簡易檢索 / 詳目顯示

研究生: 黃紹軒
Shau-Shiuan Huang
論文名稱: 使用計算流體力學方法於缸內噴油引擎之初步設計
An CFD Approach for Preliminary Design of a GDI Engine
指導教授: 黃榮芳
Rong-Fung Huang
口試委員: 陳明志
Ming-Jyh Chern
劉昌煥
Chang-Huan LIOU
楊英芳
Ying-Fang YANG
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 214
中文關鍵詞: 缸內噴油引擎
外文關鍵詞: GDI Engine
相關次數: 點閱:220下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究利用商業套裝計算流體動力學(Computational Fluid Dynamics, CFD)軟體STAR-CD,針對一四閥單缸四行程500 c.c.引擎,在考慮不同的空氣與燃料混合型態(stratified charge、two-stage charge和homogeneous charge)下,設計噴油嘴安裝位置與傾角,並根據燃油濃度分佈與缸內平均SMD,判斷出較佳的噴油嘴安裝位置與傾角設計,之後針對較佳的噴油嘴安裝位置與傾角設計,探討在有無燃油噴射的狀況下,於進氣和壓縮行程期間缸內氣流繞著缸徑軸上的滾轉運動以及缸內燃油噴射之噴霧流場與氣流運動之交互作用,並藉由速度向量場與體平均渦度滾轉比的關係進一步了解燃油噴射對流場的影響。而缸內燃油噴射隨時間衍化的軌跡與氣流的交互作用將可作為設計缸內直噴引擎的重要參考。因此往後在設計缸內直喷引擎時,可藉由先行計算缸內氣流之運動與液滴霧化之衍化,並以此結果做為一重要之參考指標後,再進行引擎性能參數測試,找出最佳的噴油時間及點火參數,以減少初期設計缸內直噴引擎時所需之成本及時間。


The location of injector & spark plug and injector inclination angle for a single cylinder, four-valve, 500 c.c. displacement motorcycle engine is designed in considering different kind of fuel injection mode (stratified charge, two-stage charge and homogeneous charge) by using a commercial software package of CFD (Computational Fluid Dynamics) code — STAR-CD. Confer tumble motion of in-cylinder flow circles cylinder radius and the interaction of spray flow field and flow motion in GDI, and understand the influence for fuel injection on flow field by the relation of velocity flow field and average volume tumble ratio. The trajectory of in-cylinder fuel injection derivatives with time can be an important reference for designing GDI engine. Therefore when designing GDI engine, first calculate the motion of in-cylinder flow and the derivation of droplot spray, and using the result can be an important target, and then proceed the test of engine performance parameter to find the optimum parameter of injection timing and spark timing, then reduce time and money for the first stage to design the GDI engine.

摘要I AbstractII 致謝III 目錄IV 符號索引VII 表圖索引XI 第一章 緒論1 1.1 研究動機1 1.2 文獻回顧3 1.3 研究目的6 第二章 計算模擬模型7 2.1 計算流力軟體的簡介7 2.2 統御方程式9 2.2.1 紊流模式10 2.2.2 液滴分裂模型13 2.2.3 液滴與壁面交互作用模型15 2.3 數值方法17 2.3.1 離散化方程式17 2.3.2 PISO解法理論19 2.3.3 收斂標準 25 2.4 數值模擬26 2.4.1 計算網格26 2.4.2 邊界條件27 2.4.3 初始條件28 2.4.4 網格獨立性29 2.4.5 取像相位與座標定義29 2.4.6 物理參數定義30 第三章 未噴油之缸內流場的衍化過程34 3.1 N = 2000 & 4000 RPM,α = 25%之流場結構與衍化過程34 3.1.1 計算截面於前視方向對稱面上34 3.1.2 計算截面於前視方向對稱面位移zi = 20.5 mm37 3.1.3 計算截面於側視方向對稱面上39 3.1.4 計算截面於側視方向對稱面位移zii = 19 mm40 3.2 N = 2000 & 4000 RPM,α = 50%之流場結構與衍化過程41 3.2.1 計算截面於前視方向對稱面上41 3.2.2 計算截面於前視方向對稱面位移zi = 20.5 mm42 3.3 N = 2000 & 4000 RPM,α = 100%之流場結構與衍化過程43 3.3.1 計算截面於前視方向對稱面上43 3.3.2 計算截面於前視方向對稱面位移zi = 20.5 mm44 3.4 量化分析45 3.4.1 進氣歧管質量流率45 3.4.2 容積效率46 3.4.3 缸內平均壓力46 3.4.4 體平均渦度滾轉比47 第四章 缸內噴油模擬48 4.1 噴油嘴基本參數介紹48 4.2 噴油策略與噴油開始與結束角度設定48 4.3 噴油嘴安裝位置與傾角設計49 4.3.1 缸內液滴濃度分布分析50 4.3.2 缸內平均SMD分析50 4.3.3 結論51 4.4 缸內噴油流場與霧化特性分析52 4.4.1 與未噴油之缸內流場比較分析52 4.4.1.1 速度向量場分析52 4.4.1.2 未噴油與噴油之體平均渦度滾轉比比較分析53 4.4.1.3 結論53 4.4.2 液滴速度向量分佈分析54 4.4.3 液滴濃度分布分析56 4.4.4 缸內平均SMD分析57 4.4.5 缸內平均液滴蒸發率分析58 4.4.6 缸內平均溫度分析58 第五章 結論與建議59 5.1 結論59 5.1.1 缸內流場衍化分析59 5.1.2 缸內噴油衍化分析60 5.2 建議60 參考文獻62

[1]Mayer, H., “Air Pollution in Cities” Atmospheric Environment, Vol. 33, pp. 4029-4036 (1999).
[2]Zhao, F., Lai, M. C., and Harrington, D. L., “Automotive Spark-Ignited Direct-Injector Gasoline Engines” Progress in Energy and Combustion Science, Vol. 25, pp. 437-562 (1999).
[3]Shimotani, K., Oikawa, K., Horada, O., and Kagawa, Y., “Charavteristics of Gasoline In-Cylinder Direct Injection Engine” JSAE, Vol. 17, pp. 267-272 (1996).
[4]Wirth, M., and Schulte, H., “Downsizing and Stratified Operation:an Attractive Combustion Based on a Spray-Guided Combustion System” ICAT, Istanbul, (2006).
[5]Tomoda, T., Sasaki, S., Sawada, D., Saito, A., and Sami, H., “Development of Direct Injection Gasoline Engine-Study of Stratified Mixture Formation” Journal of Engine, SAE Transactions-Section 3, Vol. 106, SAE 970539, pp. 759-766(1997).
[6]Ohsuga, M., Shiraishi, T. Nogi, T., Nakayama, Y., and Sukegawa, Y., “Mixture Preparation for Direct-Injection SI Engine” Journal of Engine, SAE Transactions-Section 3, Vol. 106, SAE 970542, pp. 794-801 (1997).
[7]Han, Z., and Reitz, R. D., “Effects of Injection Timing on Air-Fuel Mixing in a Direct-Injection Spark-Ignition Engine” Journal of Engine, SAE Transactions-Section 3, Vol. 106, SAE 970625, pp. 848-860 (1997).
[8]趙華、何邦全,「乘用車高效低汙染動力總成技術」,內燃機學報,第二十六卷,第68-76頁 (2008)。
[9]Wang, Yan-jun, Wang, Jian-xin, and Shuai, Shijin, “Study of Injection Strategies of Two-Stage Gasoline Direct Injection (TSGDI) Combustion System” Journal of Engine, SAE Transactions-Section 3, SAE 2005-01-0107, (2005).
[10]Schwarz, Ch., Schunemann, E., and Durst, B., “Potentials of the Spary-Guided BMW DI Combustion System” Journal of Engine, SAE Transactions-Section 3, SAE 2006-01-1265, (2006).
[11]Warsi, Z. U. A., “ Conservation Form of the Navier-Stokes Equations in General Nonesteady Coordinates” AIAA Journal, Vol. 19, No 2, pp. 240-242 (1981).
[12]Auriemma, M., Caputo, G., Corcione, F. E., and Valentino, G., “Fluid-Dynamic Analysis of the Intake System for a HDDI Diesel Engine by STAR-CD Code and LDA Technique” Journal of Engines, SAE Transactions-Section 3, Vol. 112, SAE 2003-01-0002, pp. 21-28 (2003).
[13]Nonaka, Y., Horikawa, A., Nonaka, Y., Hirokawa, M., and Noda, T., “Gas Flow Simulation and Visualization in Cylinder of Motor-Cycle Engine,” Journal of Engines, SAE Transactions-Section 3, Vol. 113, SAE 2004-32-0004, pp. 1710-1714 (2004).
[14]Versteeg, H. K. and Malalasekera, W., An Introduction to Computational Fluid Dynamics-The Finite Volume Method, Addison Wesley Longman Limited, New York, (1995).
[15]解茂昭,「內燃機計算燃燒學」,大連理工大學出版社,大連,(2005).
[16]Kurniawan, W., H., Abdullah, S., and Shamsudeen, A., “A Computational Fluid Dynamics Study of Cold-Flow Analysis for Mixture Preparation in a Motored Four-Stroke Direct Injection Engine” Journal of Applied Sciences, 7(19), pp. 2710-2724 (2007).
[17]王建昕,「高效車用汽油機的技術進步」,內燃機學報,第二十六卷,第83-89頁 (2008).
[18]Toyota Direct injection 4 stroke gasline engine, TRIPOD-TECH, pp. 1-14.
[19]Nissan NEO-Di gasoline engine, TRIPOD-TECH, pp. 1-27.
[20]Jackson, N. S., Stokes, J., Whitaker, P. A., and Lake, T. H., “Stratified and Homogeneous Charge Operation for the Direct Injection Gasoline Engine – High Power with Low Fuel Consumption and Emissions” Journal of Engines, SAE Transactions-Section 3, SAE 970543.
[21]Cathcart, G., and Zavier, C., “Fundamental Characteristics of an Air-Assisted Direct Injection Combustion System as Applied to 4-Stroke Automotive Gasoline Engines” Journal of Engines, SAE Transactions-Section 3, SAE 2000-01-0256.
[22]王建昕、王志和陳虎,「2006年國際SAE年會及汽車動力系統研究進展」,汽車工程,第二十八卷,第509-515頁 (2006)。
[23]楊賀順,「平頂與凹面活塞四閥四行程引擎的缸內流場滾轉運動與紊流衍化:PIV量測技術的開發與應用」,機械工程技術研究所碩士論文,國立台灣科技大學,台北(2004)。
[24]林岱衛,「不同進氣道設計的四行程單缸引擎缸內流場與紊流特性的 PIV診測」,機械工程技術研究所碩士論文,國立台灣科技大學,台北(2004)。

QR CODE