簡易檢索 / 詳目顯示

研究生: 許原彰
Yuan-Chang Hsu
論文名稱: 嵌入式復健動作監控系統之設計與評估
Design and Evaluation of an Embedded Rehabilitative Movement Monitoring System
指導教授: 林淵翔
Yuan-hsiang Lin
口試委員: 林敬舜
Ching-shun Lin
郭重顯
Chung-hsien Kuo
許維君
Wei-chun Hsu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 97
中文關鍵詞: 復健動作監控系統慣性感測器動作角度量測穿戴式裝置語音導引
外文關鍵詞: Rehabilitation movement monitoring system, Inertial sensor, Movement angle measurement, Wearable device, Audio guidance
相關次數: 點閱:737下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文基於嵌入式系統與慣性感測器,開發了一套復健監控系統,主要運用加速計與陀螺儀,加入卡爾曼濾波器來量測動作角度,回饋方面以語音導引的方式協助病患進行動作,並有動作正確度的語音提示,而復健標準參數與動作資料可透過網路下載更新與上傳,搭配遠端復健資訊系統達到醫院與居家的資訊聯繫。
在角度準確度的量測方面,馬達分別以三種不同的角速度旋轉裝置下,三軸的角度輸出均有相當高的準確度;在光學立體攝影系統與裝置的動作比對實驗中,在髖關節屈曲、膝關節伸直及走路動作上的主要動作平面皆有良好的成果;而人體動作判斷驗證中,系統的動作判斷也提供可靠的正確率,所以本系統可協助病患確保自行做復健的動作正確性以及了解錯誤復健姿勢的類型,而透過醫院端與居家端的資訊聯繫,病患復健的成效將會有所提升。


In this thesis, we developed a rehabilitation movement monitoring system which includes an embedded device and a remote server. The movement angle is measured by the embedded device using accelerometer and gyroscope as well as a Kalman filter. The functions of the device include voice guidance, audio feedback, and update/upload the rehabilitative parameter and the movement data to the remote server via the internet and SD card.
The accuracy of angle measurement has been verified in motor experiments using three different angular velocities. Moreover, the results of hip flexion, knee extension and walking action are also present a good accuracy on the main planes of motion by comparing with a 3D stereophotographic system. Therefore, the device can help patients to monitor their rehabilitation movement. Moreover, the device can also combine the internet and remote server to improve the efficiency of rehabilitation.

中文摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VI 表目錄 IX 第一章 緒論 1 1.1 動機與目的 1 1.2 文獻探討 2 1.3 相關論文比較 3 1.4 論文架構 6 第二章 研究背景 7 2.1 人體解剖平面 7 2.2 加速計原理 8 2.3 陀螺儀原理 9 2.4 卡爾曼濾波器(Kalman Filter) 9 2.5 藍牙模組 14 2.6 核心處理器 15 2.7 感測器元件 16 2.8 音頻解碼器 17 2.9 FATFS檔案系統 18 2.10 韌體開發軟體 19 2.11 醫院端與居家端介面開發軟體 20 第三章 研究方法 22 3.1 系統架構 22 3.2 裝置硬體架構 23 3.2.1 感測器電路 24 3.2.2 實體裝置 25 3.3 韌體設計 26 3.3.1 資料讀取 27 3.3.2 加速度訊號處理 29 3.3.3 陀螺儀訊號處理 33 3.3.4 動作序列計算 36 3.3.5 復健參數設定 40 3.3.6 動作結果判斷與處理 41 3.3.7 藍牙資料傳輸 45 3.3.8 檔案儲存格式 47 3.4 軟體開發 49 3.4.1 醫院端 50 3.4.2 居家端 58 3.5 實驗方法 61 3.5.1 角度驗證 61 3.5.2 光學模擬系統動作驗證 62 3.5.3 動作判斷驗證 62 第四章 實驗結果 64 4.1 馬達角度驗證 64 4.1.1 低速(20.8°/s) 64 4.1.2 中速(60.9°/s) 66 4.1.3 高速(112.1°/s) 67 4.2 光學立體攝影系統動作驗證 69 4.2.1 髖關節屈曲(Hip Flexion Movement) 70 4.2.2 髖關節伸直(Hip Extension Movement) 72 4.2.3 髖關節外展(Hip Abduction Movement) 74 4.2.4 膝關節伸直(Knee Extension Movement) 76 4.2.5 走路(Walking) 78 4.3 動作判斷驗證 80 4.3.1 馬達驗證部分 80 4.3.2 人體動作判斷驗證 80 第五章 結果討論 85 5.1 馬達角度驗證 85 5.2 光學模擬系統動作驗證 89 5.3 動作判斷驗證 92 第六章 結論與未來展望 93 參考文獻 95

[1] 行政院衛生署, [Online] Available http://www.mohw.gov.tw/CHT/Ministry/Index.aspx
[2] 內政部, [Online] Available http://www.moi.gov.tw/
[3] C. Anderson, C. N. Mhurchu, S. Rubenach, M. Clark, C. Spencer, and A. Winsor, "Home or hospital for stroke rehabilitation results of a randomized controlled trial : Ii: cost minimization analysis at 6 months, Stroke," American Heart Association, pp. 1032-1037, 2000.
[4] J. M. Geddes and M. A. Chamberlain, "Home-based rehabilitation for people with stroke: a comparative study of six community services providing co-ordinated, multidisciplinary treatment," Clinical Rehabilitation, vol. 15, pp. 589-599, 2001.
[5] 許哲瀚 and 唐憶淨, "遠距居家照護的現況與未來," 台灣老年醫學暨老年學雜誌, vol. 3, 2008.
[6] C. C. Norkin and D. J. White, Measurement of joint motion a guide to goniometry, 3 ed.: F.A. Davis Company, 2003.
[7] W.-C. Hsu, T.-M. Wang, M.-W. Liu, C.-F. Chang, H.-L. Chen, and T.-W. Lu, "Control of body's center of mass motion during level walking and obstacle crossing in older patients with knee osteoarthritis," Journal of Mechanics, vol. 26, pp. 229-237, 2010.
[8] W.-C. Hsu, T.-W. Lu, and M.-W. Liu, "Lower limb joint position sense in patients with type II diabetes mellitus," Biomedical Engineering: Applications, Basis and Communications, vol. 21, pp. 271-278, 2009.

[9] H. Zhou and H. Hu, "Human motion tracking for rehabilitation—a survey," Biomedical Signal Processing and Control, vol. 3, pp. 1-18, 2007.
[10] I. P. I. Pappas, T. Keller, S. Mangold, M. R. Popovic, V. Dietz, and M. Morari, "A reliable gyroscope-based gait-phase detection sensor embedded in a shoe insole," IEEE Sensors Journal, vol. 4, pp. 268 - 274, 2004.
[11] E. Grimpampia, V. Bonneta, A. Tavianib, and C. Mazzaa, "Estimate of lower trunk angles in pathological gaits using gyroscope data," Converging Clinical and Engineering Research on Neurorehabilitation Biosystems & Biorobotics, vol. 1, pp. 747-751, 2013.
[12] B. Mariani, M. C. Jimenez, F. J. G. Vingerhoets, and K. Aminian, "On-shoe wearable sensors for gait and turning assessment of patients with parkinson's disease," IEEE Transactions on Biomedical Engineering, vol. 60, pp. 155-158, 2013.
[13] J. Pang and I. Singh, "Accelerometer based real-time remote detection and monitoring of hand motion," in Lecture Notes in Engineering and Computer Science: Proceedings of The World Congress on Engineering and Computer Science 2011, WCECS 2011, pp. 744-747, 2011.
[14] B.-C. Lee, S. Chen, and K. H. Sienko, "A wearable device for real-time motion error detection and vibrotactile instructional cuing," IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 19, pp. 374-381, 2011.

[15] C. M. N. Brigante, N. Abbate, A. Basile, A. C. Faulisi, and S. Sessa, "Towards miniaturization of a MEMS-based wearable motion capture system," IEEE Transactions on Industrial Electronics, vol. 58, pp. 3234-3241, 2011.
[16] A. P. L. Bo, M. Hayashibe, and P. Poignet, "Joint angle estimation in rehabilitation with inertial sensors and its integration with Kinect," in 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 3479-3483, 2011.
[17] M. El-Gohary and J. McNames, "Shoulder and elbow joint angle tracking with inertial sensors," IEEE Transactions on Biomedical Engineering, vol. 59, pp. 2635-2641, 2012.
[18] Z. Q. Ding, Z. Q. Luo, A. Causo, I. M. Chen, K. X. Yue, S. H. Yeo, and K. V. Ling, "Inertia sensor-based guidance system for upperlimb posture correction," Medical Engineering & Physics, vol. 35, pp. 269-276, 2013.
[19] L. Yu, L. Guo, X. Gu, J. Fu, and Q. Fang, "LVQ neural network applied for upper limb motion recognition for home-based stroke rehabilitation," in Bioecectronics and Bioinformatics (ISBB), 2011 International Symposium on, pp. 151-154, 2011.
[20] R. Wang, H. Guo, J. Xu, and W. H.Ko, "A supplementary system based on wireless accelerometer network for rehabilitation," in Nano/Micro Engineered and Molecular Systems (NEMS), 2010 5TH IEEE International Conference on, pp. 1124 - 1127, 2010.
[21] J.-I. Pan, H.-W. Chung, and J.-J. Huang, "Intelligent frozen shoulder self-home rehabilitation monitoring system," in IST2013, pp. 265-270, 2013.
[22] Shapingyourself, Planes of motion, [Online] Available http://shapingyourself.com/planes-of-motion
[23] D. Simon, "Kalman filtering," Embedded Systems Programming, vol. 14, pp. 72-79, 2001.
[24] G. Welch and G. Bishop, "An Introduction to the Kalman filter," 2006.
[25] A practical approach to Kalman filter and how to implement it, [Online] Available http://blog.tkjelectronics.dk/2012/09/a-practical-approach-to-kalman-filter-and-how-to-implement-it/
[26] Epson, AH-6100LR, [Online] Available www.epson.com.de
[27] VLSI, vs1003, [Online] Available http://www.vlsi.fi
[28] Hizook, MX-28, [Online] Available http://www.hizook.com/

QR CODE