簡易檢索 / 詳目顯示

研究生: 趙若妤
Jo-Yu Chao
論文名稱: 非水溶性(多精胺酸-聚天門冬胺酸)/海藻酸鹽複合水膠作為傷口敷料對纖維母細胞生長之探討
Assessment of insoluble (multi-L-arginyl-poly-L-aspartate) / alginate composite hydrogel on the fibroblast growth as a wound dressing
指導教授: 曾文祺
Wen-Chi Tseng
口試委員: 曾文祺
Wen-Chi Tseng
黃崇雄
Chung-Hsiung Huang
林析右
Shi-Yow Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 72
中文關鍵詞: 多精胺酸-聚天門冬胺酸海藻酸鹽複合水膠傷口敷料細胞生長
外文關鍵詞: multi-L-arginyl-poly-L-aspartate, alginate, hydrogel, wound dressing, fibroblast growth
相關次數: 點閱:346下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

藍藻蛋白與海藻酸鹽皆具有良好的生物相容性,本研究期望結合藍藻蛋白與海藻酸鹽本身高含水量的特性,以促進纖維母細胞之生長,製備適合用於傷口癒合之敷材。同時嘗試加入碳酸鈣微粒,期望提升機械強度,最終獲得可促進傷口癒合之複合敷料。
  本研究將非水溶性藍藻蛋白與海藻酸鹽摻合形成共聚溶液後,以氯化鈣溶液固化,製備含不同比例非水溶性藍藻蛋白之複合水凝膠。之後,使用FTIR觀察成膠後官能基變化,利用坂口實驗(Sakaguchi test)測量非水溶性藍藻蛋白之含量,並以掃描式電子顯微鏡(scanning electron microscope,SEM)觀察複合水膠之表面與橫切面結構,以萬能材料試驗機(universal testing machine)進行機械性質測試,並進行含水率測試(swelling test)。細胞實驗則以纖維母細胞L929進行培養,以MTT 分析比較不同膠體之細胞生長情形,並以細胞遷移(cell migration)實驗模擬傷口癒合。
  結果顯示,適量摻合並加入碳酸鈣微粒有助提升機械性質,並且非水溶性藍藻蛋白可有效促進細胞生長與遷移,可視為具有傷口敷料潛力之生醫材料。


Both multi-L-arginyl-poly-L-aspartate (MAPA), also known as cyanophycin, and alginate have shown good biocompatibility. This study aims to combine MAPA and alginate to prepare a composite hydrogel that could promote wound healing. Calcium carbonate micro particles were also incorporated in an attempt to increase the mechanical properties of the hydrogel.
In this study, insoluble MAPA (iMAPA) and alginate were blended to form a hydrogel with calcium chloride solution at different ratios of iMAPA/alginate. The gel properties were examined by FTIR, and the content of iMAPA was measured by Sakaguchi method. Scanning electron microscope (SEM) was used to observe the morphology of surface and cross-section of the composite hydrogel, and the universal testing machine was employed to measure the mechanical properties of stretching and compression. The swelling ratio of composite hydrogels was also examined. Fibroblast was employed in the cell experiment and the cell growth on different composite hydrogels was compared by MTT assay. The cell migration experiment was used to mimic a wound in an effort to examine the effect of composite hydrogels on wound healing.
The above results showed the addition of calcium carbonate micro particles can effectively improve the mechanical properties, and iMAPA can effectively promote cell growth and migration. The composite hydrogel showed a potential for the application of wound dressing.

中文摘要 I ABSTRACT II 致謝 IV 目錄 V 圖目錄 VII 表目錄 VIII 附錄圖目錄 VIII 第一章 緒論 1 第二章 文獻回顧 3 2.1 水凝膠 3 2.1.1水凝膠簡介 3 2.1.2水凝膠之成膠機制 4 2.2 海藻酸鹽 5 2.2.1海藻酸鹽簡介 5 2.2.2海藻酸鹽結構 6 2.2.3海藻酸鹽應用 7 2.3多精胺酸-聚天門冬胺酸 8 2.3.1多精胺酸-聚天門冬胺酸簡介 8 2.3.2多精胺酸-聚天門冬胺酸結構 9 2.3.3多精胺酸-聚天門冬胺酸應用 11 2.4碳酸鈣微粒 11 2.4.1碳酸鈣微粒簡介 11 2.4.2碳酸鈣微粒應用 12 第三章 實驗方法與步驟 14 3.1 實驗藥品 14 3.2 實驗儀器 15 3.3藥品配置 17 3.3.1菌株培養 17 3.3.2 SDS-PAGE 19 3.3.3 非水溶性藍藻蛋白與海藻酸鹽共聚反應溶液 20 3.3.4 細胞培養 20 3.4實驗流程圖 23 3.5實驗步驟 24 3.5.1 菌株培養 24 3.5.2 純化藍藻蛋白 25 3.5.3 SDS-PAGE 27 3.5.4 培養纖維母細胞L929 28 3.5.5 製備非水溶性藍藻蛋白/海藻酸鹽複合水凝膠 29 3.5.6 非水溶性藍藻蛋白/海藻酸鹽複合水凝膠特性分析 31 3.5.7 製備碳酸鈣微粒 34 3.5.8 纖維母細胞L929於水凝膠生長校正曲線 34 3.5.9 纖維母細胞L929於水凝膠生長情形 35 3.5.10 纖維母細胞L929遷移測試 35 第四章 結果與討論 37 4.1非水溶性藍藻蛋白組成分析 37 4.1.1 SDS-PAGE鑑定非水溶性藍藻蛋白分子量 37 4.1.2高效液相層析(HPLC)分析非水溶性藍藻蛋白之胺基酸組成 38 4.2製備非水溶性藍藻蛋白/海藻酸鹽複合水凝膠 39 4.2.1海藻酸鹽/非水溶性藍藻蛋白複合水凝膠中非水溶性藍藻蛋白含量測定 39 4.2.2以掃描式電子顯微鏡(SEM)觀察複合水凝膠的表面型態與橫切面型態 41 4.3非水溶性藍藻蛋白/海藻酸複合水凝膠特性分析 46 4.3.1非水溶性藍藻蛋白/海藻酸複合水凝膠FTIR分析 46 4.3.2 非水溶性藍藻蛋白/海藻酸複合水凝膠之拉伸特性 49 4.3.3 非水溶性藍藻蛋白/海藻酸鹽複合水凝膠之壓縮特性 50 4.3.4 非水溶性藍藻蛋白/海藻酸鹽複合水凝膠之含水率測試 52 4.4纖維母細胞L929於非水溶性藍藻蛋白/海藻酸複合水凝膠生長情形 53 4.4.1 纖維母細胞L929於非水溶性藍藻蛋白/海藻酸鹽複合水凝膠上之生長校正曲線 53 4.4.2 纖維母細胞L929於非水溶性藍藻蛋白/海藻酸鹽複合水凝膠上之細胞生長測試 54 4.4.3 纖維母細胞L929於非水溶性藍藻蛋白/海藻酸鹽複合水凝膠上之細胞遷移測試 56 第五章 結論與未來展望 59 附錄 61 附錄一 CELL MIAGRATION 61 參考文獻 65

1. Ahmed Enas M, Hydrogel: Preparation, characterization, and applications: a review, Journal of Advanced Research, 2015, 6 P.105-121
2. Winter George D, Formation of the scab and the rate of epithelization of superficial wounds in the skin of the young domestic pig, Nature 1962,193, P. 293-294
3. Balassa L. L. and Prudden J. F., Applications of chitin and chitosan in wound-healing acceleration, Proceedings of the first international conference on chitin/chitosan, Massachusetts Institute of Technology, Cambridge, MA, 1978.
4. Biao Chen, Shuangquan Wu, Qifa Ye, Fabrication and characterization of biodegradable KH560 crosslinked chitin hydrogels with high toughness and good biocompatibility, Carbohydrate Polymers, 2021, 259 P.117707
5. Yuxin He, Yang Li, Yadong Sun, Shijia Zhao, Miao Feng, Guoming Xu, Haofang Zhu, Peihong Ji, Hongli Mao, Yiyan He, Zhongwei Gu, A double-network polysaccharide-based composite hydrogel for skin wound healing, Carbohydrate Polymers, 2021, 261 P.117870
6. Allan S. Hoffman, Hydrogels for biomedical applications, Advanced Drug Delivery Reviews, 2012, 64 P.18-23.
7. Amos Nussinovitch, Alginates in hydrocolloid applications, Springer, 1997, Boston, MA.
8. Leonel Pereira and João Cotas. Introductory Chapter: Alginates - a general overview, Alginates - recent uses of this natural polymer, Leonel pereira, Intech Open, 2020, 5
9. Kuen Yong Lee, David J. Mooney, Alginate: Properties and biomedical applications, Progress in Polymer Science, 2012, 37 P. 106-126
10. Georgia Kaklamani, David Cheneler, Liam M. Grover, Michael J. Adams, James Bowen, Mechanical properties of alginate hydrogels manufactured using external gelation, Journal of the Mechanical Behavior of Biomedical Materials, 2014, 36 P. 135-142
11. Cheong Hian Goh, Paul Wan Sia Heng, Lai Wah Chan, Alginates as a useful natural polymer for microencapsulation and therapeutic applications, Carbohydrate Polymers, 2012, 88 P. 1-12
12. Pawel Sikorski, Frode Mo, Gudmund Skjåk-Bræk, and Bjørn T. Stokke, Evidence for egg-box-compatible interactions in calcium−alginate gels from fiber x-ray diffraction, Biomacromolecules, 2007, 8 P. 2098-2103
13. Tingting Hong, Yao Zhang, Dan Xu, Fengfeng Wu, Xueming Xu, Effect of sodium alginate on the quality of highland barley fortified wheat noodles, LWT- Food Science and Technology, 2021, 140, P.110719
14. Jayachandran Venkatesan, Ira Bhatnagar, Panchanathan Manivasagan, Kyong-Hwa Kang, Se-Kwon Kim, Alginate composites for bone tissue engineering: A review, International Journal of Biological Macromolecules, 2015, 72, P. 269-281
15. Pallavi Shyam Kaparekar, Nidhi Poddar, Suresh Kumar Anandasadagopan, Fabrication and characterization of Chrysin – A plant polyphenol loaded alginate -chitosan composite for wound healing application, Colloids and surfaces B: Biointerfaces, 2021, 206, 111922
16. Baljit Singh, Jasvir Singh, Rajneesh,Application of tragacanth gum and alginate in hydrogel wound dressing's formation using gamma radiation, Carbohydrate Polymer Technologies and Applications, 2021, 2, 100058
17. Borzi A., Le comunicazioni intracellulari delle Nostochinee, Malpighia, 1887, 1, P.28-74.
18. Koop A., Voss, I., Thesing, A., Kohl, H., Reichelt, R., & Steinbüchel, A., Identification and localization of cyanophycin in bacteria cells via imaging of the nitrogen distribution using energy-filtering transmission electron microscopy. Biomacromolecules, 2007, 8 P. 2675-2683
19. Könst Paul Mathijs, 2011, Production of nitrogen containing chemicals from cyanophycin, (Doctoral dissertation, Wageningen University)
20. Mackerras, Alison H., Nola M. de Chazal, and Geoffrey D. Smith., Transient accumulations of cyanophycin in Anabaena cylindrica and Synechocystis 6308. Journal of General Microbiology, 1990, 136 P. 2057-2065
21. Obst, Martin, and Alexander Steinbüchel. Cyanophycin-an ideal bacterial nitrogen storage material with unique chemical properties. Inclusions in prokaryotes. Springer, Berlin, Heidelberg, 2006, P.167-193.
22. Nikita A. Khlystov, Wui Yarn Chan, Aditya M. Kunjapur, Weichao Shi, Kristala L.J. Prather, Bradley D. Olsen, Material properties of the cyanobacterial reserve polymer multi-L-arginyl-poly-L -aspartate (cyanophycin), Polymer, 2017, 109 P. 238-245
23. Wen-Chi Tseng, Tsuei-Yun Fang, Sheng-Yang Chen,Cellular biocompatibility of cyanophycin substratum prepared with recombinant Escherichia coli, Biochemical Engineering Journal, 2016, 105 P. 97-106
24. Wen-Chi Tseng, Tsuei-Yun Fang, Yuan-Chieh Hsieh, Chien-Yu Chen, Meng-Che Li,Solubility and thermal response of fractionated cyanophycin prepared with recombinant Escherichia coli, Journal of Biotechnology, 2017, 249 P. 59-65
25. Wen-Chi Tseng, Tsuei-Yun Fang, Kai-Chun Chang, Chorng-Liang Pan, Expression of Synechocystis sp. PCC6803 cyanophycin synthetase in Lactococcus lactis nisin-controlled gene expression system (NICE) and cyanophycin production, Biochemical Engineering Journal, 2013, 78 P. 114-119
26. Verma, Madan Lal, Microbial biosynthesis of biopolymers and applications in the biopharmaceutical, biomedical and food industries. BEATS 2010: Proceedings of the 2010 international conference on biomedical engineering and assistive technologies, Jalandhar, India. BEATS, 2010.
27. Hans Mooibroek, Nico Oosterhuis, Marco Giuseppin, Marcel Toonen, Henk Franssen, Elinor Scott, Johan Sanders & Alexander Steinbüchel, Assessment of technological options and economic feasibility for cyanophycin biopolymer and high-value amino acid production, Applied Microbiology and Biotechnology, 2007, 77 P. 257-267
28. Aravind J., Saranya T., Sudha G., Kanmani P, A mini review on cyanophycin: production, analysis and its applications, Environmental Science and Engineering, Springer, Cham, 2016
29. Sallam A., Steinbüchel A., Dipeptides in nutrition and therapy: cyanophycin-derived dipeptides as natural alternatives and their biotechnological production, Applied and Environmental Microbiology, 2010, 87 P.815-828
30. Sallam A., Kast A., Przybilla S., Meiswinkel T., & Steinbüchel A, Biotechnological process for production of β-Dipeptides from cyanophycin on a technical scale and its optimization, Applied and Environmental Microbiology, 2009, 75 P.29-38
31. Boyjoo, Yash, Vishnu K. Pareek, and Jian Liu, Synthesis of micro and nano-sized calcium carbonate particles and their applications, Journal of Materials Chemistry A, 2014, 2.35 P.14270-14288
32. Dmitry V. Volodkin, Natalia I. Larionova, and Gleb B. Sukhorukov , Protein encapsulation via porous CaCO3 microparticles templating, Biomacromolecules, 2004, 5 P.1962-1972
33. Parakhonskiy, Bogdan V., Albrecht Haase, and Renzo Antolini, Sub‐micrometer vaterite containers: synthesis, substance loading, and release, Angewandte Chemie, 2012,124.5 P.1221-1223
34. Yulia Svenskaya, Bogdan Parakhonskiy, Albrecht Haase, Vsevolod Atkin, Evgeny Lukyanets, Dmitry Gorin, Renzo Antolini, Anticancer drug delivery system based on calcium carbonate particles loaded with a photosensitizer, Biophysical Chemistry, 2013, 182 P. 11-15
35. Anita Lucas-Girot, Marie-Clémence Verdier, Olivier Tribut,Jean-Christophe Sangleboeuf, Hervé Allain, Hassane Oudadesse, Gentamicin-loaded calcium carbonate materials: comparison of two drug-loading modes. J Biomed Mater Res B Appl Biomater, 2005, 73, P.164-70.
36. Dmitry V. Volodkin, Natalia I. Larionova, Gleb B. Sukhorukov, Protein encapsulation via porous CaCO3 microparticles templating, Biomacromolecules, 2004, 5 P.1962-72.
37. Suppes G. J., Bockwinkel K., Lucas S., Botts J. B., Mason M. H., & Heppert J. A., Calcium carbonate catalyzed alcoholysis of fats and oils, Journal of the American Oil Chemists, Society, 2001, 78 P. 139-146.
38. Dan Shan, Yanna Wang, Huaiguo Xue, Serge Cosnier, Sensitive and selective xanthine amperometric sensors based on calcium carbonate nanoparticles, Sensors and Actuators B: Chemical, 136, 2009, P. 510-515,
39. Nicholas H. Florin and Andrew T. Harris, Preparation and characterization of a tailored carbon dioxide sorbent for enhanced hydrogen synthesis in biomass gasifiers, Industrial & Engineering Chemistry Research, 2008, 47, P. 2191-2202
40. El-Sheikh S. M., El-Sherbiny S., Barhoum A., & Deng Y. Deng, Effects of cationic surfactant during the precipitation of calcium carbonate nano-particles on their size, morphology, and other characteristics, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 422, P. 44-49
41. Christian W. Scharenberg, Michael A. Harkey, Beverly Torok-Storb, The ABCG2 transporter is an efficient Hoechst 33342 efflux pump and is preferentially expressed by immature human hematopoietic progenitors, 2002, 99 P. 507–512
42. Lampugnani, Maria Grazia. Cell migration into a wounded area in vitro. Methods in Molecular Biology, 1999, 96 P. 177-82.

無法下載圖示 全文公開日期 2031/10/12 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE