簡易檢索 / 詳目顯示

研究生: 張紹華
Shao-Hua Chang
論文名稱: 結合次微米孔洞陽極氧化鋁基板與導氧功能性薄膜製作導氧元件之研究
Fabrication of an Oxygen Activator Unit Integrated with Porous Anodic Alumina and Functional Oxygen Activated Thin Film
指導教授: 陳炤彰
Chao-Chang Chen
口試委員: 周振嘉
Chen-Chia Chou
李碩仁
Shuo-Jen Lee
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 172
中文關鍵詞: 多孔質陽極氧化鋁釔安定氧化鋯材料功能性透氧薄膜導氧元件
外文關鍵詞: Porous anodic alumina (PAA), Yttria stabilization Zirconia material, Functional oxygen permeable films, Oxygen activator unit
相關次數: 點閱:298下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

室內密閉空間因空氣不流通造成氧氣含量不足常導致注意力下降、缺氧不適或導致生病,為解決這項問題,本研究研製出一導氧元件(Oxygen Activator Unit, OAU),其功能是將密閉空間外之氧氣導入室內,使室內空間持續保持人體最舒適的環境下。導氧元件的製作應用了多孔質陽極氧化鋁製程(Porous Anodic Alumina, PAA)製作出多孔質透氣基板(porous air permeable substrate, PAPS)增加三相反應面積(Tree-Phase-Boundary, TPB),並於製程中成功製作出PAA厚度106µm、平均孔徑122.9nm 和平均間距168.8nm之孔質透氣基板,導氧功能性薄膜材料白金(Platinum, Pt)及釔安定氧化鋯(Yttria Stabilization Zirconia, YSZ)的部分使用RF磁控濺鍍機將沉積於多孔質基板透氣基板上,製作出導氧元件,在自行設計之導氧功能測試平台測試導氧功能後確定元件可確實做動,且具有外界含氧量越高,導氧功能越強之趨勢,並在測試氧氣以200sccm(Standard Cubic Centimeter per Minute, SCCM)輸送時有最高的導氧量,其結果為密閉腔體內之氧氣由20.7%上升至25.9%,上升幅度為5.2 %,同時在通氧150 sccm持續10分鐘之穩定性測試中,所量測的數值皆相當穩定,相差小於1%,由此證明了本研究所製作之導氧元件具有穩定之導氧功能。


Clean air with enough oxygen is critical to human environment. This study is to develop an oxygen activator unit (OAU) to conduct oxygen into non-circulation room. The porous anodic alumina (PAA) process is used to make the porous air permeable substrate(PAPS). These porosity can increase the area of three-phase boundary(TPB) and then Platinum (Pt) and the Yttria stabilization Zirconia (YSZ) have been deposited on the porous air permeable substrate as an functional oxygen activated thin film(OATF). Another assembly is an oxygen activator unit fabricated successfully. The oxygen activator unit has been integrated in a test platform to measure the oxygen in the case of 50 sccm to 200 sccm. Experimental results show that the oxygen activator unit increases the oxygen contents as the supply of oxygen increases. The maximum efficiency occurs in oxygen supply as 200 sccm, the oxygen content of the test chamber measured by multi-gas monitor increasing from 20.7% to 25.9%, or by increasing 5.2%. In order to verify the stability of the oxygen activator unit, the oxygen supply rate maintains as 150 sccm for 10 minutes. After measuring 10 runs, the oxygen content of the test chamber changes less than 1%, thus the stability of oxygen activator unit has been verified. This oxygen activator unit can be applied on airplane, vehicle or cabinet of boat that needs higher oxygen for comfortable environment of driver and passenger. Future study can focus on improving the efficiency of the oxygen activator unit.

中文摘要 I Abstract II 致謝 VIIII 目錄 VII 圖目錄 XI 表目錄 XVIII 第一章 導論 1 1.1 研究背景 1 1.2 研究目的與方法 4 1.3 章節介紹 6 第二章 文獻回顧 8 2.1陽極氧化鋁相關文獻回顧 8 2.1.1 多孔質陽極氧化鋁孔洞生成原理回顧 8 2.1.2 多孔質陽極氧化鋁製程應用回顧 20 2.2釔安定氧化鋯(YSZ)材料相關應用文獻 38 2.3釔安定氧化鋯相關應用及專利分析 44 2.4文獻與專利回顧總結 52 第三章 製作導氧元件材料製備 54 3.1 多孔質陽極氧化鋁 54 3.1.1鋁的介紹 54 3.1.2氧化鋁(Al2O3)的介紹 57 3.1.3 多孔質陽極氧化鋁製程 58 3.2氧化釔參雜氧化鋯(YSZ) 62 3.2.1釔參雜氧化鋯之物理特性 62 3.2.2電解質(Electrolyte)基本傳導原理 64 3.3導氧元件(OAU)設計與運作機制 66 第四章 實驗流程與實驗設備 71 4.1實驗流程規劃 71 4.2實驗材料與設備規劃 73 4.2.1實驗材料 73 4.2.2 實驗設備 81 4.3導氧元件製作實驗設計 89 4.3.1導氧元件結構設計 89 4.3.2多孔質透氣機板設計及製作 91 4.3.3導氧功能性薄膜濺鍍率測試 96 4.4導氧元件製作及導氧功能測試 98 第五章實驗結果與討論 102 5.1多孔質透氧機板製作結果 102 5.1.1鋁板拋光檢測 102 5.1.2多孔質陽極氧化鋁製程 104 5.1.3濕蝕刻製程 108 5.2鍍製導氧元件結果 112 5.2.1濺鍍速率測試 112 5.2.2導氧功能性薄膜濺鍍 115 5.3導氧元件導氧功能測試 120 5.4綜合討論 128 第六章結論與建議 130 6.1結論 130 6.2建議 131 參考文獻 133 附錄A 導氧元件製程數據 137 附錄B 日本菊水(KIKUSUI)電源供應器規格 139 附錄C 導氧元件導氧功能測試(氧氣通量50 sccm) 141 附錄D 導氧元件導氧功能穩定性測試(Round 01-10) 145 附錄E 陽極處理專用機配置設計圖 146

[1] 陳建志,“鍍鋁矽晶圓之多孔質陽極氧化鋁結構製作大面積抗反射結構製程研究”,國立台灣科技大學機械工程研究所,2010.
Chen, Jian-Zhi, “Fabrication of Large Area Anti-reflection. Structure
by Wafer Based Porous Anodic Alumina” , Department of Mechanical Engineering, National Taiwan University of Science and Technology, 2010
[2] F. Keller and D. L. Robinson, “Structural features of oxide coatings on aluminum,” Journal of the Electrochemical Society, vol.100, pp.11–419, 1953.
[3] J. P. Sullivan and G. C. Wood, “The morphology and mechanism of formation of porous anodic films on aluminum,” Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, Vol.317, pp.511-543, 1970.
[4] G. E.Thompson and G. C.Wood, “Process anodic film formation on aluminum,” passive films,” Nature, Vol.290, pp.230-232, 1981.
[5] G. E.Thompson and G. C.Wood, “Corrosion: Aqueous Process and passive films,” Treaties on Materials Science and Technology, Academic Press Inc.(London)Ltd., Vol.23, Chap.5, pp.206, 1983.
[6] V. P. Parkhutik and V. I. Shershulsky, “Theoretical modelling of porous oxide 1 growth on aluminum,” Applied Physics Letters .Vol25, pp1258-1263,1992.
[7] H. Masuba and K. Fukuda, “Order meteal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina,” Science, Vol268, pp1466-1468,1995.
[8] A. P. Li, “Hexagonal pore arrays with a 50–420nm interpore distance formed by self-organization in anodic alumina,” Journal of Applied Physics, Vol.84, pp.6023-6026, 1998.
[9] A. P. Li, A. Birner, K. Nielsch, and U. Go¨sele, “Polycrystalline nanopore arrays with hexagonal ordering on aluminum,” The Journal of Vacuum Science and Technology A, Vol.17, pp.1428-1431, 1999.
[10] N. Q. Zhao, X.X. Jiang, C.S. Shi, J. J. Li, Z. G. Zhao and X. W. Du, “Effects of anodizing conditions on anodic alumina structure,” Journal of Materials Science, Vol.42, pp.3878–3882, 2007.
[11] Y. L. Wang, N. W. Liu, C. Y. Liu, H. H. Wang, “Focused Ion Beam Based Selective Closing and Opening of Anodic Alumina Nanochannels for the Growth of Nanowire Arrays Comprising Multiple Elements,” Adv. Mater. 20, 2547-2551, 2008.
[12] M. Lillo, D. Losic, “Pore opening detection for controlled dissolution of barrier oxide layer and fabrication of nanoporous alumina with through-hole morphology,” Journal of Membrane Science 327 ,11-17, 2009.
[13] Y. Ren, K. Zhang, “How structure changes in fabrication of large size ordered anodic alumina film,” Materials Letters , Vol. 63 , 1925–1927, 2009.
[14] H. Masuda, “Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina,” Science, Vol. 268 9 1995.
[15] H. Masuda, H. Yamada “Highly ordered nanochannel-array architecture in anodic alumina,” Appl. Phys. Lett, Vol. 71, No. 19, 10 1997.
[16] H. Masuda, H. Asoh, “Square and triangular nanohole array architectures in anodic alumina,” Adv. Mater, Vol.13, NO.3, 2001.
[17] H. Asoh and K. Nishio, “Fabrication of ideally ordered anodic porous alumina with 63 nm hole periodicity using sulfuric acid,” American Vacuum Society, Vol. 19, No. 2, 2001.
[18] H. Masuda, M. Yotsuya, “Self-repair of ordered pattern of nanometer dimensions basedon self-compensation properties of anodic porous alumina,” Appl. Phys., Vol. 78, No. 6, 5 2001.
[19] Y. H. Chenga, et al, “Enhanced light outcoupling in a thin film by texturing meshed surfaces,” APPLIED PHYSICS LETTERS, Vol. 90, 091102, 2007.
[20] W. K. Cho, I. S. Choi, “Fabrication of Hairy Polymeric Films Inspired by Geckos: Wetting and High Adhesion Properties,” Advanced Functional Materials, Vol.18, 1089–1096, 2008
[21] 何光朗,“次微米陽極氧化鋁孔洞製作光學元件之研究”,國立台灣科技大學機械工程研究所,2008.
Ho, Kuang-Lang, “Fabrication of Optical Elements with Sub-micron Features on Anodic Aluminum Oxide” , Department of Mechanical Engineering, National Taiwan University of Science and Technology, 2008
[22] W. Zhou, et al, “Porous alumina nano-membranes: Soft replica molding for large area UV-nanoimprint lithography,” Microelectronic Engineering, Vol. 86, 2375–2380, 2009
[23] 詹景翔,“多孔質陽極氧化鋁模板製作似蟬翼抗反射結構”,國立台灣科技大學機械工程研究所,2009.
Jhan, Jing-Siang, “Fabrication of Cicada Wing Anti-reflection Structure by Porous Anodic Alumina. Template” , Department of Mechanical Engineering, National Taiwan University of Science and Technology, 2008
[24] J. Ye, et al, “Superhydrophilicity of anodic aluminum oxide films: From “honeycomb” to “bird's nest”, Thin Solid Films, Vol. 517, 6012–6015, 2009
[25] M. Harada, et al, “Anodic Porous Alumina Masks with Checkerboard Pattern,” Applied Physics Express, Vol. 3, 015001, 2010.
[26] J. Wang , et al, “In situ synthesis and characterization of TiO2 nanoarray films,” Res Chem Intermed, Vol. 36, 17–26, 2010
[27] H. Jha, et al, “Porous anodic alumina :Amphiphilic and magnetically guidable micro-rafts,” Journal of Electrochemistry Communications, Vol.13, 934–937, 2011
[28] 陳宏昱,“大尺寸次波長抗反射結構功能性光學元件研究”,國立台灣科技大學機械工程研究所,2012.
Chen, Hong-Yu, “Study on Large Area Sub-Wavelength Functional Optical Lens with Anti-Reflection Structures” , Department of Mechanical Engineering, National Taiwan University of Science and Technology, 2012
[29] 徐睿明,“利用次波長結構添加下轉換螢光粉製作複合型抗反射鏡片”,國立台灣科技大學機械工程研究所,2013.
Hsu, Jui-Ming, “Fabrication of Complex Anti-reflection Lens of Sub-Wavelength Structures with Down-conversion Phosphor” , Department of Mechanical Engineering, National Taiwan University of Science and Technology, 2012
[30] E. M. Logothetis, et al, “Chemical and physical sensors based on oxygen pumping with solid state electrochemical cells,” IEEE, Solid-State Sensors and Actuators, 347-350,1991
[31] T. Suzuki, et al, “Effect of electrode interface structure on the characteristics of a thin-film limiting current type oxygen sensor,” Journal of Sensors and Actuators B, Vol. 108,326-330,2005
[32] S. Kang, et al, “Thin-Film Solid Oxide Fuel Cells on Porous Nickel Substrates with Multistage Nanohole Array,” Journal of The Electrochemical Society, Vol. 153,A554-A559,2006
[33] T. Inaba, et al, “Low temperature of thin-film limiting-current type oxygen sensor using graded-composition layer electrodes,” Journal of Sensors and Actuators B, Vol. 129,874–880,2008
[34] 邱國創,簡仁德,“陶瓷氣體感測器”,中華民國專利,公開編號:200537075,2006.
Chiu, Kuo-Chuang, Jean, Ren-Der “Ceramic gas sensor”, ROC patent, Publication Number: 200537075, 2006
[35] 余河潔,方冠榮,“固態氧化物燃料電池之陰極材料”,中華民國專利,公開編號:200409398,2004.
Yu, He-Jie, Fang, Guan-Rong “Cathode material for solid oxide fuel cell”, ROC patent, Publication Number: 200409398, 2004
[36] 黃振興,蔡俊煌,孫念祖,余任豐,“固態氧化物燃料電池及其製作方法”,中華民國專利,公開編號:201103185,2013.
Hwang, Chang-Sing, Tsai, Chun-Huang, Suen, Nian-Tzu, Yu, Jen-Feng “Solid oxide fuel cell and manufacture method thereof”, ROC patent, Publication Number: 201103185, 2013
[37] 黃振興,“奈米通道複合薄膜之陽極結構及其大氣電漿噴塗之製造方法”,中華民國專利,公開編號:200814414,2008.
Hwang, Chang-Sing, “Structure of anode with composite membrane having nano channel and the atmospheric plasma spraying method”, ROC patent, Publication Number: 200814414, 2008
[38] 葛瑞哥里S.赫曼,大衛.夏賓,彼得.瑪德洛維斯,詹姆斯.歐尼爾,“用於燃料電池電極材料之組成及結構梯度”,中華民國專利,公開編號:200414599,2004.
Herman, Gregory S., Champion, David, Mardilovich, Peter, O'neil, James “Structure of anode with composite membrane having nano channel and the atmospheric plasma spraying method”, ROC patent, Publication Number: 200414599, 2004
[39] 林本源,陳石法,謝忠佑,蔡希杰,“機械材料”,高立圖書有限公司,
1999.
[40] 張玉龍,趙中魁,“實用輕金屬材料手冊”,化學工業出版社,2006.
[41] 鋁的結晶型態,
http ://jpkc.wxit.edu.cn/gccl/01/wangluokecheng/jiang/1gongchengcailiaod
ejichuzhishi/1-4/1-4.htm
[42] 林明獻,矽晶圓半導體材料技術,全華科技圖書股份有限公司,6-49~6-50頁,ISBN:957-21-2745-4,89年3月再版.
[43] G. P. Muldowney and D. B. James, “Characterization of CMP pad surface texture and pad-wafer contact, ” Advances in Chemical-Mechanical Polishing, vol. 816, 2004.
[44] 葉治全,“釔安定性氧化鋯薄膜濺鍍於多孔性電極及AAO基板及其氧氣幫浦之研究”,國立台灣科技大學機械工程研究所,2013.
Yeh, Chih-Chuan “Characteristics of Sputtered YSZ Films on Porous Electrodes and AAO Substrates and its Application on Oxygen Pumps” Department of Mechanical Engineering, National Taiwan University of Science and Technology, 2013

QR CODE