簡易檢索 / 詳目顯示

研究生: 林珈君
Chia-Chun Lin
論文名稱: 利用微波輻射方式製備高性能高分子電晶體
The Fabrication of High-performance Polymer Transistors through Microwave Irradiation Method
指導教授: 邱昱誠
Yu-Cheng Chiu
口試委員: 莊偉綜
Wei-Tsung Chuang
王建隆
Chien-Lung Wang
陳志堅
Jyh-Chien Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 84
中文關鍵詞: 有機共軛高分子溶液處理微波輻射載子遷移率
外文關鍵詞: conjugated polymer, semiconductor, microwave irradiation, carrier mobility
相關次數: 點閱:323下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

相較於無機材料,有機半導體的可溶性使得製程上可以大幅的簡化,能透過溶液塗佈法取得薄膜,如 旋轉塗佈、噴墨塗佈等。然而有機共軛高分子的溶解度並不好,由於其線性長鏈的結構,使高分子 高分子的作用力比高分子 溶劑分子的作用力強,溶劑不易溶脹高分子鏈,在溶液狀態裡,高分子鏈長呈現糾纏且聚集的構型。
目前的文獻中,透過改變溶劑,並選擇該高分子的good solvent,可以溶脹高分子鏈使其延展開,然而如果good solvent是高沸點溶劑,在塗佈的過程會發生去濕現象,因此無法在溶液與薄膜狀態達到平衡。Elsa Reichmanis教授使用外部刺激的方式,將高分子溶液進行超音波震盪,卻未看見高分子鏈展開的光譜現象。
因此我們將微波爐的原理帶到研究中,微波中受到變動的電場旋轉極性溶劑分子,能夠解開糾纏聚集的高分子鏈。透過建立實時(in-situ) 系統與光譜結合,使用了UV 吸收光譜、螢光光譜以及小角度X-ray 散射,分析高分子構型的變化。由於微波輻射會提高溫度是無法避免的,因此水浴加熱做為對照組,並排除了溫度效應。接著進行原子力顯微鏡及廣角X-ray散射的量測,觀察高分子薄膜型態及結晶,不僅結晶度增加,更多精細的纖維結構亦形成。這些結構的優點反映在電性量測上,僅需要數秒的輻射,就可以優化高分子的載子遷移率數倍,若與噴墨塗佈法結合,達到連續化的製程,則將大幅提升有機共軛高分子的潛力。


Compared to inorganic materials, the solubility of organic semiconductors enables a greatly simplified manufacturing process, where thin films can be obtained through solution deposition methods such as spin-coating and inkjet printing. However, the poor solubility of organic conjugated polymers, due to their linear chain structure, results in stronger polymer-polymer interactions than polymer-solvent interactions, making it difficult for solvents to swell and disperse the polymer chains. As a result, in solution, the polymer chains tend to become entangled and aggregate.
In previous studies, the use of good solvents for the polymer has been shown to swell and extend the polymer chains. However, if the good solvent is a high-boiling point solvent, the dewetting phenomenon occurs during the coating process, making it difficult to achieve equilibrium between the solution and the film state. Professor Elsa Reichmanis used external stimuli to vibrate the polymer solution with ultrasound, but no spectral phenomenon indicating chain extension was observed.
This study investigates the use of microwave radiation as a novel method for manipulating polymer solutions and optimizing the performance of polymer thin films. By analyzing changes in polymer configuration and morphology using spectroscopic and scattering techniques, we found that microwave radiation is capable of disrupting clusters, resulting in increased solubility and improved crystallinity. The resulting fine fibrous structures in the polymer film leads to an increase in carrier mobility, enhancing the potential of organic conjugated polymers. Compared to conventional heating, the microwave method is faster and more effective, making it a promising commercial application. Real-time (in-situ) systems combined with spectroscopy provide a deeper understanding of the mechanism of microwave radiation, and can further optimize the conditions for using microwaves.

Abstract i 中文摘要 iii Contents iv Figure Captions vi Table Captions x Chapter 1 Introduction 1 1.1 Organic Conjugated polymer 2 1.2 Organic Field-Effect transistors (OFETs) 4 1.3 Literature review 8 1.3.1 Adjustment of polymer structure 8 1.3.2 Solvent effect 10 1.3.3 pre-treatment in solution 12 1.3.4 The relation between solution and thin-film state 15 1.3.5 Post-thermal treatment 18 1.4 Motivation 22 1.4.1 Microwave mechanism 22 1.4.2 Research strategy and experimental design 25 Chapter 2 Experimental section 27 2.1 Materials 27 2.2 Characterization 27 2.2.1 UV-vis absorption and fluorescence spectrophotometer 27 2.2.2 Small angle X-ray scattering (SAXS) 29 2.2.3 In-situ microwave system 30 2.2.4 Atomic force microscopy (AFM) 33 2.2.5 Grazing incident wide angle X-ray scattering (GIWAXS) 35 2.2.6 Electronic properties 38 2.3 Device Fabrication 38 Chapter 3 Research discussion 40 3.1 Introduction 40 3.2 Optical result of solution state 41 3.2.1 UV-vis absorption spectrophotometry 41 3.2.2 photoluminescence (PL) spectrophotometry 45 3.2.3 Small angle X-ray scattering (SAXS) 47 3.3 Microstructure analysis of thin-film state 55 3.3.1 Atomic force microscopy (AFM) 55 3.3.2 Grazing incident wide angle X-ray scattering (GIWAXS) 56 3.4 Electrical test 59 Chapter 4 Conclusion and Future work 62 Reference 63

[1] Shirakawa, H.; Louis, E. J.; MacDiarmid, A. G.; Chiang, C. K.; Heeger, A. J. Synthesis of Electrically Conducting Organic Polymers: Halogen Derivatives of Polyacetylene, (Ch). Journal of the Chemical Society, Chemical Communications 1977, 10.1039/C39770000578 (16), 578-580, 10.1039/C39770000578.
[2] Liu, K.; Ouyang, B.; Guo, X.; Guo, Y.; Liu, Y. Advances in Flexible Organic Field-Effect Transistors and Their Applications for Flexible Electronics. npj Flexible Electronics 2022, 6 (1).
[3] Dodabalapur, A. Organic and Polymer Transistors for Electronics. Materials Today 2006, 9 (4), 24-30.
[4] Chen, Y.; Au, J.; Kazlas, P.; Ritenour, A.; Gates, H.; McCreary, M. Flexible Active-Matrix Electronic Ink Display. Nature 2003, 423 (6936), 136-136.
[5] Singh, M.; Haverinen, H. M.; Dhagat, P.; Jabbour, G. E. Inkjet Printing—Process and Its Applications. Advanced Materials 2010, 22 (6), 673-685, https://doi.org/10.1002/adma.200901141.
[6] Chung, S.; Cho, K.; Lee, T. Recent Progress in Inkjet-Printed Thin-Film Transistors. Advanced Science 2019, 6 (6), 1801445, https://doi.org/10.1002/advs.201801445.
[7] Yao, Z.-F.; Wang, J.-Y.; Pei, J. Controlling Morphology and Microstructure of Conjugated Polymers via Solution-State Aggregation. Progress in Polymer Science 2023, 136, 101626.
[8] Chua, L.-L.; Zaumseil, J.; Chang, J.-F.; Ou, E. C. W.; Ho, P. K. H.; Sirringhaus, H.; Friend, R. H. General Observation of N-Type Field-Effect Behaviour in Organic Semiconductors. Nature 2005, 434 (7030), 194-199.
[9] Di, C.-a.; Liu, Y.; Yu, G.; Zhu, D. Interface Engineering: An Effective Approach toward High-Performance Organic Field-Effect Transistors. Accounts of Chemical Research 2009, 42 (10), 1573-1583.
[10] Zaumseil, J.; Sirringhaus, H. Electron and Ambipolar Transport in Organic Field-Effect Transistors. Chemical Reviews 2007, 107 (4), 1296-1323.
[11] Bijleveld, J. C.; Zoombelt, A. P.; Mathijssen, S. G. J.; Wienk, M. M.; Turbiez, M.; de Leeuw, D. M.; Janssen, R. A. J. Poly(diketopyrrolopyrrole−terthiophene) for Ambipolar Logic and Photovoltaics. Journal of the American Chemical Society 2009, 131 (46), 16616-16617.
[12] Yiu, A. T.; Beaujuge, P. M.; Lee, O. P.; Woo, C. H.; Toney, M. F.; Fréchet, J. M. J. Side-Chain Tunability of Furan-Containing Low-Band-Gap Polymers Provides Control of Structural Order in Efficient Solar Cells. Journal of the American Chemical Society 2012, 134 (4), 2180-2185.
[13] Mei, J.; Kim, D. H.; Ayzner, A. L.; Toney, M. F.; Bao, Z. Siloxane-Terminated Solubilizing Side Chains: Bringing Conjugated Polymer Backbones Closer and Boosting Hole Mobilities in Thin-Film Transistors. Journal of the American Chemical Society 2011, 133 (50), 20130-20133.
[14] Mei, J.; Bao, Z. Side Chain Engineering in Solution-Processable Conjugated Polymers. Chemistry of Materials 2014, 26 (1), 604-615.
[15] Yun, H.-J.; Lee, G. B.; Chung, D. S.; Kim, Y.-H.; Kwon, S.-K. Novel Diketopyrroloppyrrole Random Copolymers: High Charge-Carrier Mobility from Environmentally Benign Processing. Advanced Materials 2014, 26 (38), 6612-6616, https://doi.org/10.1002/adma.201400877.
[16] Son, S. Y.; Kim, Y.; Lee, J.; Lee, G.-Y.; Park, W.-T.; Noh, Y.-Y.; Park, C. E.; Park, T. High-Field-Effect Mobility of Low-Crystallinity Conjugated Polymers with Localized Aggregates. Journal of the American Chemical Society 2016, 138 (26), 8096-8103.
[17] Choi, H. H.; Baek, J. Y.; Song, E.; Kang, B.; Cho, K.; Kwon, S.-K.; Kim, Y.-H. A Pseudo-Regular Alternating Conjugated Copolymer Using an Asymmetric Monomer: A High-Mobility Organic Transistor in Nonchlorinated Solvents. Advanced Materials 2015, 27 (24), 3626-3631, https://doi.org/10.1002/adma.201500335.
[18] Ji, Y.; Xiao, C.; Wang, Q.; Zhang, J.; Li, C.; Wu, Y.; Wei, Z.; Zhan, X.; Hu, W.; Wang, Z.; et al. Asymmetric Diketopyrrolopyrrole Conjugated Polymers for Field-Effect Transistors and Polymer Solar Cells Processed from a Nonchlorinated Solvent. Advanced Materials 2016, 28 (5), 943-950, https://doi.org/10.1002/adma.201504272.
[19] Wakioka, M.; Kitano, Y.; Ozawa, F. A Highly Efficient Catalytic System for Polycondensation of 2,7-Dibromo-9,9-dioctylfluorene and 1,2,4,5-Tetrafluorobenzene via Direct Arylation. Macromolecules 2013, 46 (2), 370-374.
[20] Piliego, C.; Holcombe, T. W.; Douglas, J. D.; Woo, C. H.; Beaujuge, P. M.; Fréchet, J. M. J. Synthetic Control of Structural Order in N-Alkylthieno[3,4-c]pyrrole-4,6-dione-Based Polymers for Efficient Solar Cells. Journal of the American Chemical Society 2010, 132 (22), 7595-7597.
[21] Yang, L.; Zhou, H.; You, W. Quantitatively Analyzing the Influence of Side Chains on Photovoltaic Properties of Polymer−Fullerene Solar Cells. The Journal of Physical Chemistry C 2010, 114 (39), 16793-16800.
[22] Zhao, K.; Khan, H. U.; Li, R.; Su, Y.; Amassian, A. Entanglement of Conjugated Polymer Chains Influences Molecular Self-Assembly and Carrier Transport. Advanced Functional Materials 2013, 23 (48), 6024-6035, https://doi.org/10.1002/adfm.201301007.
[23] Zhao, K.; Zhang, T.; Zhang, L.; Li, J.; Li, H.; Wu, F.; Chen, Y.; Zhang, Q.; Han, Y. Role of Molecular Weight in Microstructural Transition and Its Correlation to the Mechanical and Electrical Properties of P(NDI2OD-T2) Thin Films. Macromolecules 2021, 54 (21), 10203-10215.
[24] Koch, F. P. V.; Rivnay, J.; Foster, S.; Müller, C.; Downing, J. M.; Buchaca-Domingo, E.; Westacott, P.; Yu, L.; Yuan, M.; Baklar, M.; et al. The Impact of Molecular Weight on Microstructure and Charge Transport in Semicrystalline Polymer Semiconductors–Poly(3-Hexylthiophene), a Model Study. Progress in Polymer Science 2013, 38 (12), 1978-1989.
[25] Graessley, W. W.; Edwards, S. F. Entanglement Interactions in Polymers and the Chain Contour Concentration. Polymer 1981, 22 (10), 1329-1334.
[26] Steyrleuthner, R.; Schubert, M.; Howard, I.; Klaumünzer, B.; Schilling, K.; Chen, Z.; Saalfrank, P.; Laquai, F.; Facchetti, A.; Neher, D. Aggregation in a High-Mobility n-Type Low-Bandgap Copolymer with Implications on Semicrystalline Morphology. Journal of the American Chemical Society 2012, 134 (44), 18303-18317.
[27] Gross, Y. M.; Ludwigs, S. P(NDI2OD-T2) Revisited – Aggregation Control as Key for High Performance N-Type Applications. Synthetic Metals 2019, 253, 73-87.
[28] Aiyar, A. R.; Hong, J.-I.; Nambiar, R.; Collard, D. M.; Reichmanis, E. Tunable Crystallinity in Regioregular Poly(3-Hexylthiophene) Thin Films and Its Impact on Field Effect Mobility. Advanced Functional Materials 2011, 21 (14), 2652-2659.
[29] Kim, B.-G.; Kim, M.-S.; Kim, J. Ultrasonic-Assisted Nanodimensional Self-Assembly of Poly-3-Hexylthiophene for Organic Photovoltaic Cells. ACS Nano 2010, 4 (4), 2160-2166.
[30] Chang, M.; Lee, J.; Chu, P. H.; Choi, D.; Park, B.; Reichmanis, E. Anisotropic Assembly of Conjugated Polymer Nanocrystallites for Enhanced Charge Transport. ACS Appl Mater Interfaces 2014, 6 (23), 21541-21549.
[31] Chang, M.; Lim, G. T.; Park, B.; Reichmanis, E. Control of Molecular Ordering, Alignment, and Charge Transport in Solution-Processed Conjugated Polymer Thin Films. In Polymers, 2017; Vol. 9.
[32] Chang, M.; Choi, D.; Fu, B.; Reichmanis, E. Solvent Based Hydrogen Bonding: Impact on Poly(3-Hexylthiophene) Nanoscale Morphology and Charge Transport Characteristics. ACS Nano 2013, 7 (6), 5402-5413.
[33] Park, Y. D.; Lee, H. S.; Choi, Y. J.; Kwak, D.; Cho, J. H.; Lee, S.; Cho, K. Solubility-Induced Ordered Polythiophene Precursors for High-Performance Organic Thin-Film Transistors. Advanced Functional Materials 2009, 19 (8), 1200-1206, https://doi.org/10.1002/adfm.200801763.
[34] Chang, J.-F.; Sun, B.; Breiby, D. W.; Nielsen, M. M.; Sölling, T. I.; Giles, M.; McCulloch, I.; Sirringhaus, H. Enhanced Mobility of Poly(3-Hexylthiophene) Transistors by Spin-Coating from High-Boiling-Point Solvents. Chemistry of Materials 2004, 16 (23), 4772-4776.
[35] Kleinhenz, N.; Rosu, C.; Chatterjee, S.; Chang, M.; Nayani, K.; Xue, Z.; Kim, E.; Middlebrooks, J.; Russo, P. S.; Park, J. O.; et al. Liquid Crystalline Poly(3-Hexylthiophene) Solutions Revisited: Role of Time-Dependent Self-Assembly. Chemistry of Materials 2015, 27 (7), 2687-2694.
[36] Kao, K.-Y.; Lo, S.-C.; Chen, H.-L.; Chen, J.-H.; Chen, S.-A. Gelation of a Solution of Poly(3-Hexylthiophene) Greatly Retards Its Crystallization Rate in the Subsequently Cast Film. The Journal of Physical Chemistry B 2014, 118 (49), 14510-14518.
[37] Kim, B.-G.; Jeong, E. J.; Chung, J. W.; Seo, S.; Koo, B.; Kim, J. A Molecular Design Principle of Lyotropic Liquid-Crystalline Conjugated Polymers with Directed Alignment Capability for Plastic Electronics. Nature Materials 2013, 12 (7), 659-664.
[38] Mei, J.; Diao, Y.; Appleton, A. L.; Fang, L.; Bao, Z. Integrated Materials Design of Organic Semiconductors for Field-Effect Transistors. Journal of the American Chemical Society 2013, 135 (18), 6724-6746.
[39] Diao, Y.; Shaw, L.; Bao, Z.; Mannsfeld, S. C. B. Morphology Control Strategies for Solution-Processed Organic Semiconductor Thin Films. Energy & Environmental Science 2014, 7 (7), 2145-2159, 10.1039/C4EE00688G.
[40] Kim, Y.; Cook, S.; Tuladhar, S. M.; Choulis, S. A.; Nelson, J.; Durrant, J. R.; Bradley, D. D. C.; Giles, M.; McCulloch, I.; Ha, C.-S.; et al. A Strong Regioregularity Effect in Self-Organizing Conjugated Polymer Films and High-Efficiency Polythiophene:Fullerene Solar Cells. Nature Materials 2006, 5 (3), 197-203.
[41] Zen, A.; Pflaum, J.; Hirschmann, S.; Zhuang, W.; Jaiser, F.; Asawapirom, U.; Rabe, J. P.; Scherf, U.; Neher, D. Effect of Molecular Weight and Annealing of Poly(3-Hexylthiophene)S on the Performance of Organic Field-Effect Transistors. Advanced Functional Materials 2004, 14 (8), 757-764, https://doi.org/10.1002/adfm.200400017.
[42] Jimison, L. H.; Salleo, A.; Chabinyc, M. L.; Bernstein, D. P.; Toney, M. F. Correlating the Microstructure of Thin Films of Poly[5,5-Bis(3-Dodecyl-2-Thienyl)-2,2-Bithiophene] with Charge Transport: Effect of Dielectric Surface Energy and Thermal Annealing. Physical Review B 2008, 78 (12), 125319.
[43] Cho, S.; Lee, K.; Yuen, J.; Wang, G.; Moses, D.; Heeger, A. J.; Surin, M.; Lazzaroni, R. Thermal Annealing-Induced Enhancement of the Field-Effect Mobility of Regioregular Poly(3-Hexylthiophene) Films. Journal of Applied Physics 2006, 100 (11), 114503.
[44] Ko, C. J.; Lin, Y. K.; Chen, F. C. Microwave Annealing of Polymer Photovoltaic Devices. Advanced Materials 2007, 19 (21), 3520-3523.
[45] Zhang, X.; Harris, K. D.; Wu, N. L. Y.; Murphy, J. N.; Buriak, J. M. Fast Assembly of Ordered Block Copolymer Nanostructures through Microwave Annealing. ACS Nano 2010, 4 (11), 7021-7029.
[46] Shang, X.; Yu, H.; Choi, W.; Lee, E. K.; Oh, J. H. Effects of Microwave-Assisted Annealing on the Morphology and Electrical Performance of Semiconducting Polymer Thin Films. Organic Electronics 2016, 30, 207-212.
[47] Soares, B. G.; Barra, G. M. O.; Indrusiak, T. Conducting Polymeric Composites Based on Intrinsically Conducting Polymers as Electromagnetic Interference Shielding/Microwave Absorbing Materials—a Review. Journal of Composites Science 2021, 5 (7).
[48] Mishra, R. R.; Sharma, A. K. Microwave–Material Interaction Phenomena: Heating Mechanisms, Challenges and Opportunities in Material Processing. Composites Part A: Applied Science and Manufacturing 2016, 81, 78-97.
[49] Kim, T.; Lee, J.; Lee, K.-H. Microwave Heating of Carbon-Based Solid Materials. Carbon letters 2014, 15 (1), 15-24.
[50] 若海依. 利⽤微波提升半導體⾼分⼦型態與電晶體特性. 國立臺灣科技大學, 台北市, 2020. https://hdl.handle.net/11296/67xp6r.
[51] Rivnay, J.; Mannsfeld, S. C. B.; Miller, C. E.; Salleo, A.; Toney, M. F. Quantitative Determination of Organic Semiconductor Microstructure from the Molecular to Device Scale. Chemical Reviews 2012, 112 (10), 5488-5519.
[52] Li, T.; Senesi, A. J.; Lee, B. Small Angle X-Ray Scattering for Nanoparticle Research. Chemical Reviews 2016, 116 (18), 11128-11180.
[53] Cao, Z.; Li, Z.; Zhang, S.; Galuska, L.; Li, T.; Do, C.; Xia, W.; Hong, K.; Gu, X. Decoupling Poly(3-Alkylthiophenes)’ Backbone and Side-Chain Conformation by Selective Deuteration and Neutron Scattering. Macromolecules 2020, 53 (24), 11142-11152.
[54] Hinterdorfer, P.; Dufrêne, Y. F. Detection and Localization of Single Molecular Recognition Events Using Atomic Force Microscopy. Nature Methods 2006, 3 (5), 347-355.
[55] Shahbazian-Yassar, R. Atomic Force Microscopy (Afm). In Encyclopedia of Tribology, Wang, Q. J., Chung, Y.-W. Eds., 10.1007/978-0-387-92897-5_1213Springer US, 2013; pp 129-133.
[56] Su, Y.-W.; Lin, Y.-C.; Wei, K.-H. Evolving Molecular Architectures of Donor–Acceptor Conjugated Polymers for Photovoltaic Applications: From One-Dimensional to Branched to Two-Dimensional Structures. Journal of Materials Chemistry A 2017, 5 (46), 24051-24075, 10.1039/C7TA07228G.
[57] Ito, Y.; Virkar, A. A.; Mannsfeld, S.; Oh, J. H.; Toney, M.; Locklin, J.; Bao, Z. Crystalline Ultrasmooth Self-Assembled Monolayers of Alkylsilanes for Organic Field-Effect Transistors. Journal of the American Chemical Society 2009, 131 (26), 9396-9404.
[58] Kline, R. J.; McGehee, M. D.; Kadnikova, E. N.; Liu, J.; Fréchet, J. M. J.; Toney, M. F. Dependence of Regioregular Poly(3-Hexylthiophene) Film Morphology and Field-Effect Mobility on Molecular Weight. Macromolecules 2005, 38 (8), 3312-3319.
[59] Koppe, M.; Brabec, C. J.; Heiml, S.; Schausberger, A.; Duffy, W.; Heeney, M.; McCulloch, I. Influence of Molecular Weight Distribution on the Gelation of P3HT and Its Impact on the Photovoltaic Performance. Macromolecules 2009, 42 (13), 4661-4666.
[60] Yao, Z.-F.; Wang, Z.-Y.; Wu, H.-T.; Lu, Y.; Li, Q.-Y.; Zou, L.; Wang, J.-Y.; Pei, J. Ordered Solid-State Microstructures of Conjugated Polymers Arising from Solution-State Aggregation. Angewandte Chemie International Edition 2020, 59 (40), 17467-17471, https://doi.org/10.1002/anie.202007589.
[61] Nahid, M. M.; Welford, A.; Gann, E.; Thomsen, L.; Sharma, K. P.; McNeill, C. R. Nature and Extent of Solution Aggregation Determines the Performance of P(Ndi2od‐T2) Thin‐Film Transistors. Advanced Electronic Materials 2018, 4 (4).
[62] Chen, C.-Y.; Chan, S.-H.; Li, J.-Y.; Wu, K.-H.; Chen, H.-L.; Chen, J.-H.; Huang, W.-Y.; Chen, S.-A. Formation and Thermally-Induced Disruption of Nanowhiskers in Poly(3-Hexylthiophene)/Xylene Gel Studied by Small-Angle X-Ray Scattering. Macromolecules 2010, 43 (17), 7305-7311.
[63] Hore, M. J. A.; Hammouda, B.; Li, Y.; Cheng, H. Co-Nonsolvency of Poly(N-Isopropylacrylamide) in Deuterated Water/Ethanol Mixtures. Macromolecules 2013, 46 (19), 7894-7901.
[64] Nahid, M. M.; Welford, A.; Gann, E.; Thomsen, L.; Sharma, K. P.; McNeill, C. R. Nature and Extent of Solution Aggregation Determines the Performance of P(NDI2OD-T2) Thin-Film Transistors. Advanced Electronic Materials 2018, 4 (4), 1700559, https://doi.org/10.1002/aelm.201700559.
[65] Rivnay, J.; Jimison, L. H.; Northrup, J. E.; Toney, M. F.; Noriega, R.; Lu, S.; Marks, T. J.; Facchetti, A.; Salleo, A. Large Modulation of Carrier Transport by Grain-Boundary Molecular Packing and Microstructure in Organic Thin Films. Nat Mater 2009, 8 (12), 952-958.
[66] Kim, C.; Facchetti, A.; Marks, T. J. Polymer Gate Dielectric Surface Viscoelasticity Modulates Pentacene Transistor Performance. Science 2007, 318 (5847), 76-80.
[67] Majewski, L. A.; Kingsley, J. W.; Balocco, C.; Song, A. M. Influence of Processing Conditions on the Stability of Poly(3-Hexylthiophene)-Based Field-Effect Transistors. Applied Physics Letters 2006, 88 (22), 222108.

無法下載圖示 全文公開日期 2025/08/09 (校內網路)
全文公開日期 2033/08/09 (校外網路)
全文公開日期 2033/08/09 (國家圖書館:臺灣博碩士論文系統)
QR CODE