研究生: |
薛聿明 Yu-Min Hsueh |
---|---|
論文名稱: |
多功能電氣即時波形檢測系統之研製 Design and Implementation of Multifunction Real-Time Electrical Waveform Detection System |
指導教授: |
郭政謙
Cheng-Chien Kuo 張宏展 Hong-Chan Chang |
口試委員: |
楊念哲
Nien-Che Yang 陳鴻誠 Hung-Cheng Chen 黃維澤 Wei-Tzer Huang 李俊耀 Chun-Yao Lee |
學位類別: |
博士 Doctor |
系所名稱: |
電資學院 - 電機工程系 Department of Electrical Engineering |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 中文 |
論文頁數: | 103 |
中文關鍵詞: | 局部放電 、資料擷取 、嵌入式系統 、雲端串流運算 、類比數位轉換器 |
外文關鍵詞: | Partial Discharge, Data Acquisition, Embedded System, Cloud Streaming and Computing, Analog-to-Digital Converter |
相關次數: | 點閱:345 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著電力系統電壓等級的提升與設備的長期運轉下,絕緣材料的特性會因不同的外在因素影響而逐漸劣化,當劣化部位之電場強度大於絕緣材料本身所能承受的絕緣強度時,即會產生局部放電現象。近年來,局部放電的檢測和圖譜辨識已成爲預防性設備故障診斷的最新發展趨勢,因此若能結合局部放電檢測與訊號分析,掌握電力設備的絕緣狀態,當能及時避免電力設備的無預警停機,提升電力的品質及供電的可靠度。
本研究多功能電氣即時波形檢測系統,運用嵌入式系統架構進行研製,主要採用ARM (Advanced RISC Machine)處理器、類比數位轉換器、電壓感測器、電流感測器及高頻電流感測器,再依據需求搭配可編成即時單元與工業通訊子系統、現場可程式化邏輯閘陣列或是數位訊號處理器等硬體元件,並撰寫相關硬體電路、韌體、驅動程式及應用程式,以模組化設計方式藉以發展網路雲端應用和觸控顯示單機應用,以符合在各種場域中使用。在前端部份的資料擷取裝置方面可分為電量資料擷取模組和局部放電擷取模組的研發領域,在後端部份建立雲端串流運算的資料處理流程,完成資料擷取硬體與雲端監控技術的整合。
本論文旨在建立一套多功能電氣即時波形檢測系統,分別為線上電量檢測系統和攜帶型局部放電檢測系統,利用電力品質分析、標準放電模型、高壓比流器作為本研究實際應用案例進行測試,並與市面上的商用儀器進行比對,以驗證本研究多功能電氣即時波形檢測系統的準確性,同時兼具成本低、體積小、攜帶方便等優勢,大幅提升其在未來使用上的普及性和替代性。
With increasing voltage level of electrical systems and under long-term operation of equipment, the insulating properties of materials deteriorate due to the influence of various external factors. Partial discharge occurs when the electric field strength of the deteriorated part exceeds the maximum insulation strength of the insulating material. In recent years, detection and pattern recognition of partial discharge have become the latest development trend of preventive equipment fault diagnosis. Therefore, partial discharge detection and signal analysis can be combined to determine the insulation status of electrical equipment, prevent unexpected shutdown of electrical equipment in a timely manner, and improve electric power quality and the reliability of power supply.
The multifunction real-time electrical waveform detection system proposed in this study was adopted an embedded system architecture. The system consists of an ARM (Advanced RISC Machine) processor, an analog-to-digital converter, a voltage sensor, a current sensor, and a high-frequency current transformer. The user can choose to use this system to develop cloud computing applications or stand-alone touch panel applications. These applications can be achieved by using hardware components incorporated along with programming of hardware circuits, firmware, device drivers, and application programs. Some examples of hardware components that can be used are programmable real-time unit and industrial communications subsystem, field programmable gate array, or digital signal processor. The front-end data acquisition device was designed to be made up of two modules: electricity data acquisition and partial discharge acquisition module. Regarding the system back-end, a cloud-based data stream processing procedure was created to integrate data acquisition hardware with cloud monitoring technology.
This study aimed to build a multifunction real-time electrical waveform detection system by combining an online power detection system and a portable partial discharge detection system. The system was tested, on the basis of the case study, using a power quality analysis, standard discharge model, and high-voltage current transformer. The proposed system was also compared with commercial instruments on the market to determine the system’s accuracy. The many advantages of the proposed system, such as the low cost, small size, and portability, greatly increase its potential to be widely adopted and to substitute products with similar functions in the future.
[1] E. Gulski, J. J. Smit, and F. J. Wester, “PD knowledge rules for insulation condition assessment of distribution power cables,” IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 12, No. 2, pp. 223-239, 2005.
[2] IEC 60270, “High voltage test techniques – Partial discharge measurement,” 2001.
[3] R. Bartnikas and K. Srivastava, “Power and communication cables: theory and applications, Chapter 9: Dissipation factor, partial discharge, and electrical aging tests on power cables,” Wiley-IEEE Press eBook Chapters, pp. 331-462, 2000.
[4] S. Meijer, E. Gulski, and J. J. Smit, “Pattern analysis of partial discharges in SF6 GIS,” IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 5, No. 6, pp. 830-842, 1998.
[5] Y. Tian, P. L. Lewin, A. E. Davies, S. J. Sutton, and S. G. Swingler, “Partial discharge detection in cables using VHF capacitive couplers,” IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 10, No. 2, pp. 343-353, 2003.
[6] Z. Xu, J. Tang, and C. Sun, “Application of complex wavelet transform to suppress white noise in GIS UHF PD signals,” IEEE Transactions on Power Delivery, Vol. 22, No. 3, pp. 1498-1504, 2007
[7] S. Tenbohlen, D. Denissov, S. M. Hoek, and S. M. Markalous, “Partial discharge measurement in the ultra high frequency (UHF) range,” IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 15, No. 6, pp. 1544-1552, 2008.
[8] T. Ito, M. Kamei, G. Ueta, and S. Okabe, “Improving the sensitivity verification method of the UHF PD detection technique for GIS,” IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 18, No. 6, pp. 1847-1853, 2011.
[9] 張建國,「高電壓地下電纜接頭絕緣狀態之監測與診斷系統之研製」,博士論文,國立臺灣科技大學,2012年。
[10] M. Ren, M. Dong, Z. Ren, H. D. Peng , and A. C. Qiu, “Transient earth voltage measurement in PD detection of artificial defect models in SF6,” IEEE Transactions on Plasma Science, Vol. 40, No. 8, pp. 2002-2008, 2012.
[11] J. Zhu, L. Yang, J. Jia, and Q. Zhang, “The design of Rogowski coil with wide band using for partial discharge measurements,” IEEE Proceedings of 2005 International Symposium on Electrical Insulating Materials (ISEIM 2005), Vol. 2, Kitakyushu, Japan, June 5-9, 2005, pp. 518-521.
[12] L. E. Lundgaard, “Particles in GIS characterization from acoustic signatures,” IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 8, No. 6, pp. 1064-1074, 2001.
[13] T. Boczar and D. Zmarzly, “Application of wavelet analysis to acoustic emission pulses generated by partial discharges,” IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 11, No. 3, pp. 433-449, 2004.
[14] T. Boczar, “Identification of a specific type of PD from acoustic emission frequency spectra,” IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 8, No. 4, pp. 598-606, 2001.
[15] X. Wang, B. Li, H. T. Roman, O. L. Russo, K. Chin, and K. R. Farmer, “Acousto-optical PD detection for transformers,” IEEE Transactions on Power Delivery, Vol. 21, No. 3, pp. 1068-1073, 2006.
[16] S. Kobayashi, A. Horide, I. Takagi, M. Higaki, G. Takahashi, E. Mori, and T. Yamagiwa, “Development and field test evaluation of optical current and voltage transformers for gas insulated switchgear,” IEEE Transactions on Power Delivery, Vol. 7, No. 2, pp. 815-821, 1992.
[17] T. Sawa, K. Kurosawa, T. Kaminishi, and T. Yokota, “Development of optical instrument transformers,” IEEE Transactions on Power Delivery, Vol. 5, No. 2, pp. 884-891, 1990.
[18] J. S. Pearson, O. Farish, B. F. Hampton, M. D. Judd, D. Templeton, B. M. Pryor, and I. M. Welch, “Partial discharge diagnostics for gas insulated substations,” IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 2, No. 5, pp. 893-905, 1995.
[19] S. Okabe, S. Kaneko, T. Minagawa, and C. Nishida, “Detecting characteristics of SF6 decomposed gas sensor for insulation diagnosis on gas insulated switchgears,” IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 15, No. 1, pp. 251-258, 2008.
[20] W. Ding, K. Ochi, J. Suehiro, K. Imasaka, R. Hayashi, and M. Hara, “Factors affecting PD detection in GIS using a carbon nanotube gas sensor,” IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 14, No. 3, pp. 718-725, 2007.
[21] E. Gulski, “Digital analysis of partial discharges,” IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 2, No. 5, pp. 822-837, 1995.
[22] H. C. Chang, F. C. Gu, and C. C. Kuo, “Application Hilbert–Huang transform on partial discharge pattern recognition of gas-insulated switchgear,” IEEE International Power Modulator and High Voltage Conference (IPMHVC 2012), San Diego, USA, June 3-7, 2012, pp. 165-168.
[23] J. Li, C. Sun, and S. Grzybowski, “Partial discharge image recognition influenced by fractal image compression,” IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 15, No. 2, pp. 496-504, 2008.
[24] R. N. Wu and C. K. Chang, “The use of partial discharges as an online monitoring system for underground cable joints,” IEEE Transactions on Power Delivery, Vol. 26, No. 3, pp. 1585-1591, 2011.
[25] X. Zhang, Z. Xu, Q. Zhou, J. Tang, and C. Sun, “Design of microstrip bandpass filter used for PD UHF detecting in GIS,” IEEE Proceedings of 2005 International Symposium on Electrical Insulating Materials (ISEIM 2005), Vol. 2, Kitakyushu, Japan, June 5-9, 2005, pp. 502-505.
[26] C. S. Chang, J. Jin, C. Chang, T. Hoshino, M. Hanai, and N. Kobayashi, “Separation of corona using wavelet packet transform and neural network for detection of partial discharge in gas-insulated substations,” IEEE Transactions on Power Delivery, Vol. 20, No. 2, pp. 1363-1369, 2005.
[27] N. E. Huang, Z. Shen, and S. R. Long, “A new review of nonlinear water waves: The Hilbert spectrum,” Annual Review of Fluid Mechanics, Vol. 31, pp. 417-457, 1999.
[28] F. C. Gu, H. C. Chang, F. H. Chen, C. C. Kuo, and C. H. Hsu, “Application of the Hilbert–Huang transform with fractal feature enhancement on partial discharge recognition of power cable joints,” IET Science, Measurement and Technology, Vol. 6, No. 6, pp. 440-448, 2012.
[29] E. Gulski and A. Krivda, “Neural networks as a tool for recognition of partial discharges,” IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 28, No. 6, pp. 984-1001, 1993.
[30] A. Contin, A. Cavallini, G. C. Montanari, G. Pasini, and F. Puletti, “Digital detection and fuzzy classification of partial discharge signals,” IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 9, No. 3, pp. 335-348, 2002.
[31] L. Hao and P. L. Lewin, “Partial discharge source discrimination using a support vector machine,” IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 17, No. 1, pp. 189-197, 2010.
[32] W. Cai, “The extension set and incompatibility problem,” Journal of Scientific Exploration, Vol. 1, pp. 81-93, 1983.
[33] 程于真,「局部放電訊號偵測裝置之研製」,碩士論文,國立臺灣科技大學,2016年。
[34] 陳柏睿,「多通道局部放電監測裝置之研製」,碩士論文,國立臺灣科技大學,2018年。
[35] IEC 60034-27, “Rotating electrical machines – Part 27: Off-line partial discharge measurements on the stator winding insulation of rotating electrical machines,” 2006.
[36] IEC 60034-27-2, “Rotating electrical machines – Part 27-2: On-line partial discharge measurements on the stator winding insulation of rotating electrical machines,” 2012.
[37] GB/T 20833 「旋轉電機定子線棒及繞組局部放電的測量方法及評定導則」, 2007.
[38] IEC TS 60034-27, “Rotating electrical machines - Part 27: off-line partial discharge measurements on the stator winding insulation of rotating electrical machines,” 2012.
[39] IEEE Std. 519, “IEEE Recommended Practices and Requirements for Harmonic Control in Electrical Power Systems,” New York, April 1993.
[40] IEC Standard 60141, “Tests on oil-filled and gas-pressure cables and their accessories,” 1976.
[41] IEC 60936, “Maritime navigation and radio communication equipment and systems – Radar –,” 2002.
[42] IEC 61000-2-2, “Electromagnetic compatibility (EMC) - Part 2-2: Environment - Compatibility levels for low-frequency conducted disturbances and signalling in public low-voltage power supply systems,” 2002.
[43] 廖家祺,「電氣指標於感應電動機運轉狀態之適切性評估」,碩士論文,國立臺灣科技大學,2015年。
[44] 謝政甫,「基於模糊法之感應電動機故障診斷與狀態監測系統」,碩士論文,國立臺灣科技大學,2016年。
[45] IEEE 141, “IEEE Recommended Practice for Electric Power Distribution for Industrial Plants,” 1993.
[46] IEC Standard 60141, “Tests on oil-filled and gas-pressure cables and their accessories,” 1976.
[47] IEC 60936, “Maritime navigation and radio communication equipment and systems – Radar –,” 2002.
[48] IEC 61000-2-2, “Electromagnetic compatibility (EMC) - Part 2-2: Environment - Compatibility levels for low-frequency conducted disturbances and signalling in public low-voltage power supply systems,” 2002.
[49] NEMA Standard MG1 12, “Motors and Generators – Part 12: Tests and Performance AC Motors,” 2009.
[50] AS 1395-1974 Docking Plugs and Associated Bodies─Metric Units.
[51] EN 50160, “Voltage Characteristics of Electricity Supplied by Public Distribution Systems,” 1999.
[52] NF-EN-50165, “Electrical Equipment of Non-electric Appliances for Household and Similar Purposes. Safety Requirements,” 1997.
[53] 黃建裕,「諧波對小能量過電流電驛的影響」,碩士論文,中原大學,2003年。
[54] 杜耿邦,「應用人工智慧於電力系統諧波源與位置偵測」,碩士論文,中山大學,2003年。
[55] IEEE C57.11.00-1986, IEEE Recommended Practice for Establishing Transformer Capability When Supplying Nonsinusoidal Load Currents(ANSI)
[56] 薛小生、黃郁東,「工業配電」,台北,大中國,民國八十四年。
[57] 古峰昌,「多功能局部放電分析儀之研製及其應用」,博士論文,國立臺灣科技大學,2013年。
[58] ISO/IEC 20922, “Information technology — Message Queuing Telemetry Transport (MQTT) v3.1.1” 2016.