簡易檢索 / 詳目顯示

研究生: 黃薇耘
Wei-Yun Huang
論文名稱: 使用機械手臂搭配影像處理技術進行簡單零件組裝
Using a Robot Arm in Together with Image Processing Techniques to Assist Assembly of Simple Parts
指導教授: 林清安
Ching-An Lin
口試委員: 林柏廷
Po-Ting Lin
李維楨
Wei-Chen Lee
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 82
中文關鍵詞: 機械手臂影像處理CAD零件組裝
外文關鍵詞: Robot arm, Image processing, CAD, Assembly
相關次數: 點閱:233下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

現今自動化生產線上的零件組裝大都以多台機械及類似機構,重複一樣的路徑去進行零件移動、定位及裝配,此方式相當佔用空間,且須耗費相當多人力、物力及時間進行複雜的前置作業。本研究探討如何在最少前置作業的條件下,能使用單一機械手臂搭配工業相機來進行簡易零件的自動化組裝,其基本想法是先擷取最終組件產品的2D影像,再利用OpenCV函式庫之特徵點擷取、特徵比對及影像旋轉等影像處理功能來辨識各個零件的組裝位置,據以計算零件的安裝順序,以及機械手臂的路徑;接著藉由工業相機擷取散落在桌面上所有零件的影像資訊,再使用Speed Up Robust Feature、K Nearest Neighbor、Homography等演算法進行影像分析,由桌面自動化尋找欲組裝的零件,並求得適當的零件吸取位置及零件的組裝方位;最後使用EPSON機械手臂一一組裝所有零件,使完成的組件實物與原始擷取的組件影像相同。
本研究除了說明影像的特徵點擷取、特徵比對及旋轉校正零件的演算法外,並以積木作為案例,來驗證所開發系統的實用性。


Nowadays, most of the assembly operations of automatic production lines use multiple machines and similar mechanisms to repeatedly move, locate and assemble parts. This type of assembly equipment not only takes up a lot of space, but also needs plenty preparation work for initializing the project of assembling a new product, resulting in high demand of manpower, material resources, time and costs. This study proposes the use of a single robotic arm in together with an industrial camera to complete the assembly task and the procedure requires little preparation work. The basic concept is to capture the 2D image of the final assembly as the target assembly. Based on the assembly image file, some image processing functions of the OpenCV library, such as feature point extraction, feature comparison and image rotation, are used to identify the assembly position of each part. The assembly sequence and the robot arm path are then calculated from the image file of the target assembly. After that, a camera is used to capture 2D images of all parts which are randomly placed on the table. The image files are analyzed using some existing algorithms, such as Speed Up Robust Feature, K Nearest Neighbor, Homography, to find the part to be assembled for each assembly step. The robot arm grasping point and the part’s orientation are also calculated. Eventually, an EPSON robot arm is used to sequentially assemble all parts on the table, and the final assembly is identical to the target assembly image captured previously.
In addition to explaining the algorithms of feature point extraction, feature comparison and image rotation, this study uses a building block to verify the practicability of the developed system.

摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VII 表目錄 XI 第一章 緒論 1 1.1 研究動機與目的 1 1.2 研究方法 3 1.3 文獻探討 4 1.4 論文架構 10 第二章 硬體與軟體之介紹 11 2.1 系統運作流程 11 2.2 實驗器材與設置 14 2.2.1. Epson機械手臂 15 2.2.2. 機械手臂吸嘴 16 2.2.3. 工業相機 17 2.3 系統環境與開發工具 19 2.3.1. 系統環境 19 2.3.2. OpenCV Library之簡介 19 2.3.3. Epson Robot API之簡介 20 2.3.4. Basler API之簡介 21 第三章 2D影像處理之理論應用 22 3.1 特徵點擷取 23 3.1.1. SURF演算法 25 3.2 特徵點比對 32 3.2.1. KNN演算法 32 3.3 定義吸取點及旋轉校正 36 3.3.1. Homography演算法 36 3.3.2. RANSAC演算法 39 第四章 實例驗證 43 4.1 前置作業 45 4.2 決定零件之組裝方法 49 4.2.1. 組件之2D影像 50 4.2.2. 標準零件資料庫 51 4.2.3. 組裝順序 53 4.2.4. 組裝座標 54 4.3 進行零件之影像處理 56 4.3.1. 特徵匹配 58 4.3.2. 定義中心點 60 4.3.3. 旋轉校正 62 第五章 結論與未來研究方向 64 5.1 結論 64 5.2 未來研究方向 65 參考文獻 66

[1] David, G.L. (2004), “Distinctive Image Features from Scale-invariant Keypoints,” International Journal of Computer Vision, Vol. 60, No. 2, pp. 91-110.
[2] Herbert, B., Tinne, T. and Luc, V.G. (2006), “SURF: Speeded Up Robust Features,” Proceedings of the 9th European Conference on Computer Vision, May 7-13, Vol. 110, No. 3, pp. 404-417.
[3] Jang, H.Y., Moradi, H., Hong, S., Lee, S. and Han, J. (2006), “Spatial Reasoning for Real-time Robotic Manipulation,” Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, October 9-15, Beijing, China.
[4] Lee, S.H., Kim, E.Y. and Park, Y.H. (2006), “3D Object Recognition Using Multiple Features for Robotic Manipulation,” Proceedings of IEEE International Conference on Robotics and Automation, May 15-19, Orlando, Florida, USA.
[5] Hung, S.C. and Li, M.F. (2007), “A SIFT Method Application for a Six DOF Manipulator Grasping an Object Against Complicated Environment,” Proceedings of the 33rd Annual Conference of the IEEE Industrial Electronics Society, November 5-8, Taipei, Taiwan.
[6] Lee, S., Jang, D., Kim, E., Hong, S. and Han, J. (2005), “A Real-Time 3D Workspace Modeling with Stereo Camera,” Proceedings of IEEE International Conference on Intelligent Robots and Systems, August 2-6, Edmonton, Alberta, Canada.
[7] Tomono, M. (2006), “3-D Object Map Building Using Dense Object Models with SIFT-based Recognition Features,” Proceedings of IEEE International Conference on Intelligent Robots and Systems, October 9-15, Beijing, China.
[8] Yamazaki, K., Tomono, M., Tsubouchi, T. and Yuta, S. (2006), “A Grasp Planning for Picking up an Unknown Object for a Mobile Manipulator,” Proceedings of IEEE International Conference on Robotics and Automation, May 15-19, Orlando, Florida, USA.
[9] Grundmann, T., Eidenberger, R., Zoellner, R.D., Xue, Z., Ruehl, Zoellner, J.M., Dillmann, R., Kuehnle, J. and Verl, A. (2008), “Integration of 6D Object Localization and Obstacle Detection for Collision Free Robotic Manipulation,” Proceedings of IEEE International Symposium on System Integration, December 4-4, Nagoya, Japan.
[10] Azad, P., Asfour, T. and Dillmann, R. (2007), “Stereo-Based 6D Object Localization for Grasping with Humanoid Robot Systems,” Proceedings of IEEE International Conference on Intelligent Robots and Systems, Oct 29-Nov 2, San Diego, CA, USA.
[11] Mondragón, I.F., Campoy, P., Martínez, C. and Olivares-Méndez, M.A. (2010), “3D Pose Estimation Based on Planar Object Tracking for UAVs Control,” Proceedings of IEEE International Conference on Robotics and Automation, May 3-7, Anchorage, Alaska, USA.
[12] https://www.epson.com.tw/RobotArm
[13] http://www.rgk-fa.com/
[14] https://www.baslerweb.com/cn/
[15] Benhimane, S. and Malis, E. (2007), “Homography-based 2D Visual Tracking and Servoing,” International Journal of Robotics Research, Vol. 26, No. 7, pp. 661-676.
[16] Viola, P., Jones, M. (2001), “Rapid Object Detection using a Boosted Cascade of Simple Features,” Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, December 8-14, Kauai, Hawaii, USA.
[17] 張宇宏,「基於顏色與SURF特徵之球場廣告刊版內容辨識與計次系統」(2011),碩士論文,台北科技大學資訊工程研究所,台北市。
[18] Fu, Q. and Wang, H. (2017), “A fast image stitching algorithm based on SURF,” Proceedings of IEEE International Conference on Communications, November 15-16, Kunming, China.
[19] Fischler, M. and Bolles, R. (1981), “Random Sampling Consensus: a Paradigm for Model Ftting with Application to Image Analysis and Automated Cartography,” Commun. Assoc. Comp. Mach., Vol. 24, No. 6, pp. 381-395.
[20] http://en.wikipedia.org/wiki/RANSAC

無法下載圖示 全文公開日期 2023/07/30 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE