簡易檢索 / 詳目顯示

研究生: 廖翊成
Yi-cheng Liao
論文名稱: 矽烷偶合劑接枝之氧化石墨烯及熱脫層氧化石墨烯之合成及探討其對乙烯基酯樹脂之体積收縮、機械性質、微觀型態結構、及X光散射特性之影響
Synthesis of silane-grafted graphene oxide (sg-GO) and silane-grafted thermally reduced graphene oxide (sg-TRGO), and their effects on the volume shrinkage, mechanical properties, cured sample morphology, and X-ray scattering characteristics for vinyl ester resins
指導教授: 黃延吉
Yan-Jyi Huang
口試委員: 邱文英
Wen-Yen Chiu
陳崇賢
Chorng-Shyan Chern
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 176
中文關鍵詞: 氧化石墨烯熱還原氧化石墨烯矽烷接枝之氧化石墨烯矽烷接枝 之熱脫層氧化石墨烯抗收縮劑乙烯基酯樹脂聚合固化體積收縮機械性質接枝效率
外文關鍵詞: graphene oxide (GO), silane-grafted graphene oxide (sg-GO), thermally reduced graphene oxide (TRGO), silane-grafted thermally reduced graphene oxide (sg-TRGO), low-profile additive (LPA), vinyl ester resins (VER), curing, volume shrinkage, mechanical properties, grafting efficiency
相關次數: 點閱:590下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本 文探討添加氧化石墨烯(GO)、矽烷接枝氧化石墨烯(sg-GO)、熱脫層氧化石墨烯(TRGO)以及矽烷接枝熱脫層氧化石墨烯(sg-TRGO)等數種特用添加劑的合成及其對苯乙烯(St)/乙烯基酯(VER)/特用添加劑三成份系統於120 oC恆溫固化之微觀型態結構、體積收縮特性及機械性質的影響。
熱脫層氧化石墨烯(TRGO)是將氧化石墨烯(GO)置於1050 oC的高溫爐中 30秒合成熱脫層而得;後者,則是將平均粒徑為75μm的天然石墨粉以改良Hummers 法製得。矽烷接枝氧化石墨烯(sg-GO)係帶有不飽和C=C雙鍵的矽烷偶合劑,即甲基丙烯酰氧丙基三甲氧基矽烷(MPS),做為表面改質劑,在GO(or TRGO)/MPS/甲苯三者的重量比為1:5:94下,每次對氧化石墨烯(GO)於100oC下進行表面處理3hr,以不同反應次數(一或三次反應)得到不同接枝率之GO或TRGO。另外,亦利用FTIR計算一次與三次反應下之接枝密度,最後吾人將合成之添加劑(GO, sg-GO, TRGO, sg-TRGO)添加到VER中,亦研究其對St/VER(n=2)/添加劑三成分系統聚合固化後之體積收縮及機械性質之影響。


The effects of graphene oxide (GO), silane-grafted graphene oxide (sg-GO), thermally reduced graphene oxide (TRGO), and silane-grafted thermally reduced graphene oxide (sg-TRGO) as special addictive on the cured sample morphologies, volume shrinkage characteristics and mechanical properties for low-shrink vinyl ester resins (VER) cured at 120 oC were investigated.
The TRGO was produced by placing the GO in a high-temperature furnace kept at 1050 oC for 30 s, which was synthesized from natural graphites with average particle size of 75 μm by a modified Hummers method. The sg-GO was synthesized by using the silane coupling agent bearing acrylic C=C bonds, namely, γ-methacryloxy propyl trimethoxy silane (MPS), as a surface modifier for the surface treatment of GO at 100oC for 3 hr with different times of reaction for surface treatment between GO and MPS (n=1 or 3), and with a fixed weight ratio of GO/MPS/solvent at 1:5:94. The grafting density of MPS on the GO or TRGO has been measured by FTIR. Finally, the effects of additives synthesized, such as, GO, sg-GO, TRGO, and sg-TRGO, on the volume shrinkage and mechanical properties for the styrene(St)/vinyl ester resin(VER)/additive ternary systems after the cure have also been investigated.

摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 IX 表目錄 XIV 第1章 緒論 16 1.1 前言 16 1.2 研究範疇 18 第2章 文獻回顧 19 2. 1 不飽和聚酯(Unsaturated polyester, UP) 19 2.2 環氧樹脂 (Epoxy Resin ) [10-15] 20 2.3 乙烯基酯樹脂 (Vinyl Ester Resin, VER) 23 2.4 抗收縮劑 (Low-Profile Additives, LPA) 24 2.5 石墨烯高分子奈米複合材 25 2.6 甲基丙烯酰氧丙基三甲氧基矽烷(MPS) 40 2.7 自由基聚合反應 42 2.8 不飽和聚酯(UP)樹脂和苯乙烯(St)之交聯共聚合反應 44 2.9 不飽聚酯(UP)樹脂之聚合固化後微觀結構之研究 46 2.10 不飽和聚酯(UP)樹脂之抗收縮補償機制 47 2.11 抗收縮劑對 UP 樹脂固化後體積收縮影響之研究 49 2.12 不飽和聚酯(UP)硬化後的機械性質研究 50 第3章 實驗 52 3.1 實驗材料 52 3.1.1 乙烯基酯樹脂 52 3.1.2實驗藥品 55 3.2 實驗儀器 58 3.3 實驗流程 60 3.3.1 製備氧化石墨烯 (GO) [55]-[58] 60 3.3.2 製備低接枝密度矽烷偶合劑改質之氧化石墨 (LD-sg-GO) [59] 61 3.3.3製備高接枝密度矽烷偶合劑改質之氧化石墨 (HD-sg-GO) 61 3.3.4製備熱脫層氧化石墨烯 (TRGO) [60] 62 3.3.5 製備低接枝密度矽烷偶合劑改質之熱脫層氧化石墨烯 (LD-sg-TRGO) 62 3.3.6 製備高接枝密度矽烷偶合劑改質之熱脫層氧化石墨烯 (HD-sg-TRGO) 63 3.3.7 製備 Neat St/VER(n=2) 溶液與固化試片 64 3.3.8 製備 St/VER(n=2)/ additive之三成份溶液與固化試片 66 3.3.9 體積變化量測試-密度法 67 3.3.10 XRD 68 3.3.11 傅立葉紅外線光譜儀 (FTIR)之定性分析 68 3.3.12 有機化改質之 GO (或 TRGO) 利用傅立葉紅外線光譜儀之定量分析 69 3.3.12.1 MPS 型 Silane 69 3.3.12.2 氧化石墨烯(GO) 69 3.3.12.3 熱還原氧化石墨烯 (TRGO) 70 3.3.12.4 未反應之Silane /GO (或 TRGO)混合物 70 3.3.12.5 Silane-grafted GO (或TRGO) 71 3.3.13 熱重分析儀(TGA) 71 3.3.14 掃描式電子顯微鏡 (SEM) 72 3.3.15 穿透式電子顯微鏡 (TEM) 72 3.3.16 拉伸測試(Tensile Tester) 73 3.3.17 耐衝擊測試 74 第4章 結果與討論 75 4.1 微結構分析 75 4.1.1 XRD 75 4.1.2傅立葉紅外線光譜儀(FTIR)之定性分析 78 4.1.3 有機化改質GO之利用傅立葉紅外線光譜儀(FTIR)之定量分析 81 4.1.4 有機化改質之TRGO利用傅立葉紅外線光譜儀(FTIR)之定量分析 99 4.2 熱性質分析 117 4.2.1 熱重分析儀 117 4.3 微觀型態結構分析 119 4.3.1 掃描式電子顯微鏡(SEM) 119 4.3.1.1 St/VER(n=2)/GO三成分系統 119 4.3.1.2 St/VER(n=2)/HD-sg-GO三成分系統 125 4.3.1.3 St/VER(n=2)/TRGO三成分系統 129 4.3.1.4 St/VER(n=2)/HD-sg-TRGO三成分系統 132 4.4 體積收縮特性 135 4.4.1 St/VER(n=2)/GO 三成分系統 135 4.4.2 St/VER(n=2)/HD-sg-GO 三成分系統 137 4.4.3 St/VER(n=2)/TRGO 三成分系統 139 4.4.4 St/VER(n=2)/HD-sg-TRGO三成分系統 141 4.5 機械性質分析 143 4.5.1耐衝擊測試 143 4.5.1.1 St/VER(n=2)/GO 三成分系統 143 4.5.1.2 St/VER(n=2)/HD-sg-GO 三成分系統 145 4.5.1.3 St/VER(n=2)/TRGO 三成分系統 147 4.5.1.4 St/VER(n=2)/HD-sg-TRGO 三成分系統 149 4.5.2 拉力測試 151 4.5.2.1 St/VER(n=2)/GO 三成分系統 151 4.5.2.2 St/VER(n=2)/HD-sg-GO三成分系統 155 4.5.2.3 St/VER(n=2)/TRGO 三成分系統 160 4.5.2.4 St/VER(n=2)/HD-sg-TRGO三成分系統 164 第5章 結論 168 第6章 未來工作 169 第7章 參考文獻 170

1. A. Almagableh, P. R.Mantena, A. Alostaz, W. Liu, L. T. Drzal, eXPRESS Polym. Lett. 2009, 11, 724-723.
2. Z. Guo, K. Lei, Y. Li, W. Liu, H. W. Ng, P. Sergy, H. Thomas, Compos. Sci. Technol. 2008, 68, 1513-1520.
3. L. Liao, X. Wang, P. Fang, M. Kim, C. Pan, Appl. Mater. & Interfaces. 2011, 3 534-538.
4. S. DUA, R. L. McCULLOUGH, G. R. PALMESE, Polym. Compos. 1999, 20 379-391.
5. J. Changwoon, S. Nouranian, E. L. Thomas, S. R. Gwaltney, H. Toghiani, C. H. Pittman, Carbon. 2012, 50, 748-760.
6. W. Posthumus, P.C.M.M. Magusin, J.C.M. Brokken-Zijp, A.H.A. Tinnemans, R. van der Linde, J. Colloid and Interface Sci. 2004, 269, 109-116.
7. R. B. Burns, "Polyester molding compounds", Marcel Dekker, New York, 1982.
8. 鍾宛倫, 碩士論文, 台灣科技大學, 2014.
9. R.B. Burn, “Polyester Molding Compounds”, Marcel Dekker, Inc, New York, 1982.
10. B. Ellis, "Chemistry and Technology of Epoxy Resins", London: Blackie Academic and Professional 1993.
11. 陳東課, 環氧樹脂在基層板之應用, 化工技術第四卷第五期, 1996.
12. 賴耿陽, 環氧樹脂應用實務, 復漢出版社, 台灣, 1999.
13. 賴家聲, 環氧樹脂與硬化劑(上), 復漢出版社, 台灣, 1999.
14. S. V. Levchik, G. Camino, M. P. Luda, L. Costa, G. Muller, B. Costes, Polymer Degradation and Stability , 60, 169(1998).
15. 黃滄閔,碩士論文, 國立成功大學 ,2001.
16. W. H. Liao, H. W. Tien, S.T. Hsiao, S. M. Li, Y. S. Wang, Y. L. Huang, S. Y. Yang, C. C. M. Ma, Y. F. Wu, Appl. Mater. & Interfaces. 2013, 5, 3975-3982.
17. R. E. Young, in “Unsaturated Polyester Technology”, Ed. P.F. Bruins, Gordon and Breach Science Publishers, 1976.
18. M.E. Kelly, in “Unsaturated Polyester Technology”, Ed. P.F. Bruins, Gordon and Breach Science Publishers, 1976, P.370.
19. 黃智偉, 碩士論文, 台灣科技大學, 2014
20. F. Fekete, in “Unsaturated Polyester Technology”, Ed. P.F. Bruins, Gordon and Breach Science Publishers, 1976, P.28.
21. E. J. Bartkus, C. H Kroekel, Appl. Polym. Symp. 1970, 15, 113.
22. K. E. Atkins, in “Sheet Molding Compound :Science and Technology” Ed., H.G. Kia, Hanser Publishers, 1993, Ch4.
23. V. A. Pattison, R. R. Hindersinn, W. T. Schwartz, J. Appl. Polym. Sci. 1974, 18, 2763.
24. L. Suspene, D. Fourquier, Y. S. Yang, Polym. 1991, 32, 1593.
25. V. A. Pattison, R. R. Hindersinn, W. T. Schwartz, J. Appl. Polym. Sci. 1975, 19 3045.
26. L. J. Lee, W. Li, K. H. Hsu, Polym. 2000, 41, 711.
27. C. B. Bucknall, I. K. Partridge, M. J. Phillips, Polym. 1991, 32, 636.
28. Y. J. Huang, T. S. Chen, J. G. Huang, F. H. Lee, J. Appl. Polym. Sci. 2003, 89, 3336
29. Y. J. Huang, C. M. Liang, Polym. 1996, 37, 401.
30. J. P. Dong , J. H. Lee, D. H. Lai, Y. J. Huang, Appl. Polym. Sci. 2005, 98, 264
31. H. Kim, A. A. Abdala, C. W. Macosko, Macromol. 2010, 43, 6515-6530.
32. Y. J. Wan, L. X. Gong, L. C. Tang, L. B. Wu, J. B. Jiang, Composites: Part A. 2014, 64, 79-89.
33. Y. J. Wan, L. C. Tang, L. X. Gong, Y. D. Yan, Y. B. Li, L. B. Wu, J. X. Jiang, G. Q. Lai, Carbon. 2014, 69, 467-480.
34. C. Botas, P. A´lvarez, C. Blanco, R. Santamarı´a, M. Granda, M. Gutie´rrez, F. R. Reinoso, R. Mene´ndez, Carbon. 2013, 52, 476-485.
35. H. Kim, Y. Miura, C. W. Macosko, Chem. Mater. 2010, 22, 3441-3450.
36. J. Zang, Y. J. Wan, Li. Zhao, L. C. Tang, Macromol. Mater. Eng. 2015, 300, 737-749.
37. R. Thomann, R. Mülhaupt, A. K. Appel, Polym. 2012, 53, 4931-4939.
38. G. H. Yeoh, X. Wang, W. Xing, L. Song, B. Yu, Y. Hu, Reactive & Functional Polym. 2013, 73, 854-858.
39. A. Chaturvedi, A. Tiwari, A. Tiwari, Adv. Mat. Lett. 2013, 4, 656-661.
40. O. Eksik, S. F. Bartolucci, T. Gupta, H. Fard, T. B. Tasciuc, N. Koratkar, Carbon. 2016, 101, 239-244.
41. 盧天智, 碩士論文,台灣科技大學, 1991
42. H. R. Allcock, F. W. Lampe, “Contemporary Polymer Chemistry”, 2nd Ed., Prentice Hall, Englewood Cliffs, (1990), P.50.
43. Y. S. Yang, L. J. Lee, Polym. 1988, 29, 1793.
44. K. Horie, I. Mita, H. Kambe, J. Polym. Sci. PartA-1:Polym. Chem. 1969, 72561.
45. 江文慶, 碩士論文,台灣科技大學, 1996.
46. Y. J. Huang, C. C. Su, J. Appl. Polym. Sci. 1995, 55, 305.
47. Y. J. Huang, C.C. Su, Polym. 1994, 35, 2397.
48. C. B. Bucknall, I. K. Partridge, M. J. Phillips, Polym. 1991, 32, 786.
49. T. Mitani, H. Shiraishi, K. Honda, G.E. Owen, 44th Annual Conference Composite Institute, SPI, Session 12-F, 1989.
50. Y. J. Huang, J. C. Horng, Polym. 1998, 39, 3683.
51. W. D. Cook, O. Delatycki, J. Polym. Sci. Polym. Phys. Ed. 1974, 12, 2111.
52. W. D. Cook, O. Delatycki, J. Polym. Sci. Polym. Phys. Ed. 1974, 12, 1925.
53. Y. J. Huang, S. C. Lee, J. P. Dong, J. Appl. Polym. Sci. 2000, 78, 558.
54. Y. J. Huang, T. S. Chen, J. G. Huang, F. H. Lee, J. Appl. Polym. Sci. 2003, 89, 3347.
55. JR. Hummers, R. E. Offeman, J. Americ. Chem. Soc. 1958, 80, 1339.
56. C. H. Schniepp, J. L. Li, M. J. McAllister, H. Sai, H. A. Margarita, D. H. Adamson, R. K. Prud’homme, R. Car, D. A. Saville, I. A. Aksay, J. Phys. Chem. B. 2006, 17, 8535.
57. Y. Yang, J. Wang, J. Zhang, J. Liu, X. Yang, H,. Zhao, Langmuir, 2009, 25, 118.
58. F. Beckert, C. Friedrich, R. Thomann, R. Mulhaupt, Macromol. 2012, 45, 7083.
59. Y. J. Wan, L. X. Gong, L. C. Tang, L. B. Wu, J. B. Jiang, Composites: Part A. 2014, 64, 79-89.
60. 楊昌叡,碩士論文,國立台灣科技大學,2017.
61. Yuliana Tassia,碩士論文,台灣科技大學,2013.
62. 王妤榛,碩士論文,國立台灣科技大學,2016.

QR CODE