簡易檢索 / 詳目顯示

研究生: 宋科霖
Ke-Lin Sung
論文名稱: 基於軟投票集成學習演算法之非侵入式負載分類與識別
Non-Intrusive Load Classification and Recognition based on Soft-Voting Ensemble Learning Algorithm
指導教授: 楊念哲
Nien-Che Yang
口試委員: 謝廷彥
Ting-Yen Hsieh
張建國
Chien-Kuo Chang
曾威智
Wei-Chih Tseng
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 61
中文關鍵詞: 決策樹集成學習K-近鄰演算法多層感知器非侵入式負載監控標準化
外文關鍵詞: decision tree, ensemble learning, K-nearest neighbors, multilayer perceptron, non-intrusive load monitoring, normalization
相關次數: 點閱:346下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 非侵入式負載監測(non-intrusive load monitoring, NILM)係透過監測建築物整體用電量,檢測個別電器的能源消耗量。非侵入式負載監測能夠透過分析電壓和電流特性,識別各種電器的使用模式,因此有助於能源節約和管理。為了更有效地實現非侵入式負載分類與識別,本研究提出了一種基於軟投票的集成學習演算法,包括決策樹、K-近鄰演算法和多層感知器(EL-SVDT-KNN-MLP)。在本研究中,使用plug-load appliance identification dataset (PLAID)數據集和worldwide household and industry transient energy dataset (WHITED)數據集中的電壓和電流特徵作為輸入數據。在輸入數據進入EL-SVDT-KNN-MLP之前,該數據集會經過仔細的檢查和預處理。在預處理過程中,將應用六種不同的標準化技術來提高機器學習模型的準確性和可靠性,從而使所提出的演算法更能夠熟練地分類與識別電器。所提出的方法通過在六種不同的標準化技術下比較與其他機器學習演算法的準確率、精確率、召回率和F1 score進行驗證。而結果顯示,所提出的EL-SVDT-KNN-MLP演算法優於本文所探討的其它10種機器學習演算法。


    Non-intrusive load monitoring (NILM) detects the energy consumption of individual appliances by monitoring the overall electricity usage in a building. By analyzing voltage and current characteristics, NILM can recognize the usage patterns of various appliances, thus facilitating energy conservation and management. To implement non-intrusive load classification and recognition more effectively, this study proposes an ensemble learning algorithm based on soft voting, which comprises a decision tree, K-nearest neighbor algorithm, and multilayer perceptron (EL-SVDT-KNN-MLP). In this study, the voltage and current features in the plug-load appliance identification dataset (PLAID) and worldwide household and industry transient energy dataset (WHITED) are used as input data. The dataset is examined thoroughly and preprocessed before it is fed into the EL-SVDT-KNN-MLP. During preprocessing, six different normalization techniques are applied to the data to improve the accuracy and reliability of the machine-learning model, thus rendering the proposed algorithm more adept at classifying and recognizing appliances. The proposed method is validated by comparing it with other machine learning algorithms in terms of accuracy, precision, recall, and F1 score under the six different normalization methods. The results show that the proposed EL-SVDT-KNN-MLP algorithm outperforms the other ten machine learning algorithms examined in this thesis.

    摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VI 表目錄 VIII 第一章 緒論 1 1.1 研究背景與動機 1 1.2 文獻探討 2 1.3 研究貢獻 2 1.4 論文架構 3 第二章 數據準備 5 2.1 數據集 5 2.2 探索性數據分析 6 2.3 設備和其特徵 7 2.4 數據預處理 8 2.5 數據標準化 10 2.5.1 Min-Max標準化 10 2.5.2 MaxAbs縮放 10 2.5.3 Robust縮放 11 2.5.4 Z-score標準化 11 2.5.5 L1標準化 12 2.5.6 Yeo-Johnson轉換 12 2.6 交叉驗證 13 第三章 提出的方法 14 3.1 傳統的機器學習模型演算法 14 3.1.1 決策樹 15 3.1.2 K-近鄰演算法 16 3.1.3 多層感知器 18 3.2 提出的EL-SVDT-KNN-MLP演算法 19 3.3 性能指標 23 3.3.1 準確率 23 3.3.2 精確率 23 3.3.3 召回率 24 3.3.4 F1 score 24 3.3.5 混淆矩陣 24 第四章 結果與討論 26 4.1 測試結果 26 4.2 與現有研究的比較 44 第五章 結論與未來研究方向 45 5.1 結論 45 5.2 未來研究方向 45 參考文獻 47

    [1]M. Ali, K. Prakash, C. Macana, A. K. Bashir, A. Jolfaei, A. Bokhari, J. J. Klemes, and H. Pota, "Modeling Residential Electricity Consumption from Public Demographic Data for Sustainable Cities," Energies, vol. 15, no. 6, Mar. 2022.
    [2]S. G. Yoo and H.-Á. Myriam, "Predicting Residential Electricity Consumption Using Neural Networks: A Case Study," in Journal of Physics: Conference Series, Jun. 2018.
    [3]A. Abdeen, F. Kharvari, W. O'Brien, and B. Gunay, "The Impact of The COVID-19 on Households’ hourly Electricity Consumption in Canada," Energy and Buildings, 2021.
    [4]S. Darby, "The Effectiveness of Feedback on Energy Consumption," A Review for DEFRA of the Literature on Metering, Billing and Direct Displays, 2006.
    [5]S. Drenker and A. Kader, "Nonintrusive Monitoring of Electric Loads," IEEE Computer Applications in Power, vol. 12, no. 4, pp. 47-51, 1999.
    [6]G. W. Hart, "Residential Energy Monitoring and Computerized Surveillance Via Utility Power Flows," IEEE Technology and Society Magazine, vol. 8, no. 2, pp. 12-16, 1989.
    [7]G. W. Hart, "Nonintrusive Appliance Load Monitoring," Proceedings of the IEEE, vol. 80, no. 12, pp. 1870-1891, 1992.
    [8]K. C. Armel, A. Gupta, G. Shrimali, and A. Albert, "Is Disaggregation the Holy Grail of Energy Efficiency? The Case of Electricity," Energy policy, vol. 52, pp. 213-234, 2013.
    [9]G.-y. Lin, S.-c. Lee, J. Y.-j. Hsu, and W.-r. Jih, "Applying Power Meters for Appliance Recognition on the Electric Panel," in 2010 5th IEEE Conference on Industrial Electronics and Applications, 2010.
    [10]J. Z. Kolter and T. Jaakkola, "Approximate Inference in Additive Factorial Hmms with Application to Energy Disaggregation," in Artificial intelligence and statistics, 2012.
    [11]M. Zeifman, "Disaggregation of Home Energy Display Data Using Probabilistic Approach," IEEE Transactions on Consumer Electronics, vol. 58, no. 1, pp. 23-31, 2012.
    [12]A. G. Ruzzelli, C. Nicolas, A. Schoofs, and G. M. O'Hare, "Real-Time Recognition and Profiling of Appliances Through A Single Electricity Sensor," in 2010 7th Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks (SECON), 2010.
    [13]W. L. Chan, A. So, and L. Lai, "Wavelet Feature Vectors for Neural Network Based Harmonics Load Recognition," 2000.
    [14]N. V. Linh and P. Arboleya, "Deep Learning Application to Non-Intrusive Load Monitoring," in 2019 IEEE Milan PowerTech, 2019.
    [15]H. Liu, C. Liu, L. Tian, H. Zhao, and J. Liu, "Non-Intrusive Load Disaggregation Based on Deep Learning and Multi-Feature Fusion," in 2021 3rd International Conference on Smart Power & Internet Energy Systems (SPIES), 2021.
    [16]M. Baranski and J. Voss, "Genetic Algorithm for Pattern Detection in NIALM Systems," in 2004 IEEE International Conference on Systems, Man and Cybernetics (IEEE Cat. No. 04CH37583), 2004.
    [17]J. Liang, S. K. Ng, G. Kendall, and J. W. Cheng, "Load Signature Study—Part I: Basic Concept, Structure, and Methodology," IEEE transactions on power Delivery, vol. 25, no. 2, pp. 551-560, 2009.
    [18]R. Medico, L. De Baets, J. K. Gao, S. Giri, E. Kara, T. Dhaene, C. Develder, M. Berges, and D. Deschrijver, "A Voltage and Current Measurement Dataset for Plug Load Appliance Identification in Households," Scientific Data, vol. 7, no. 1, Feb. 2020.
    [19]M. Kahl, A. U. Haq, T. Kriechbaumer, and H.-A. Jacobsen, "Whited-A Worldwide Household and Industry Transient Energy Data Set," in 3rd International Workshop on Non-Intrusive Load Monitoring, 2016.
    [20]E. F. Codd, "Further Normalization of the Data Base Relational Model," Data base systems, vol. 6, pp. 33-64, 1972.
    [21]K. N. Abd Halim, A. S. M. Jaya, and A. F. A. Fadzil, "Data Pre-Processing Algorithm for Neural Network Binary Classification Model in Bank Tele-Marketing," International Journal of Innovative Technology and Exploring Engineering (IJITEE), vol. 9, pp. 272-277, 2020.
    [22]L. Friedman and O. V. Komogortsev, "Assessment of the Effectiveness of Seven Biometric Feature Normalization Techniques," IEEE Transactions on Information Forensics and Security, vol. 14, no. 10, pp. 2528-2536, 2019.
    [23]M. A. Siddiqi and W. Pak, "An Agile Approach to Identify Single and Hybrid Normalization for Enhancing Machine Learning-Based Network Intrusion Detection," IEEE Access, vol. 9, pp. 137494-137513, 2021.
    [24]J. R. Quinlan, "Learning Decision Tree Classifiers," ACM Computing Surveys (CSUR), vol. 28, no. 1, pp. 71-72, 1996.
    [25]D. A. M. Lemes, T. W. Cabral, G. Fraidenraich, L. G. P. Meloni, E. R. De Lima, and F. B. Neto, "Load Disaggregation Based on Time Window for HEMS Application," IEEE Access, vol. 9, pp. 70746-70757, 2021.
    [26]F. Rosenblatt, "The Perceptron: A Probabilistic Model for Information Storage and Organization in the Brain," Psychological review, vol. 65, no. 6, p. 386, 1958.
    [27]H. Ramchoun, Y. Ghanou, M. Ettaouil, and M. A. Janati Idrissi, "Multilayer Perceptron: Architecture Optimization and Training," 2016.
    [28]M. T. Camacho Olmedo, M. Paegelow, J.-F. Mas, and F. Escobar, Geomatic Approaches for Modeling Land Change Scenarios. An Introduction. Springer, 2018.
    [29]C. Zhang and Y. Ma, Ensemble Machine Learning: Methods and Applications. Springer, 2012.
    [30]M. Bowles, Machine Learning with Spark and Python: Essential Techniques for Predictive Analytics. John Wiley & Sons, 2019.
    [31]H. Kang and H. Kim, "Household Appliance Classification Using Lower Odd-Numbered Harmonics and the Bagging Decision Tree," IEEE Access, vol. 8, pp. 55937-55952, 2020.
    [32]Y. Li, H. Wang, Z. Yang, J. Yang, and Z. Chen, "Stacking Ensemble Learning-Based Load Identification Considering Feature Fusion by Cyber-Physical Approach," IEEE Sensors Journal, vol. 23, no. 6, pp. 5997-6007, 2023.
    [33]Y. Himeur, A. Alsalemi, F. Bensaali, A. Amira, C. Sardianos, I. Varlamis, and G. Dimitrakopoulos, "On the Applicability of 2d Local Binary Patterns for Identifying Electrical Appliances in Non-Intrusive Load Monitoring," in Intelligent Systems and Applications: Proceedings of the 2020 Intelligent Systems Conference (IntelliSys) Volume 3, 2021.
    [34]L. De Baets, J. Ruyssinck, C. Develder, T. Dhaene, and D. Deschrijver, "Appliance Classification Using VI Trajectories and Convolutional Neural Networks," Energy and Buildings, vol. 158, pp. 32-36, 2018.

    無法下載圖示 全文公開日期 2028/07/21 (校內網路)
    全文公開日期 2028/07/21 (校外網路)
    全文公開日期 2028/07/21 (國家圖書館:臺灣博碩士論文系統)
    QR CODE