簡易檢索 / 詳目顯示

研究生: 黃彥儒
Yen-Ju Huang
論文名稱: 聚左旋乳酸結晶化與熔融行為之研究
Crystallization and Melting Behavior of Poly(L-lacticacid)
指導教授: 洪伯達
Po-Da Hong
口試委員: 許應舉
none
陳志堅
Jyh-Chien Chen
莊偉綜
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 49
中文關鍵詞: 聚左旋乳酸Avrami方程式多重熔融行為溫度調幅式差示掃描熱分析
外文關鍵詞: PLLA, Avrami equation, multiple melting behaviors, TMDSC
相關次數: 點閱:199下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究利用差示掃描熱分析儀(DSC)與溫度調制式差示掃描熱分析(TMDSC)來探討poly(L-lactic acid) (PLLA)的結晶化動力學以及多重熔融行為。
PLLA於溫度範圍85℃~140℃等溫結晶化後,利用Avrami方程式得知PLLA成核與成長方式。PLLA在等溫結晶化溫度130℃以上時成核與成長方式發生改變,和低溫時的成核與成長方式不相同,因Avrami指數(n)在85℃-125℃時為n=2-3和130℃以上時n≦2。而由於Avrami方程式而得知,在105℃左右時,因PLLA的成核速率與成長速率相當,在此時結晶化速率出現最大值。
當在升溫速率為10℃/min與等溫結晶化溫度90℃~120℃時,可以發現有多重熔融峰的出現。利用不同的升溫速率(1℃/min~40℃/min)以及TMDSC來探討PLLA多重熔融峰產生的機制。而由不同升溫速率得知,隨著升溫數率的加快,PLLA多重熔融峰逐漸變為單一熔融峰,因此推測可能是熔融-再結晶-再熔融(melting-recrystallization-remelting)機制所造成的。更進一步的由TMDSC的可逆熱流(reversing heat flow)與不可逆熱流(non-reversing heat flow)顯示,在可逆熱流(reversing heat flow)時只有單一吸熱峰(endothermic peak),為等溫結晶的熔融峰。而不可逆熱流(non-reversing heat flow)卻發現了一個放熱峰(exothermic peak)與一個吸熱峰(endothermic peak),分別為再結晶的再結晶峰與再熔融峰。因此確定PLLA多重熔融現象的機制為熔融-再結晶-再熔融(melting-recrystallization-remelting),且隨著等溫結晶化溫度的升高,熔融-再結晶-再熔融的現象越不明顯。


The crystallization kinetics and multiple melting behaviors of poly (L-lactic acid) (PLLA) were investigated by differential scanning calorimetry (DSC) and temperature-modulated differential scanning calorimetry (TMDSC). Avrami equation was used to find the nucleation and growth mode of PLLA in isothermal crystallization under the temperature range of 85℃ to 140℃. The nucleation and growth mode was changing in isothermal crystallization temperature above 130℃ due to as Avrami exponent (n) in 85℃-125℃ was n=2-3 and above 130℃ was n≦2. Nucleation rate and growth rate was equal and maximum of PLLA crystallization rate was observed at105℃. Moreover PLLA could exhibit multiple melting behaviors, when the heating rate is 10℃/min and at isothermal crystallization temperature range between 90℃ to 120℃ with different heating rates (1℃/min to 40℃/min). In addition to TMDSC was used to discuss the origin of multiple melting behaviors mechanism of PLLA. In the case of higher heating rate, PLLA the multiple melting peaks became to single melting peak. The multiple melting behaviors followed the possible mechanism of melting-recrystallization-remelting. TMDSC results showed reversing heat flow and non-reversing heat flow was observed multiple melting behaviors mechanism of PLLA was melting-recrystallization-remelting. In reversing heat flow there was only one endothermic peak observed, which is originated from melting crystal of isothermal crystallization. Besides in non-reversing heat flow shows one exothermic peak and one endothermic peak. Both exothermic peak and endothermic peaks were originated from recrystallization and melting recrystallization parts respectively. While increasing the isothermal crystallization temperature, the behavior of melting-recrystallization-remelting becomes more inconspicuous.

論文提要內容I AbstractIII 誌謝IV 目錄V 圖表目錄VII 論文符號表IX 第1章序論- 1 - 1.1poly(L-lactic acid) 簡介- 1 - 1.2理論背景- 3 - 1.2.1多重熔融行為 (multiple melting behaviors)- 3 - 1.2.2Avrami方程式[16]- 4 - 1.2.3Hoffman-Weeks 方程式[17]- 5 - 1.2.4Thomson-Gibbs 方程式[18]- 5 - 1.2.5溫度調幅式差示掃描熱分析 (Temperature-Modulated Differential Scanning Calorimetry , TMDSC)[19][20][21]- 6 - 1.3研究目的- 8 - 第2章實驗- 9 - 2.1材料- 9 - 2.2儀器- 9 - 2.2.1差示掃描熱分析儀(Differential Scanning Calorimetry , DSC)- 9 - 2.2.2溫度調幅式差示掃描熱分析 (Temperature-Modulated Differential Scanning Calorimetry , TMDSC)- 10 - 2.3PLLA基本物性- 11 - 第3章結果與討論- 12 - 3.1PLLA等溫結晶動力學- 12 - 3.2PLLA等溫結晶化後熔融行為- 19 - 3.3PLLA於不同升溫速率下的熔融行為- 22 - 3.4PLLA多重熔融行為- 24 - 第4章結論- 32 - 參考文獻- 34 -

1.Nef, J.u. Ann Chem Phys 1914, 403, 204
2.Carothers, w.h. J Am Chem Soc 1932,54,761
3.楊斌 PLA聚乳酸環保塑膠, 五南圖書, 2010
4.任杰 可降解與吸收材料, 化學工業出版社, 2003
5.Di Lorenzo, M.L. Eur Polym J 2005, 41, 569
6.Yang, S.L.; Wu, Z.H.; Yang, W.; Yang, M.B. Polym Test 2008, 27, 957
7.De Santis, P.; Kovacs, A.J. P. Biopolymer, 1986, 6, 299
8.Ikada, Y.; Tsuji, H Macromol Rapid Commun 2000, 21, 117
9.Yasuniwa, M.; Tsubakihara, S.; Iura, K.; Ono, Y.; Dan, Y.; Takahashi, Y.; Polymer 2006, 47, 7554
10.Hoogsten, W.; Postema, A.R.; Pennings, A.J.; Brinke, G.; Zugenmaier, P. Macromolecules 1990,23,634
11.Okihara, T.; Okumura, K.; Kawaguchi, A. J Macromol Sci Phys 2003,B42,875
12.Gan, Z.; Kuwabara, K.; Abe, H.; Iwata, T.; Doi, Y. BioMacromolecules 2004,5,371
13.Bassett, D.C.; Olley, R.H.; Al Raheil, I.A.M. Polymer 1988,29,1745
14.Krikorian, V.; Pochan, D. J. Macromolecules 2004,37, 6480.
15.Gunaratne, L. M. W. K.; Shanks, R. A.; Amarasinghe,G. Thermochim Acta 2004, 423, 127.
16.Avrami M. J Chem Phys 1939,8,212
17.Hoffman, J.D.; Weeks, J.J. J Res Nat Bu St 1960,64A,73
18.Hoffman, J.D.; Miller R.L. Polymer 1997, 38, 3151
19.Reading, M.;Hourston, D.J. Modulated-Temperature Differential Scanning Calorimetry Springer 2005
20..劉振海;富山立子;陳學思 聚合物量熱測定, 化學工業出版社,2001
21.Wunderlich, B., Thermal Analysis of Polymeric Materials, Springer, 2005
22.Menczel, J.; Prime, R.B. Thermal Analysis of Polymers, WILEY, 2009
23.Perkin-Elmer Step Scan User’s Manual
24.Yasuniwa, M.; Iura, K.; Dan, Y. Polymer 2007, 48, 5398
25.Castillo, R.V.; Müller, A.J.; Raquez, J.-M.; Dubois, P. Macromolecules 2010, 43, 4149
26.Iannace, S.; Nicolais, L. J Appl Polym Sci 1997, 64, 911
27.Wunderlich, B. Macromolecular Physics, Vol. 2, Academic Press, New York, 1976
28.Yasuniwa, M.;Tsubakihara, S.; Sugimoto, Y.; Nakafuku, C. J Polym Sci Part B: Polym Phys 2004, 42, 25
29.Di Lorenzo, M.L. J Appl Polym Sci 2006, 100, 3145
30.Shieh, Y.T.; Liu, G.L. J Polym Sci Part B: Polym Phys 2007, 45, 466

無法下載圖示 全文公開日期 2013/08/05 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE