簡易檢索 / 詳目顯示

研究生: Yusuf Pradesar
Yusuf Pradesar
論文名稱: PtCo/n-NCS和NiCo2-CPO-27/PCN形貌控制觸媒於氧氣還原反應之燃料電池應用
Morphology Controlled on PtCo/n-NCS and NiCo2-CPO-27/PCN Catalysts for Oxygen Reduction Reaction in Fuel Cell Application
指導教授: 王丞浩
Chen-Hao Wang
口試委員: 施劭儒
Shao-Ju Shih
黃信智
Hsin-Chih Huang
蘇威年
Wei-Nien Su
王冠文
Kuan-Wen Wang
楊錫杭
Hsiharng Yang
學位類別: 博士
Doctor
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 121
中文關鍵詞: 納豆狀結構PtCo 鉑鈷合金CPO-27碳棒結構氮摻雜碳材氧氣還原反 應
外文關鍵詞: Natto-like structure, PtCo catalyst, CPO-27, carbon rod, N-doped carbon, oxygen reduction reaction
相關次數: 點閱:284下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報


ABSTRACT i 摘要 iii ACKNOWLEDMENTS v TABLE OF CONTENTS vii TABLE OF FIGURES xi LIST OF TABLES xvii CHAPTER I INTRODUCTION 1 1.1 Research Background 1 1.2 Research Objective 3 1.3 Research Advantages 3 CHAPTER II LITERATURE REVIEW 5 2.1. Fuel Cell 5 2.1.1 Proton Exchange Membrane Fuel Cell (PEMFC) 5 2.1.2 Alkaline Exchange Membrane Fuel Cell (AEMFC) 9 2.2. Platinum and Its Alloy as Cathode Catalyst 11 2.3. Carbon Materials 16 2.4. Non-Precious Metal as Cathode Catalyst 24 2.4.1. Zeolitic Imidazolate Framework 25 2.4.2. Prussian Blue 28 2.4.3. Coordination Polymer of Oslo - 27 30 CHAPTER III MOTIVATION 33 CHAPTER IV MATERIALS AND CHARACTERIZATION 35 4.1 Materials 35 4.2 Physical Characterization 36 4.4.1. X-ray Diffraction 36 4.4.2. Scanning Electron Microscopy 37 4.4.3. Transmission Electron Microscopy 37 4.4.4. X-ray Photoelectron Spectroscopy 38 4.4.5. X-ray Absorption Spectroscopy 38 4.3 Electrochemical Characterization 39 4.5.1 Acid Media 39 4.5.2 Alkaline Media 40 4.5.3 Single Cell Test 41 CHAPTER V EXPERIMENTAL, RESULTS, AND DISCUSSIONS 43 5.1 High Activity of Platinum-Cobalt Supported by Natto-like N-Doped Carbon Sphere as Durable Catalyst for Oxygen Reduction Reaction 43 5.1.1 Experimental Procedure 43 5.1.2 Results and Discussion 44 5.2 Nickel-cobalt metal at carbon nanorod structure derived from CPO-27 as Catalyst for Oxygen Reduction Reaction with High Fuel Cell Performance 57 5.2.1 Experimental Procedure 57 5.2.2 Results and Discussions 59 CHAPTER VI CONCLUSION 83 6.1. High Activity of Platinum-Cobalt Supported by Natto-like N-Doped Carbon Sphere as Durable Catalyst for Oxygen Reduction Reaction 83 6.2. Nickel-cobalt metal at carbon nanorod structure derived from CPO-27 as Electrocatalyst for Oxygen Reduction Reaction with High Performance 83 REFERENCES 85

[1] P. Breeze, Chapter 7 - Fuel Cells, in: P. Breeze (Ed.) Power Generation Technologies (Third Edition), Newnes, 2019, pp. 145-171.
[2] R.K. Shah, Recent Trends in Fuel Cell Science and Technology, in: S. Basu (Ed.) Recent Trends in Fuel Cell Science and Technology, Springer New York, New York, NY, 2007, pp. 1-9.
[3] M.C. Williams, Chapter 2 - Fuel Cells, in: D. Shekhawat, J.J. Spivey, D.A. Berry (Eds.) Fuel Cells: Technologies for Fuel Processing, Elsevier, Amsterdam, 2011, pp. 11-27.
[4] C. He, S. Desai, G. Brown, S. Bollepalli, PEM fuel cell catalysts: Cost, performance, and durability. Electrochemical Society Interface, 14 (2005) 41-44.
[5] L. Carrette, K.A. Friedrich, U. Stimming, Fuel Cells – Fundamentals and Applications. Fuel Cells, 1 (2001) 5-39.
[6] P. Mani, R. Srivastava, P. Strasser, Dealloyed binary PtM3(M = Cu, Co, Ni) and ternary PtNi3M (M = Cu, Co, Fe, Cr) electrocatalysts for the oxygen reduction reaction: Performance in polymer electrolyte membrane fuel cells. Journal of Power Sources, 196 (2011) 666-673.
[7] D. Kaewsai, M. Hunsom, Comparative Study of the ORR Activity and Stability of Pt and PtM (M = Ni, Co, Cr, Pd) Supported on Polyaniline/Carbon Nanotubes in a PEM Fuel Cell. Nanomaterials, 8 (2018).
[8] J. Liu, J. Lan, L. Yang, F. Wang, J. Yin, PtM (M = Fe, Co, Ni) Bimetallic Nanoclusters as Active, Methanol-Tolerant, and Stable Catalysts toward the Oxygen Reduction Reaction. ACS Sustainable Chemistry and Engineering, 7 (2019) 6541-6549.
[9] E.B. Tetteh, H.-Y. Lee, C.-H. Shin, S.-h. Kim, H.C. Ham, T.-N. Tran, J.-H. Jang, S.J. Yoo, J.-S. Yu, A New PtMg Alloy with Durable Electrocatalytic Performance for Oxygen Reduction Reaction in Proton Exchange Membrane Fuel Cell. ACS Energy Letters, (2020).
[10] C. Zhai, H. Zhang, J. Hu, L. Zeng, M. Xue, Y. Du, M. Zhu, Enhanced formic acid electrooxidation reaction enabled by 3D PtCo nanodendrites electrocatalyst. Journal of Alloys and Compounds, 774 (2019) 274-281.
[11] X. Tian, X. Zhao, Y.-Q. Su, L. Wang, H. Wang, D. Dang, B. Chi, H. Liu, E.J.M. Hensen, X.W. Lou, B.Y. Xia, Engineering bunched Pt-Ni alloy nanocages for efficient oxygen reduction in practical fuel cells. Science, 366 (2019) 850-856.
[12] H. Du, K. Wang, P. Tsiakaras, P.K. Shen, Excavated and dendritic Pt-Co nanocubes as efficient ethylene glycol and glycerol oxidation electrocatalysts. Applied Catalysis B: Environmental, 258 (2019) 117951.
[13] K. Eid, H. Wang, V. Malgras, S.M. Alshehri, T. Ahamad, Y. Yamauchi, L. Wang, One-step solution-phase synthesis of bimetallic PtCo nanodendrites with high electrocatalytic activity for oxygen reduction reaction. Journal of Electroanalytical Chemistry, 779 (2016) 250-255.
[14] R.M. Arán-Ais, F. Dionigi, T. Merzdorf, M. Gocyla, M. Heggen, R.E. Dunin-Borkowski, M. Gliech, J. Solla-Gullón, E. Herrero, J.M. Feliu, P. Strasser, Elemental Anisotropic Growth and Atomic-Scale Structure of Shape-Controlled Octahedral Pt–Ni–Co Alloy Nanocatalysts. Nano Letters, 15 (2015) 7473-7480.
[15] Z. Yan, J. Xie, S. Zong, M. Zhang, Q. Sun, M. Chen, Small-sized Pt particles on mesoporous hollow carbon spheres for highly stable oxygen reduction reaction. Electrochimica Acta, 109 (2013) 256-261.
[16] H. Tang, J.H. Chen, Z.P. Huang, D.Z. Wang, Z.F. Ren, L.H. Nie, Y.F. Kuang, S.Z. Yao, High dispersion and electrocatalytic properties of platinum on well-aligned carbon nanotube arrays. Carbon, 42 (2004) 191-197.
[17] Q. Shu, Z. Xia, W. Wei, X. Xu, R. Sun, R. Deng, Q. Yang, H. Zhao, S. Wang, G. Sun, Controllable Unzipping of Carbon Nanotubes as Advanced Pt Catalyst Supports for Oxygen Reduction. ACS Applied Energy Materials, 2 (2019) 5446-5455.
[18] C.-C. Sung, C.-Y. Liu, C.C.J. Cheng, Durability improvement at high current density by graphene networks on PEM fuel cell. International Journal of Hydrogen Energy, 39 (2014) 11706-11712.
[19] S.A. Grigoriev, V.N. Fateev, A.S. Pushkarev, I.V. Pushkareva, N.A. Ivanova, V.N. Kalinichenko, M.Y. Presnyakov, X. Wei, Reduced graphene oxide and its modifications as catalyst supports and catalyst layer modifiers for PEMFC. Materials, 11 (2018) 1405.
[20] Q. Shi, C. Zhu, M.H. Engelhard, D. Du, Y. Lin, Highly uniform distribution of Pt nanoparticles on N-doped hollow carbon spheres with enhanced durability for oxygen reduction reaction. RSC Advances, 7 (2017) 6303-6308.
[21] J. Liu, M. Jiao, L. Lu, H.M. Barkholtz, Y. Li, Y. Wang, L. Jiang, Z. Wu, D.-j. Liu, L. Zhuang, C. Ma, J. Zeng, B. Zhang, D. Su, P. Song, W. Xing, W. Xu, Y. Wang, Z. Jiang, G. Sun, High performance platinum single atom electrocatalyst for oxygen reduction reaction. Nature Communications, 8 (2017) 15938.
[22] Z. Wang, Q. Suo, T. Yang, P. Bai, Z. Chai, X. Wang, Oxygen enriched carbonaceous nanospheres deep anchored with PtxNiyCoz alloy nanoparticles as versatile electrocatalyst. Materials Letters, 271 (2020) 127718.
[23] J. Liu, L. Xu, Y. Deng, X. Zhu, J. Deng, J. Lian, J. Wu, J. Qian, H. Xu, S. Yuan, H. Li, Pulickel M. Ajayan, Metallic cobalt nanoparticles embedded in sulfur and nitrogen co-doped rambutan-like nanocarbons for the oxygen reduction reaction under both acidic and alkaline conditions. Journal of Materials Chemistry A, 7 (2019) 14291-14301.
[24] Z. Wang, C. Lai, L. Qin, Y. Fu, J. He, D. Huang, B. Li, M. Zhang, S. Liu, L. Li, W. Zhang, H. Yi, X. Liu, X. Zhou, ZIF-8-modified MnFe2O4 with high crystallinity and superior photo-Fenton catalytic activity by Zn-O-Fe structure for TC degradation. Chemical Engineering Journal, 392 (2020) 124851.
[25] K.-C. Wang, H.-C. Huang, S.-T. Chang, C.-H. Wu, I. Yamanaka, J.-F. Lee, C.-H. Wang, Hybrid Porous Catalysts Derived from Metal–Organic Framework for Oxygen Reduction Reaction in an Anion Exchange Membrane Fuel Cell. ACS Sustainable Chemistry & Engineering, 7 (2019) 9143-9152.
[26] H.C. Huang, C.Y. Su, K.C. Wang, H.Y. Chen, Y.C. Chang, Y.L. Chen, K.C.W. Wu, C.H. Wang, Nanostructured Cementite/Ferrous Sulfide Encapsulated Carbon with Heteroatoms for Oxygen Reduction in Alkaline Environment. ACS Sustainable Chemistry and Engineering, 7 (2019) 3185-3194.
[27] L. Ye, G. Chai, Z. Wen, Zn-MOF-74 Derived N-Doped Mesoporous Carbon as pH-Universal Electrocatalyst for Oxygen Reduction Reaction. Advanced Functional Materials, 27 (2017) 1606190.
[28] R. Fan, N. Kang, Y. Li, L. Gao, A template-directed synthesis of metal–organic framework (MOF-74) ultrathin nanosheets for oxygen reduction electrocatalysis. RSC Advances, 11 (2021) 9353-9360.
[29] B.G. Pollet, A.A. Franco, H. Su, H. Liang, S. Pasupathi, 1 - Proton exchange membrane fuel cells, in: F. Barbir, A. Basile, T.N. Veziroğlu (Eds.) Compendium of Hydrogen Energy, Woodhead Publishing, Oxford, 2016, pp. 3-56.
[30] B. Sørensen, G. Spazzafumo, 3 - Fuel cells, in: B. Sørensen, G. Spazzafumo (Eds.) Hydrogen and Fuel Cells (Third Edition), Academic Press, 2018, pp. 107-220.
[31] P. Breeze, Chapter 4 - The Proton Exchange Membrane Fuel Cell, in: P. Breeze (Ed.) Fuel Cells, Academic Press, 2017, pp. 33-43.
[32] A. Kongkanand, W. Gu, M.F. Mathias, Proton-Exchange Membrane Fuel Cells with Low-Pt Content, in: R.A. Meyers (Ed.) Encyclopedia of Sustainability Science and Technology, Springer New York, New York, NY, 2017, pp. 1-20.
[33] A.Z. Weber, T.E. Lipman, Fuel Cells and Hydrogen Production: Introduction, in: T.E. Lipman, A.Z. Weber (Eds.) Fuel Cells and Hydrogen Production: A Volume in the Encyclopedia of Sustainability Science and Technology, Second Edition, Springer New York, New York, NY, 2019, pp. 1-8.
[34] M.A. Costa de Oliveira, A. D’Epifanio, H. Ohnuki, B. Mecheri, Platinum Group Metal-Free Catalysts for Oxygen Reduction Reaction: Applications in Microbial Fuel Cells. Catalysts, 10 (2020) 475.
[35] H.S. Wroblowa, P. Yen Chi, G. Razumney, Electroreduction of oxygen: A new mechanistic criterion. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 69 (1976) 195-201.
[36] O.T. Holton, J.W. Stevenson, The Role of Platinum in Proton Exchange Membrane Fuel Cells. Platinum Metals Review, 57 (2013) 259-271.
[37] P. Breeze, Chapter 3 - The Alkaline Fuel Cell, in: P. Breeze (Ed.) Fuel Cells, Academic Press, 2017, pp. 23-32.
[38] A. Sarapuu, E. Kibena-Põldsepp, M. Borghei, K. Tammeveski, Electrocatalysis of oxygen reduction on heteroatom-doped nanocarbons and transition metal–nitrogen–carbon catalysts for alkaline membrane fuel cells. Journal of Materials Chemistry A, 6 (2018) 776-804.
[39] X. Ge, A. Sumboja, D. Wuu, T. An, B. Li, F.W.T. Goh, T.S.A. Hor, Y. Zong, Z. Liu, Oxygen Reduction in Alkaline Media: From Mechanisms to Recent Advances of Catalysts. ACS Catalysis, 5 (2015) 4643-4667.
[40] J.K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J.R. Kitchin, T. Bligaard, H. Jónsson, Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode. The Journal of Physical Chemistry B, 108 (2004) 17886-17892.
[41] E.F.H. Ulises Martinez, Joseph H Dumont and Piotr Zelenay, Binary Fe-Free Transition Metal Catalysts for the Oxygen Reduction Reaction. ECS Meeting Abstracts, (2016).
[42] V.R. Stamenkovic, B.S. Mun, M. Arenz, K.J.J. Mayrhofer, C.A. Lucas, G. Wang, P.N. Ross, N.M. Markovic, Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces. Nature Materials, 6 (2007) 241-247.
[43] J.D. Lee, D. Jishkariani, Y. Zhao, S. Najmr, D. Rosen, J.M. Kikkawa, E.A. Stach, C.B. Murray, Tuning the Electrocatalytic Oxygen Reduction Reaction Activity of Pt–Co Nanocrystals by Cobalt Concentration with Atomic-Scale Understanding. ACS Applied Materials & Interfaces, 11 (2019) 26789-26797.
[44] P. Trogadas, T.F. Fuller, P. Strasser, Carbon as catalyst and support for electrochemical energy conversion. Carbon, 75 (2014) 5-42.
[45] C.R. Michael Bron, Carbon Materials in Low-Temperature Polymer Electrolyte Membrane Fuel Cells, Wiley-VCH Verlag GmbH & Co. KGaA, Germany, 2015.
[46] J.M. Planeix, N. Coustel, B. Coq, V. Brotons, P.S. Kumbhar, R. Dutartre, P. Geneste, P. Bernier, P.M. Ajayan, Application of Carbon Nanotubes as Supports in Heterogeneous Catalysis. Journal of the American Chemical Society, 116 (1994) 7935-7936.
[47] Z. Liu, X. Lin, J.Y. Lee, W. Zhang, M. Han, L.M. Gan, Preparation and Characterization of Platinum-Based Electrocatalysts on Multiwalled Carbon Nanotubes for Proton Exchange Membrane Fuel Cells. Langmuir, 18 (2002) 4054-4060.
[48] Y.S. Choi, J.M. Yoo, B.H. Hong, 2 - Structure and properties of graphene, in: T.-W. Lee (Ed.) Graphene for Flexible Lighting and Displays, Woodhead Publishing, 2020, pp. 5-26.
[49] C. Xu, X. Wang, J. Zhu, GrapheneMetal Particle Nanocomposites. The Journal of Physical Chemistry C, 112 (2008) 19841-19845.
[50] K. Fu, L. Zeng, J. Liu, M. Liu, S. Li, W. Guo, Y. Gao, M. Pan, Magnetron sputtering a high-performance catalyst for ultra-low-Pt loading PEMFCs. Journal of Alloys and Compounds, 815 (2020) 152374.
[51] C. Hu, L. Dai, Doping of Carbon Materials for Metal-Free Electrocatalysis. Advanced Materials, 31 (2019) 1804672.
[52] D. Guo, R. Shibuya, C. Akiba, S. Saji, T. Kondo, J. Nakamura, Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts. Science, 351 (2016) 361.
[53] H. Begum, M.S. Ahmed, Y.-B. Kim, Nitrogen-rich graphitic-carbon@graphene as a metal-free electrocatalyst for oxygen reduction reaction. Scientific Reports, 10 (2020) 12431.
[54] H. Li, M. Eddaoudi, M. O'Keeffe, O.M. Yaghi, Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature, 402 (1999) 276-279.
[55] H.-C.J. Zhou, S. Kitagawa, Metal–Organic Frameworks (MOFs). Chemical Society Reviews, 43 (2014) 5415-5418.
[56] J.-R. Li, R.J. Kuppler, H.-C. Zhou, Selective gas adsorption and separation in metal–organic frameworks. Chemical Society Reviews, 38 (2009) 1477-1504.
[57] M.A. Mohamud, A.B. Yurtcan, Zeolotic imidazolate frameworks (ZIFs) derived porous carbon: A review from crystal growth & green synthesis to oxygen reduction reaction activity. International Journal of Hydrogen Energy, 46 (2021) 33782-33800.
[58] S. Bhattacharjee, M.-S. Jang, H.-J. Kwon, W.-S. Ahn, Zeolitic Imidazolate Frameworks: Synthesis, Functionalization, and Catalytic/Adsorption Applications. Catalysis Surveys from Asia, 18 (2014) 101-127.
[59] Y. Xiao, A.N. Hong, D. Hu, Y. Wang, X. Bu, P. Feng, Solvent-Free Synthesis of Zeolitic Imidazolate Frameworks and the Catalytic Properties of Their Carbon Materials. Chemistry – A European Journal, 25 (2019) 16358-16365.
[60] M. Gustafsson, X. Zou, Crystal formation and size control of zeolitic imidazolate frameworks with mixed imidazolate linkers. Journal of Porous Materials, 20 (2013) 55-63.
[61] A. Phan, C.J. Doonan, F.J. Uribe-Romo, C.B. Knobler, M. O’Keeffe, O.M. Yaghi, Synthesis, Structure, and Carbon Dioxide Capture Properties of Zeolitic Imidazolate Frameworks. Accounts of Chemical Research, 43 (2010) 58-67.
[62] W. Wei, H. Ge, L. Huang, M. Kuang, A.M. Al-Enizi, L. Zhang, G. Zheng, Hierarchically tubular nitrogen-doped carbon structures for the oxygen reduction reaction. Journal of Materials Chemistry A, 5 (2017) 13634-13638.
[63] C.-T. Hung, N. Yu, C.-T. Chen, P.-H. Wu, X. Han, Y.-S. Kao, T.-C. Liu, Y. Chu, F. Deng, A. Zheng, S.-B. Liu, Highly nitrogen-doped mesoscopic carbons as efficient metal-free electrocatalysts for oxygen reduction reactions. Journal of Materials Chemistry A, 2 (2014) 20030-20037.
[64] J.F. Keggin, F.D. Miles, Structures and Formulæ of the Prussian Blues and Related Compounds. Nature, 137 (1936) 577-578.
[65] S. Ferlay, T. Mallah, R. Ouahès, P. Veillet, M. Verdaguer, A room-temperature organometallic magnet based on Prussian blue. Nature, 378 (1995) 701-703.
[66] W.-J. Li, C. Han, G. Cheng, S.-L. Chou, H.-K. Liu, S.-X. Dou, Chemical Properties, Structural Properties, and Energy Storage Applications of Prussian Blue Analogues. Small, 15 (2019) 1900470.
[67] F. Grandjean, L. Samain, G.J. Long, Characterization and utilization of Prussian blue and its pigments. Dalton Transactions, 45 (2016) 18018-18044.
[68] N.L. Rosi, J. Kim, M. Eddaoudi, B. Chen, M. O'Keeffe, O.M. Yaghi, Rod Packings and Metal−Organic Frameworks Constructed from Rod-Shaped Secondary Building Units. Journal of the American Chemical Society, 127 (2005) 1504-1518.
[69] W.L. Queen, M.R. Hudson, E.D. Bloch, J.A. Mason, M.I. Gonzalez, J.S. Lee, D. Gygi, J.D. Howe, K. Lee, T.A. Darwish, M. James, V.K. Peterson, S.J. Teat, B. Smit, J.B. Neaton, J.R. Long, C.M. Brown, Comprehensive study of carbon dioxide adsorption in the metal–organic frameworks M2(dobdc) (M = Mg, Mn, Fe, Co, Ni, Cu, Zn). Chemical Science, 5 (2014) 4569-4581.
[70] H. Deng, S. Grunder, K.E. Cordova, C. Valente, H. Furukawa, M. Hmadeh, F. Gándara, A.C. Whalley, Z. Liu, S. Asahina, H. Kazumori, M. O’Keeffe, O. Terasaki, J.F. Stoddart, O.M. Yaghi, Large-Pore Apertures in a Series of Metal-Organic Frameworks. Science, 336 (2012) 1018.
[71] P.D.C. Dietzel, R. Blom, H. Fjellvåg, Base-Induced Formation of Two Magnesium Metal-Organic Framework Compounds with a Bifunctional Tetratopic Ligand. European Journal of Inorganic Chemistry, 2008 (2008) 3624-3632.
[72] M. Díaz-García, Á. Mayoral, I. Díaz, M. Sánchez-Sánchez, Nanoscaled M-MOF-74 Materials Prepared at Room Temperature. Crystal Growth & Design, 14 (2014) 2479-2487.
[73] L. Garzón-Tovar, A. Carné-Sánchez, C. Carbonell, I. Imaz, D. Maspoch, Optimised room temperature, water-based synthesis of CPO-27-M metal–organic frameworks with high space-time yields. Journal of Materials Chemistry A, 3 (2015) 20819-20826.
[74] M.H. Rosnes, M. Opitz, M. Frontzek, W. Lohstroh, J.P. Embs, P.A. Georgiev, P.D.C. Dietzel, Intriguing differences in hydrogen adsorption in CPO-27 materials induced by metal substitution. Journal of Materials Chemistry A, 3 (2015) 4827-4839.
[75] D. Cattaneo, S.J. Warrender, M.J. Duncan, R. Castledine, N. Parkinson, I. Haley, R.E. Morris, Water based scale-up of CPO-27 synthesis for nitric oxide delivery. Dalton Transactions, 45 (2016) 618-629.
[76] P.D.C. Dietzel, R.E. Johnsen, R. Blom, H. Fjellvåg, Structural Changes and Coordinatively Unsaturated Metal Atoms on Dehydration of Honeycomb Analogous Microporous Metal–Organic Frameworks. Chemistry – A European Journal, 14 (2008) 2389-2397.
[77] I. Choi, Y.E. Jung, S.J. Yoo, J.Y. Kim, H.J. Kim, C.Y. Lee, J.H. Jang, Facile synthesis of M-MOF-74 (M=Co, Ni, Zn) and its application as an electrocatalyst for electrochemical CO<inf>2</inf> conversion and H<inf>2</inf> production. Journal of Electrochemical Science and Technology, 8 (2017) 61-68.
[78] J.G. Flores, M. Díaz-García, I.A. Ibarra, J. Aguilar-Pliego, M. Sánchez-Sánchez, Sustainable M-MOF-74 (M = Cu, Co, Zn) prepared in methanol as heterogeneous catalysts in the synthesis of benzaldehyde from styrene oxidation. Journal of Solid State Chemistry, 298 (2021) 122151.
[79] I.T. Kim, S. Shin, M.W. Shin, Development of 3D interconnected carbon materials derived from Zn-MOF-74@carbon nanofiber web as an efficient metal-free electrocatalyst for oxygen reduction. Carbon, 135 (2018) 35-43.
[80] L. Yan, H. Jiang, Y. Xing, Y. Wang, D. Liu, X. Gu, P. Dai, L. Li, X. Zhao, Nickel metal–organic framework implanted on graphene and incubated to be ultrasmall nickel phosphide nanocrystals acts as a highly efficient water splitting electrocatalyst. Journal of Materials Chemistry A, 6 (2018) 1682-1691.
[81] W. Zhou, X.-F. Lu, J.-J. Chen, T. Zhou, P.-Q. Liao, M. Wu, G.-R. Li, Hierarchical Porous Prism Arrays Composed of Hybrid Ni–NiO–Carbon as Highly Efficient Electrocatalysts for Overall Water Splitting. ACS Applied Materials & Interfaces, 10 (2018) 38906-38914.
[82] M.H. Rosnes, F.S. Nesse, M. Opitz, P.D.C. Dietzel, Morphology control in modulated synthesis of metal-organic framework CPO-27. Microporous and Mesoporous Materials, 275 (2019) 207-213.
[83] J.G. Flores, E. Sánchez-González, A. Gutiérrez-Alejandre, J. Aguilar-Pliego, A. Martínez, T. Jurado-Vázquez, E. Lima, E. González-Zamora, M. Díaz-García, M. Sánchez-Sánchez, I.A. Ibarra, Greener synthesis of Cu-MOF-74 and its catalytic use for the generation of vanillin. Dalton Transactions, 47 (2018) 4639-4645.
[84] A. Parkash, Pt Nanoparticles Anchored on Cu-MOF-74: An Efficient and Durable Ultra-low Pt Electrocatalyst toward Oxygen Reduction Reaction. ECS Journal of Solid State Science and Technology, 9 (2020).
[85] X. Gao, Z. Cui, L. Cao, J. Yu, M. Zhao, H. Dong, J. Sui, L. Dong, Nickel–Cobalt–Phosphide Catalyst Derived from MOF-74 for Oxygen Reduction Reactions. ECS Transactions, 86 (2018) 77-85.
[86] H. Li, F. Yue, H. Xie, C. Yang, Y. Zhang, L. Zhang, J. Wang, Hollow shell-in-shell Ni3S4@Co9S8 tubes derived from core–shell Ni-MOF-74@Co-MOF-74 as efficient faradaic electrodes. CrystEngComm, 20 (2018) 889-895.
[87] Y. Lu, Y. Deng, S. Lu, Y. Liu, J. Lang, X. Cao, H. Gu, MOF-derived cobalt–nickel phosphide nanoboxes as electrocatalysts for the hydrogen evolution reaction. Nanoscale, 11 (2019) 21259-21265.
[88] M. Zhang, W. Xu, T. Li, H. Zhu, Y. Zheng, In Situ Growth of Tetrametallic FeCoMnNi-MOF-74 on Nickel Foam as Efficient Bifunctional Electrocatalysts for the Evolution Reaction of Oxygen and Hydrogen. Inorganic Chemistry, 59 (2020) 15467-15477.
[89] T. Grant Glover, G.W. Peterson, B.J. Schindler, D. Britt, O. Yaghi, MOF-74 building unit has a direct impact on toxic gas adsorption. Chemical Engineering Science, 66 (2011) 163-170.
[90] C. Wang, L. Ma, L. Liao, S. Bai, R. Long, M. Zuo, Y. Xiong, A unique platinum-graphene hybrid structure for high activity and durability in oxygen reduction reaction. Scientific Reports, 3 (2013) 2580.
[91] L. Qiao, M. Liao, S. Chen, Z. Wei, S. Zhang, Synthesis of Pt3Ni-based functionalized MWCNTs to enhance electrocatalysis for PEM fuel cells. Journal of Solid State Electrochemistry, 18 (2014) 1893-1898.
[92] C. Hu, Y. Xiao, Y. Zhao, N. Chen, Z. Zhang, M. Cao, L. Qu, Highly nitrogen-doped carbon capsules: scalable preparation and high-performance applications in fuel cells and lithium ion batteries. Nanoscale, 5 (2013) 2726-2733.
[93] Y. Liu, J. Yao, G. Li, A metallic-free materials supercapacitor with high energy density based on N-S-doped carbon hollow sphere electrode. Materials Letters, 266 (2020) 127505.
[94] Y. Jia, L. Zhang, L. Zhuang, H. Liu, X. Yan, X. Wang, J. Liu, J. Wang, Y. Zheng, Z. Xiao, E. Taran, J. Chen, D. Yang, Z. Zhu, S. Wang, L. Dai, X. Yao, Identification of active sites for acidic oxygen reduction on carbon catalysts with and without nitrogen doping. Nature Catalysis, 2 (2019) 688-695.
[95] X. Ao, X. Xue, Z. Yang, Y. Yang, C. Wang, Nitrogen-doped braided-looking mesoporous carbonaceous nanotubes as an advanced oxygen reduction electrocatalyst. Materials Today Energy, 12 (2019) 62-69.
[96] G.S. Bang, G.W. Shim, G.H. Shin, D.Y. Jung, H. Park, W.G. Hong, J. Choi, J. Lee, S.-Y. Choi, Pyridinic-N-Doped Graphene Paper from Perforated Graphene Oxide for Efficient Oxygen Reduction. ACS Omega, 3 (2018) 5522-5530.
[97] Q. Jia, K. Caldwell, K. Strickland, J.M. Ziegelbauer, Z. Liu, Z. Yu, D.E. Ramaker, S. Mukerjee, Improved Oxygen Reduction Activity and Durability of Dealloyed PtCox Catalysts for Proton Exchange Membrane Fuel Cells: Strain, Ligand, and Particle Size Effects. ACS Catalysis, 5 (2015) 176-186.
[98] P.J. Dietrich, M.C. Akatay, F.G. Sollberger, E.A. Stach, J.T. Miller, W.N. Delgass, F.H. Ribeiro, Effect of Co Loading on the Activity and Selectivity of PtCo Aqueous Phase Reforming Catalysts. ACS Catalysis, 4 (2014) 480-491.
[99] G. Wu, K.L. More, C.M. Johnston, P. Zelenay, High-Performance Electrocatalysts for Oxygen Reduction Derived from Polyaniline, Iron, and Cobalt. Science, 332 (2011) 443-447.
[100] O. Naumov, S. Naumov, B. Abel, A. Varga, The stability limits of highly active nitrogen doped carbon ORR nano-catalysts: a mechanistic study of degradation reactions. Nanoscale, 10 (2018) 6724-6733.
[101] S. Kundu, T.C. Nagaiah, W. Xia, Y. Wang, S.V. Dommele, J.H. Bitter, M. Santa, G. Grundmeier, M. Bron, W. Schuhmann, M. Muhler, Electrocatalytic Activity and Stability of Nitrogen-Containing Carbon Nanotubes in the Oxygen Reduction Reaction. The Journal of Physical Chemistry C, 113 (2009) 14302-14310.
[102] C.V. Rao, C.R. Cabrera, Y. Ishikawa, In Search of the Active Site in Nitrogen-Doped Carbon Nanotube Electrodes for the Oxygen Reduction Reaction. The Journal of Physical Chemistry Letters, 1 (2010) 2622-2627.
[103] Z. Duan, G. Henkelman, Identification of Active Sites of Pure and Nitrogen-Doped Carbon Materials for Oxygen Reduction Reaction Using Constant-Potential Calculations. The Journal of Physical Chemistry C, 124 (2020) 12016-12023.
[104] X. Wang, S. Yang, Y. Yu, M. Dou, Z. Zhang, F. Wang, Low-loading Pt nanoparticles embedded on Ni, N-doped carbon as superior electrocatalysts for oxygen reduction. Catalysis Science & Technology, 10 (2020) 65-69.
[105] S. Bukka, R. Badam, R. Vedarajan, N. Matsumi, Photo-generation of ultra-small Pt nanoparticles on carbon-titanium dioxide nanotube composites: A novel strategy for efficient ORR activity with low Pt content. International Journal of Hydrogen Energy, 44 (2019) 4745-4753.
[106] K. Mohanraju, P.S. Kirankumar, L. Cindrella, O.J. Kwon, Enhanced electrocatalytic activity of Pt decorated spinals (M3O4, M=Mn, Fe, Co)/C for oxygen reduction reaction in PEM fuel cell and their evaluation by hydrodynamic techniques. Journal of Electroanalytical Chemistry, 794 (2017) 164-174.
[107] L. Mao, K. Fu, J. Jin, S. Yang, G. Li, PtFe alloy catalyst supported on porous carbon nanofiber with high activity and durability for oxygen reduction reaction. International Journal of Hydrogen Energy, 44 (2019) 18083-18092.
[108] C. Domínguez, K.M. Metz, M.K. Hoque, M.P. Browne, L. Esteban-Tejeda, C.K. Livingston, S. Lian, T.S. Perova, P.E. Colavita, Continuous Flow Synthesis of Platinum Nanoparticles in Porous Carbon as Durable and Methanol-Tolerant Electrocatalysts for the Oxygen Reduction Reaction. ChemElectroChem, 5 (2018) 62-70.
[109] V.K. Abdelkader-Fernández, D.M. Fernandes, S.S. Balula, L. Cunha-Silva, M.J. Pérez-Mendoza, F.J. López-Garzón, M.F. Pereira, C. Freire, Noble-Metal-Free MOF-74-Derived Nanocarbons: Insights on Metal Composition and Doping Effects on the Electrocatalytic Activity Toward Oxygen Reactions. ACS Applied Energy Materials, 2 (2019) 1854-1867.
[110] Z. Wang, J. Huang, J. Mao, Q. Guo, Z. Chen, Y. Lai, Metal–organic frameworks and their derivatives with graphene composites: preparation and applications in electrocatalysis and photocatalysis. Journal of Materials Chemistry A, 8 (2020) 2934-2961.
[111] O.V. Kharissova, B.I. Kharisov, I.E. Ulyand, T.H. García, Catalysis using metal–organic framework-derived nanocarbons: Recent trends. Journal of Materials Research, 35 (2020) 2190-2207.
[112] J. Cui, Q. Chen, X. Li, S. Zhang, Recent advances in non-precious metal electrocatalysts for oxygen reduction in acidic media and PEMFCs: an activity, stability and mechanism study. Green Chemistry, 23 (2021) 6898-6925.
[113] V.A. Setyowati, L. Noerochim, D. Susanti, Y. Pradesar, H.-C. Huang, S.-T. Chang, K.-C. Wang, C.-H. Wang, High oxygen reduction reaction activity on various iron loading of Fe-PANI/C catalyst for PEM fuel cell. Ionics, (2019).
[114] S.J. Mun, S.-J. Park, Graphitic Carbon Nitride Materials for Photocatalytic Hydrogen Production via Water Splitting: A Short Review. Catalysts, 9 (2019) 805.
[115] Y. Fu, J. Zhu, C. Hu, X. Wu, X. Wang, Covalently coupled hybrid of graphitic carbon nitride with reduced graphene oxide as a superior performance lithium-ion battery anode. Nanoscale, 6 (2014) 12555-12564.
[116] H. Jung, T.-T. Pham, E.W. Shin, Effect of g-C3N4 precursors on the morphological structures of g-C3N4/ZnO composite photocatalysts. Journal of Alloys and Compounds, 788 (2019) 1084-1092.
[117] A. Parkash, Metal-organic framework derived ultralow-loading platinum-copper catalyst: A highly active and durable bifunctional electrocatalyst for oxygen-reduction and evolution reactions. Nanotechnology, 32 (2021).
[118] Y. Qiao, Y. Ni, F. Kong, R. Li, C. Zhang, A. Kong, Y. Shan, Pyrolytic Carbon-coated Cu-Fe Alloy Nanoparticles with High Catalytic Performance for Oxygen Electroreduction. Chemistry - An Asian Journal, 14 (2019) 2676-2684.
[119] Y. Lv, S. Duan, Y. Zhu, P. Yin, R. Wang, Enhanced OER Performances of Au@NiCo2S4 Core-Shell Heterostructure. Nanomaterials, 10 (2020) 611.
[120] D. Wu, Z. Zou, X. Lu, K. Guo, N. Yang, C. Xu, 3D conductive NiCo/NiCoOx hybrid nanoclusters modified with amorphous FeOOH nanosheets for sensitive nonenzymatic glucose sensor. Journal of Materials Science, 54 (2019) 10695-10704.
[121] Z.-J. Lu, S.-J. Bao, Y.-T. Gou, C.-J. Cai, C.-C. Ji, M.-W. Xu, J. Song, R. Wang, Nitrogen-doped reduced-graphene oxide as an efficient metal-free electrocatalyst for oxygen reduction in fuel cells. RSC Advances, 3 (2013) 3990-3995.
[122] Z.-H. Sheng, L. Shao, J.-J. Chen, W.-J. Bao, F.-B. Wang, X.-H. Xia, Catalyst-Free Synthesis of Nitrogen-Doped Graphene via Thermal Annealing Graphite Oxide with Melamine and Its Excellent Electrocatalysis. ACS Nano, 5 (2011) 4350-4358.
[123] L. Zhang, Z. Xia, Mechanisms of Oxygen Reduction Reaction on Nitrogen-Doped Graphene for Fuel Cells. The Journal of Physical Chemistry C, 115 (2011) 11170-11176.
[124] R. Ma, X. Ren, B.Y. Xia, Y. Zhou, C. Sun, Q. Liu, J. Liu, J. Wang, Novel synthesis of N-doped graphene as an efficient electrocatalyst towards oxygen reduction. Nano Research, 9 (2016) 808-819.
[125] C. Zhang, R. Hao, H. Liao, Y. Hou, Synthesis of amino-functionalized graphene as metal-free catalyst and exploration of the roles of various nitrogen states in oxygen reduction reaction. Nano Energy, 2 (2013) 88-97.
[126] S.K. Singh, K. Takeyasu, J. Nakamura, Active Sites and Mechanism of Oxygen Reduction Reaction Electrocatalysis on Nitrogen-Doped Carbon Materials. Advanced Materials, 31 (2019) 1804297.
[127] R. Shibuya, T. Kondo, J. Nakamura, Active Sites in Nitrogen-Doped Carbon Materials for Oxygen Reduction Reaction, in: Carbon‐Based Metal‐Free Catalysts, 2018, pp. 227-249.

無法下載圖示 全文公開日期 2025/02/04 (校內網路)
全文公開日期 2032/02/04 (校外網路)
全文公開日期 2032/02/04 (國家圖書館:臺灣博碩士論文系統)
QR CODE