簡易檢索 / 詳目顯示

研究生: 邱豫君
Yu-chun Chiu
論文名稱: 1015低碳鋼與304不銹鋼異質銲接之高溫氧化
High-temperature oxidation of AISI-1015 and AISI-304 dissimilar weldments
指導教授: 王朝正
Chaur-jeng Wang
口試委員: 丘群
Chiun Chiu
開物
Wu Kai
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 125
中文關鍵詞: 異質銲接高溫氧化循環氧化共晶融鹽GTAW
外文關鍵詞: Dissimilar weldments, high-temperature oxidation, thermal cycle, molten LiNO3-NaNO3-KNO3 eutectic salt, GTAW
相關次數: 點閱:317下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究以309L為銲料,利用GTAW將AISI 1015低碳鋼與AISI 304不銹鋼異質銲接,銲接件再進行600 ℃與750 ℃持溫1 ~ 240小時之高溫氧化、600 ℃ 1小時加熱1小時冷卻共85 ~ 384次之循環氧化與550 ℃之LiNO3-NaNO3-KNO3共晶融鹽250 ~ 1000小時靜滯腐蝕實驗,藉此探討銲接誘發之組織變化在高溫氧化的影響。
研究結果顯示,皮膜厚度和金屬損失量隨氧化時間之增加、溫度上升而上升,隨底材鉻含量上升而下降。HAZ晶粒粗細的改變,對高溫恆溫氧化、高溫循環氧化、LiNO3-NaNO3-KNO3共晶融鹽腐蝕沒有影響。1015低碳鋼之HAZ經高溫循環氧化後,因熱應力之影響產生片狀鐵氧化物,其面積隨著循環次數之增加而減少。


Gas tungsten arc welding was applied to join AISI 304 stainless steel and AISI 1015 low carbon steel with consumable – AISI 309L stainless steel wires. This study investigated the effect of the weldments on the high-temperature oxidation behavior. The oxidation test was performed by placement weldments at 600 ℃ and 750 ℃ for 1 ~ 240 hours. The thermal cycle oxidation of the weldments at 600 ℃ with the hold time 85 ~ 384 times was conducted. Also, the corrosion test was performed by immersing weldments in static molten LiNO3-NaNO3-KNO3 eutectic salt at 550 ℃ for 250 ~ 1000 hours.
The result shows that the weight loss and the thickness of corrosion scales of the samples were directly proportional to the corrosion time and temperature, however, were inversely proportional to the chromium content. The grain size changes were not influenced to the high temperature oxidation. The AISI 1015 was produced plate-like iron oxides, and the iron oxides area was decrease as the cycle-times was arising.

第一章 前言 1 第二章 文獻回顧 2 2.1 碳鋼及不銹鋼材料 2 2.1.1 碳鋼 2 2.1.2 不銹鋼 2 2.2 高溫氧化 4 2.2.1 氧化熱力學 4 2.2.2 氧化機構 7 2.2.3 影響高溫氧化之因素 7 2.3 高溫氧化動力學 9 2.3.1 氧化皮膜完整性 9 2.3.2 氧化動力學 11 2.3.3 氧化皮膜應力的產生 12 2.3.4 氧化皮膜破裂模式 14 2.4 合金元素對鐵基合金高溫氧化之作用 16 2.4.1 純鐵(Fe)的高溫氧化 16 2.4.2 鉻(Cr)元素的作用 19 2.4.3 鎳(Ni)元素的作用 21 2.4.4 錳(Mn)元素的作用 21 2.5 共晶融鹽腐蝕 22 2.5.1 儲熱融鹽的選擇 22 2.5.2 LiNO3-NaNO3-KNO3共晶融鹽之熱化學性質 26 2.5.3 鐵鉻合金於共晶融鹽中之腐蝕 28 2.5.3.1 NaNO3-KNO3共晶融鹽之腐蝕 28 2.5.3.2 Li2CO3-K2CO3共晶融鹽之腐蝕 29 2.5.4 不同氣氛對共晶融鹽之熱化學影響 31 2.6 銲接製程 32 2.6.1 氣體遮護鎢極電弧銲接 32 2.6.2 銲件區域之定義 33 2.6.3 銲接區域溫度差異 34 2.7 銲接件之高溫氧化 38 第三章 實驗方法 41 3.1 實驗材料 42 3.2 試片準備 42 3.3 高溫恆溫氧化試驗 43 3.4 高溫循環氧化試驗 45 3.5 融鹽腐蝕試驗 47 3.6 分析設備與方法 50 3.6.1 分析設備 50 3.6.2 分析方法 50 第四章 異質銲接之銲後組織 53 4.1 巨觀試驗 53 4.2 1015低碳鋼母材與HAZ 53 4.3 309L不銹鋼銲道與熔融區(Fusion Zone) 56 4.4 304不銹鋼母材與HAZ 56 第五章 實驗結果與討論 61 5.1 高溫恆溫氧化試驗 61 5.1.1 氧化形態外觀 61 5.1.2 金屬損失量 62 5.1.3 氧化形態與氧化產物分析 67 5.1.4 討論 82 5.2 高溫循環氧化 83 5.2.1 氧化形態外觀 83 5.2.2 重量增重 83 5.2.3 氧化形態與氧化產物分析 85 5.2.4 討論 95 5.3 融鹽腐蝕試驗 101 5.3.1 腐蝕形態外觀 101 5.3.2 金屬損失量 103 5.3.3 腐蝕型態與腐蝕產物分析 105 5.3.4 討論 115 5.4 銲接對高溫腐蝕的作用 116 第六章 結論 118 參考文獻 119

[1] R. E. Reed-Hill and R. Abbaschian, "Physical metallurgy principles," PWS-Kent, Boston, p. 5590, 1994.
[2] N. Birks, G. H. Meier, and F. S. Pettit, Introduction to the high temperature oxidation of metals, Cambridge University Press, 1983.
[3] E. T. Turkdogan, "Physical chemistry of high temperature technology," 1980
[4] 林敬二、楊美惠、楊寶旺、廖德章、薛敬和, 英中日化學大辭典, 1993.
[5] C. Xu and W. Gao, "Pilling-Bedworth ratio for oxidation of alloys" Material Research Innovations, vol. 3, pp. 231-235, 2000.
[6] 李鐵藩,金屬高溫氧化和熱腐蝕, pp. 52-54, 2003.
[7] C. Wagner, "Z. physik," Chem.(Leipzig) B, vol. 21, p. 25, 1933.
[8] B. Chattopadhyay and G. Wood, "The transient oxidation of alloys," Oxidation of metals, vol. 2, pp. 373-399, 1970.
[9] Z. A. Munir and R. M. German, Oxid. Met., vol. 8, pp. 123, 1974.
[10] H. E. Evans, Inter. Mater. Rev, vol. 40, 1995.
[11] A. S. Khanna, Introduction to high temperature oxidation and corrosion: ASM international, 2002.
[12] Y. N. Chang and F. I. Wei, "High temperature oxidation of low alloy steels," Journal of materials science, vol. 24, pp. 14 -22, 1989.
[13] J. Perrow and W. Smeltzer, "The Oxidation of an Iron‐5 Percent Chromium Alloy in the Temperature Range 600 – 850 ℃," Journal of the Electrochemical Society, vol. 109, pp. 1023-1026, 1962.
[14] B. Chattopadhyay and G. C. Wood, “ The Transient Oxidation of Alloys”, Oxidation of Metals, Vol. 10, p.155, 1976.
[15] 黃忠良, 金屬材料之高溫氧化與腐蝕之日本工業制定耐用溫度標準. 台南: 復漢出版社, pp. 1- 16, 1988.
[16] F. Stott, G. Wood, and J. Stringer, "The influence of alloying elements on the development and maintenance of protective scales," Oxidation of Metals, vol. 44, pp. 113-145, 1995.
[17] R. I. Dunn, P. J. Hearps, and M. N. Wright, "Molten-salt power towers: newly commercial concentrating solar storage," Proceedings of the IEEE, vol. 100, pp. 504-515, 2012.
[18] D. Lainga, T. Bauera, and R. Tammea, "Recent Progress in Alkali Nitrate/Nitrite Developments for Solar Thermal Power Applications," Molten Salts Chemistry and Technology, vol. MS9, 2011.
[19] T. Wang, D. Mantha, and R. G. Reddy, "Thermal stability of the eutectic composition in LiNO3–NaNO3–KNO3 ternary system used for thermal energy storage," Solar Energy Materials and Solar Cells, vol. 100, pp. 162-168, 2012.
[20] D. Mantha, T. Wang, and R. Reddy, "Thermodynamic modeling of eutectic point in the LiNO3-NaNO3-KNO3 ternary system," Journal of phase equilibria and diffusion, vol. 33, pp. 110-114, 2012.
[21] X. J. Zhang, J. Tian, K. C. Xu, and Y. C. Gao, "Thermodynamic evaluation of phase equilibria in NaNO3-KNO3 system," Journal of phase equilibria, vol. 24, pp. 441-446, 2003.
[22] R. G. Reddy, "Novel Molten Salts Thermal Energy Storage for Concentrating Solar Power Generation," The University of Alabama, Tuscaloosa2013.
[23] S. Goods, R. Bradshaw, M. Prairie, and J. Chavez, "Corrosion of stainless and carbon steels in molten mixtures of industrial nitrates," Sandia National Labs., Livermore, CA (United States), 1994.
[24] S. Goods and R. Bradshaw, "Corrosion of stainless steels and carbon steel by molten mixtures of commercial nitrate salts," Journal of materials engineering and performance, vol. 13, pp. 78-87, 2004.
[25] P. Biedenkopf, M. Spiegel, and H. Grabke, "The corrosion behavior of Fe‐Cr alloys containing Co, Mn, and/or Ni and of a Co‐base alloy in the presence of molten (Li, K)‐carbonate," Materials and Corrosion, vol. 48, pp. 731-743, 1997.
[26] P. Biedenkopf, M. Spiegel, and H. Grabke, "High temperature corrosion of low and high alloy steels under molten carbonate fuel cell conditions," Materials and Corrosion, vol. 48, pp. 477-488, 1997.
[27] M. Spiegel, P. Biedenkopf, and H. Grabke, "Corrosion of iron base alloys and high alloy steels in the Li2CO3-K2CO3 eutectic mixture," Corrosion Science, vol. 39, pp. 1193-1210, 1997.
[28] P. Biedenkopf, M. Spiegel, and H. Grabke, "The corrosion behaviour of iron and chromium in molten (Li0.62K0.38)2CO3," Electrochimica acta, vol. 44, pp. 683-692, 1998.
[29] R. I. Olivares, "The thermal stability of molten nitrite/nitrates salt for solar thermal energy storage in different atmospheres," Solar Energy, vol. 86, pp. 2576-2583, 2012.
[30] 姜志華、蔡金峰, “焊接冶金概論” 徐氏基金會出版, p. 10, 1965
[31] N. Arivazhagan, S. Singh, S. Prakash, and G. Reddy, "Investigation on AISI 304 austenitic stainless steel to AISI 4140 low alloy steel dissimilar joints by gas tungsten arc, electron beam and friction welding," Materials & Design, vol. 32, pp. 3036-3050, 2011.
[32] R. Kumar, V. Tewari, and S. Prakash, "Oxidation behavior of base metal, weld metal and HAZ regions of SMAW weldment in ASTM SA210 GrA1 steel," Journal of Alloys and Compounds, vol. 479, pp. 432-435, 2009.
[33] S. K. Samanta, S. K. Mitra, and T. K. Pal, “Microstructure and oxidation characteristics of laser and GTAW weldments in austenitic stainless steels,” Journal of Materials Engineering and Performance, Vol. 17, 2008.
[34] S. Bae, H. Kang, H. Yun, C. Kim, D. Lee, and B. Lim, "Oxidation and fatigue crack propagation in the range of low stress intensity factor in relation to the microstructure in P122 Cr–Mo steel," Materials Science and Engineering: A, vol. 499, pp. 262-266, 2009.
[35] H. J. Engell and F. wever, Acta Metal, Vol. 5, p. 695, 1957.
[36] J. A. Von Fraunhofer and G. A. Pickup, Corros. Sci., Vol. 10, p. 253, 1970.
[37] 游晴暉, ”機車排氣管用鋼料之高溫氧化”,機械研究所碩士論文,國立台灣科技大學,民國97年7月。
[38] 陳丁誌, ”鉻鉬鋼於空氣/氮氣氣氛下之LiNO3-NaNO3-KNO3共晶融鹽的高溫腐蝕”,機械研究所碩士論文,國立台灣科技大學,民國102年7月。 

QR CODE