starch (Cur@AS) nanoparticles of 47-58 nm in diameter was also prepared by flash nanoprecipitation to increase the solubility of curcumin. The highest production yield of Cur@AS was 92.9% with curcumin loading capability of 8.19% and curcumin loading encapsulation efficiency of 71.0%. Cur@AS nanoparticles not only can increase curcumin solubility but also increase its antioxidant activity and photochemical stability.

摘要 I Abstract II 致謝 III 圖目錄 VI 表目錄 X 第一章、緒論 1 1.1 前言 1 1.2 研究目的與簡介 1 第二章、基礎理論與文獻回顧 3 2.1 薑黃素(Curcumin) 3 2.2 固態分散劑型(Solid dispersion) 4 2.2.1 固態分散劑型簡介 4 2.2.2 固態分散劑型製備方法 7 2.2.3 固態分散劑型載體選擇 8 2.3 靜電紡絲(Electrospinning) 10 2.3.1 歷史起源 10 2.3.2 靜電紡絲原理 10 2.3.3 靜電紡絲設備 11 2.3.4 靜電紡絲基本參數之影響 12 2.3.5 靜電紡絲纖維之應用 14 2.4 奈米顆粒(Nanoparticle) 15 2.5 快速奈米沉澱技術(Flash nanoprecipitation) 17 2.5.1 快速奈米沉澱技術簡介 17 2.5.2 快速奈米沉澱技術裝置 17 第三章、實驗材料與方法 20 3.1 實驗架構 20 3.2 實驗藥品 22 3.3 實驗儀器 24 3.4 溶液配製 25 3.5 實驗步驟與方法 27 3.5.1 薑黃素固態分散形式之聚乙烯咯烷酮纖維薄膜 28 3.5.1.1 製備方法 28 3.5.1.2 溶解度分析暨溶解速率分析 29 3.5.1.3 抗氧化分析 29 3.5.1.3.1 DPPH自由基清除能力測定 29 3.5.1.3.2 銅離子還原能力測定- CUPRAC assay 29 3.5.1.3.3 脂質過氧化抑制率測定- ferric thiocyanate method 30 3.5.1.4 光穩定性分析 30 3.5.2 乙醯澱粉包覆薑黃素之奈米顆粒 31 3.5.2.1 乙醯澱粉製備方法 31 3.5.2.2 乙醯澱粉包覆薑黃素之奈米顆粒製備方法 31 3.5.2.3 溶解度分析暨包覆效率分析 32 3.5.2.4 抗氧化分析 32 3.5.2.4.1 DPPH自由基清除能力測定 32 3.5.2.4.2 銅離子還原能力測定- CUPRAC assay 32 3.5.2.4.3 脂質過氧化抑制率測定- ferric thiocyanate method 33 3.5.2.5 光穩定性分析- ferric thiocyanate method 33 第四章、結果與討論 34 4.1薑黃素固態分散形式之聚乙烯咯烷酮纖維薄膜 34 4.1.1 定性分析 34 4.1.1.1 FE-SEM場發式掃描電子顯微鏡分析 34 4.1.1.2 螢光顯微鏡分析 36 4.1.1.3 FTIR-ATR分析 37 4.1.1.4 X-ray Diffraction(XRD)分析 39 4.1.2 溶解度分析 41 4.1.3 溶解速率分析 43 4.1.4 抗氧化分析 44 4.1.4.1 DPPH自由基清除能力 44 4.1.4.2 銅離子還原能力- CUPRAC assay 47 4.1.4.3脂質過氧化抑制率- ferric thiocyanate method 49 4.1.5 光化學穩定性分析 51 4.2 乙醯澱粉包覆薑黃素之奈米顆粒 53 4.2.1 定性分析 53 4.2.1.1 FE-SEM場發式掃描電子顯微鏡分析 53 4.2.1.2 顆粒尺寸測定 55 4.2.1.3 FTIR分析 56 4.2.2 定量分析 59 4.2.2.1 產率分析 59 4.2.2.2 Drug loading capability(DLC)分析及Drug loading encapsulation efficiency(DLE)分析 60 4.2.3 溶解度分析 62 4.2.4 抗氧化分析 64 4.2.4.1 DPPH自由基清除能力 64 4.2.4.2 銅離子還原能力測定- CUPRAC assay 66 4.2.4.3 脂質過氧化抑制率測定- ferric thiocyanate method 67 4.2.5 光化學穩定性分析 68 第五章、結論 69 參考文獻 71 附錄一 74 附錄二 79

Bizarria, M., d'Ávila, M., & Mei, L. (2014). Non-woven nanofiber chitosan/peo membranes obtained by electrospinning. Brazilian Journal of Chemical Engineering, 31(1), 57-68.
Chang, P. Y., Peng, S. F., Lee, C. Y., Lu, C. C., Tsai, S. C., Shieh, T. M., . . . Yang, J. S. (2013). Curcumin-loaded nanoparticles induce apoptotic cell death through regulation of the function of MDR1 and reactive oxygen species in cisplatin-resistant CAR human oral cancer cells. Int J Oncol, 43(4), 1141-1150. doi:10.3892/ijo.2013.2050
Frenot, A., & Chronakis, I. S. (2003). Polymer nanofibers assembled by electrospinning. Current opinion in colloid & interface science, 8(1), 64-75.
Han, J., Zhu, Z., Qian, H., Wohl, A. R., Beaman, C. J., Hoye, T. R., & Macosko, C. W. (2012). A simple confined impingement jets mixer for flash nanoprecipitation. J Pharm Sci, 101(10), 4018-4023. doi:10.1002/jps.23259
Huang, M.-T., Smart, R. C., Wong, C.-Q., & Conney, A. H. (1988). Inhibitory effect of curcumin, chlorogenic acid, caffeic acid, and ferulic acid on tumor promotion in mouse skin by 12-O-tetradecanoylphorbol-13-acetate. Cancer research, 48(21), 5941-5946.
Huang, Y., & Dai, W.-G. (2014). Fundamental aspects of solid dispersion technology for poorly soluble drugs. Acta Pharmaceutica Sinica B, 4(1), 18-25.
Huang, Z.-M., Zhang, Y. Z., Kotaki, M., & Ramakrishna, S. (2003). A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Composites Science and Technology, 63(15), 2223-2253. doi:10.1016/s0266-3538(03)00178-7
Jagadeesan, R., & Radhakrishnan, M. (2013). Novel approaches in the preparation of solid dispersion on solubility: a review. Int J Pharm Pharm Sci, 5(3), 1000-1004.
Johnson, B. K., & Prud'homme, R. K. (2003). Chemical processing and micromixing in confined impinging jets. AIChE Journal, 49(9), 2264-2282.
Kaewnopparat, N., Kaewnopparat, S., Jangwang, A., Maneenaun, D., Chuchome, T., & Panichayupakaranant, P. (2009). Increased Solubility, Dissolution and Physicochemical Studies of Curcumin- Polyvinylpyrrolidone K-30 Solid Dispersions. International Journal of Medical, Health, Biomedical, Bioengineering and Pharmaceutical Engineering, 31, 137 - 142.
Kanaze, F. I., Kokkalou, E., Niopas, I., Georgarakis, M., Stergiou, A., & Bikiaris, D. (2006). Dissolution enhancement of flavonoids by solid dispersion in PVP and PEG matrixes: A comparative study. Journal of Applied Polymer Science, 102(1), 460-471. doi:10.1002/app.24200
Li, J., Lee, I. W., Shin, G. H., Chen, X., & Park, H. J. (2015). Curcumin-Eudragit® E PO solid dispersion: a simple and potent method to solve the problems of curcumin. European Journal of Pharmaceutics and Biopharmaceutics, 94, 322-332.
Li, Z., & Wang, C. (2013). Effects of working parameters on electrospinning One-Dimensional Nanostructures (pp. 15-28): Springer.
Marı́n, M. T., Margarit, M. V., & Salcedo, G. E. (2002). Characterization and solubility study of solid dispersions of flunarizine and polyvinylpyrrolidone. Il Farmaco, 57(9), 723-727.
Mogal, S., Gurjar, P., Yamgar, D., & Kamod, A. (2012). Solid dispersion technique for improving solubility of some poorly soluble drugs. Der Pharmacia Lettre, 4(5), 1574-1586.
Nata, I. F., Chen, K. J., & Lee, C. K. (2014). Facile microencapsulation of curcumin in acetylated starch microparticles. J Microencapsul, 31(4), 344-349. doi:10.3109/02652048.2013.858789
Nikghalb, L. A., Singh, G., Singh, G., & Kahkeshan, K. F. (2012). Solid Dispersion_Methods and Polymers to increase the solubility of poorly soluble drugs. Journal of Applied Pharmaceutical Science. doi:10.7324/JAPS.2012.21031
Prasad, S., Tyagi, A. K., & Aggarwal, B. B. (2014). Recent developments in delivery, bioavailability, absorption and metabolism of curcumin: the golden pigment from golden spice. Cancer Res Treat, 46(1), 2-18. doi:10.4143/crt.2014.46.1.2
Pustulka, K. M., Wohl, A. R., Lee, H. S., Michel, A. R., Han, J., Hoye, T. R., . . . Macosko, C. W. (2013). Flash nanoprecipitation: particle structure and stability. Mol Pharm, 10(11), 4367-4377. doi:10.1021/mp400337f
Rasenack, N., Hartenhauer, H., & Müller, B. W. (2003). Microcrystals for dissolution rate enhancement of poorly water-soluble drugs. International Journal of Pharmaceutics, 254(2), 137-145.
Ravichandran, R. (2013). Pharmacokinetic Study of Nanoparticulate Curcumin: Oral Formulation for Enhanced Bioavailability. Journal of Biomaterials and Nanobiotechnology, 04(03), 291-299. doi:10.4236/jbnb.2013.43037
Sharma, A., & Jain, C. (2010). Preparation and characterization of solid dispersions of carvedilol with PVP K30. Research in pharmaceutical sciences, 5(1), 49-56.
Tnnesen, H. H., & Karlsen, J. (1985). Studies on curcumin and curcuminoids. Zeitschrift für Lebensmittel-Untersuchung und Forschung, 180(2), 132-134. doi:10.1007/BF01042637
Van den Mooter, G., Wuyts, M., Blaton, N., Busson, R., Grobet, P., Augustijns, P., & Kinget, R. (2001). Physical stabilisation of amorphous ketoconazole in solid dispersions with polyvinylpyrrolidone K25. European journal of pharmaceutical sciences, 12(3), 261-269.
Van Gorkum, R., & Bouwman, E. (2005). The oxidative drying of alkyd paint catalysed by metal complexes. Coordination Chemistry Reviews, 249(17), 1709-1728.
Vasconcelos, T., Sarmento, B., & Costa, P. (2007). Solid dispersions as strategy to improve oral bioavailability of poor water soluble drugs. Drug Discov Today, 12(23-24), 1068-1075. doi:10.1016/j.drudis.2007.09.005
Wang, S., Tan, M., Zhong, Z., Chen, M., & Wang, Y. (2011). Nanotechnologies for curcumin: an ancient puzzler meets modern solutions. Journal of Nanomaterials, 2011, 51.
Xu, Y., Miladinov, V., & Hanna, M. A. (2004). Synthesis and characterization of starch acetates with high substitution 1. Cereal Chemistry, 81(6), 735-740.
Yu, D.-G., Branford-White, C., White, K., Li, X.-L., & Zhu, L.-M. (2010). Dissolution improvement of electrospun nanofiber-based solid dispersions for acetaminophen. AAPS PharmSciTech, 11(2), 809-817.
Zhang, W., Yan, E., Huang, Z., Wang, C., Xin, Y., Zhao, Q., & Tong, Y. (2007). Preparation and study of PPV/PVA nanofibers via electrospinning PPV precursor alcohol solution. European polymer journal, 43(3), 802-807.
Zhu, Z. (2014). Flash nanoprecipitation: prediction and enhancement of particle stability via drug structure. Molecular pharmaceutics, 11(3), 776-786.

無法下載圖示 全文公開日期 2021/08/04 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE