簡易檢索 / 詳目顯示

研究生: HA SON HOANG
HA SON HOANG
論文名稱: Assessing Quality of Water in Taiwan Reservoirs by Machine Learners
Assessing Quality of Water in Taiwan Reservoirs by Machine Learners
指導教授: 周瑞生
Jui-Sheng Chou
口試委員: 蔡宛珊
Wan-Shan Tsai
廖敏志
Min-Chih Liao
謝佑明
Yu-Ming Hsieh
周瑞生
Jui-Sheng Chou
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 165
中文關鍵詞: Carlson’s Trophic State IndexWater qualityArtificial intelligenceMachine learningData miningMeta ensembleNature-inspired metaheuristic regression
外文關鍵詞: Carlson’s Trophic State Index, Water quality, Artificial intelligence, Machine learning, Data mining, Meta ensemble, Nature-inspired metaheuristic regression
相關次數: 點閱:267下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Water quality is one of the most critical issues in reservoir management owing to its strong effects on the natural environment and human life. This study establishes a machine learning approach for predicting Carlson’s Trophic State Index (CTSI), which is a frequently used metric of water quality in reservoirs. Data collected over ten years (1995-2016) from the stations at 20 reservoirs in Taiwan were preprocessed as the input for the modeling system. Four well-known artificial intelligence techniques, ANNs, SVM, CART, and LR, were used to analyze in baseline and ensemble scenarios. A user-friendly interface that integrates a metaheuristic regression model was developed to evaluate the predictive performance, and to compare it with those in the two constituent scenarios. The comprehensive comparison demonstrated that the ensemble ANN model, based on tiering method, is more accurate than the other single, ensemble models and hybrid metaheuristic regression model. Both the accuracy of prediction and the efficacy of application are considered to support practitioners in planning water management works. Accordingly, this work provides a novel approach for potential use in water quality assessment.


    Water quality is one of the most critical issues in reservoir management owing to its strong effects on the natural environment and human life. This study establishes a machine learning approach for predicting Carlson’s Trophic State Index (CTSI), which is a frequently used metric of water quality in reservoirs. Data collected over ten years (1995-2016) from the stations at 20 reservoirs in Taiwan were preprocessed as the input for the modeling system. Four well-known artificial intelligence techniques, ANNs, SVM, CART, and LR, were used to analyze in baseline and ensemble scenarios. A user-friendly interface that integrates a metaheuristic regression model was developed to evaluate the predictive performance, and to compare it with those in the two constituent scenarios. The comprehensive comparison demonstrated that the ensemble ANN model, based on tiering method, is more accurate than the other single, ensemble models and hybrid metaheuristic regression model. Both the accuracy of prediction and the efficacy of application are considered to support practitioners in planning water management works. Accordingly, this work provides a novel approach for potential use in water quality assessment.

    ABSTRACT ........................................................................................................................... i TABLE OF CONTENTS ..................................................................................................... iv LIST OF FIGURES ............................................................................................................ vii LIST OF TABLES ............................................................................................................. viii ABBREVIATIONS AND SYMBOLS ................................................................................ ix Chapter 1 Introduction ........................................................................................................... 1 1.1 Research background .............................................................................................. 1 1.2 Research objectives ................................................................................................. 3 1.3 Research process ..................................................................................................... 4 Chapter 2 Literature Review .................................................................................................. 5 2.1 Conventional approaches using diverse water quality indices in the literature....... 5 2.2 Current practice of artificial intelligence in water quality assessment .................... 9 2.3 Proposed approach for assessing water quality ..................................................... 12 Chapter 3 Methodology........................................................................................................ 14 3.1 Baseline models ..................................................................................................... 14 3.1.1 Artificial Neural Networks ............................................................................. 14 3.1.2 Support Vector Machine for classification and regression ............................ 15 3.1.3 Classification and Regression Tree ................................................................ 17 3.1.4 Linear Regression........................................................................................... 18 3.1.5 Software ......................................................................................................... 19 3.2 Ensemble models ................................................................................................... 22 3.2.1 Voting ............................................................................................................. 22 3.2.2 Bagging .......................................................................................................... 23 3.2.3 Stacking .......................................................................................................... 23 3.2.4 Tiering ............................................................................................................ 24 3.2.5 Implemented Software ................................................................................... 25 3.3 Hybrid model ......................................................................................................... 25 3.3.1 Least-Squared Support Vector Machine for Regression ................................ 25 3.3.2 Metaheuristic optimization algorithm ............................................................ 27 3.3.3 Constructing MetaFA based LSSVR model .................................................. 32 3.3.4 Evaluation of optimization algorithm ............................................................ 35 3.3.5 Implemented Software ................................................................................... 37 3.4 Cross-Validation Method ...................................................................................... 37 3.5 Performance evaluation ......................................................................................... 37 3.5.1 Linear correlation coefficient (R)................................................................... 38 3.5.2 Mean Absolute Percentage Error (MAPE) .................................................... 38 3.5.3 Root Mean Squared Error (RMSE) ................................................................ 38 3.5.4 Mean Absolute Error (MAE) ......................................................................... 39 3.5.5 Synthesis Index .............................................................................................. 39 Chapter 4 Water quality data and parameters ...................................................................... 40 4.1 Data ....................................................................................................................... 40 4.2 Parameters description .......................................................................................... 42 Chapter 5 Model development ............................................................................................. 44 5.1 Baseline models ..................................................................................................... 44 5.2 Ensemble models ................................................................................................... 48 5.3 Hybrid model ......................................................................................................... 50 Chapter 6 Experimental results ............................................................................................ 54 6.1 Baseline scenario ................................................................................................... 54 6.2 Ensemble scenario ................................................................................................. 57 6.3 Hybrid scenario ..................................................................................................... 59 6.4 Performance comparison ....................................................................................... 60 Chapter 7 Conclusion ........................................................................................................... 63 References ............................................................................................................................ 66 APPENDIX A. User interface snapshot .............................................................................. 72 A.1 Main user interface of MetaFA-LSSVR system ....................................................... 72 A.2 MetaFA-LSSVR interface (evaluation) .................................................................... 73 A.3 MetaFA-LSSVR interface (prediction)..................................................................... 74 APPENDIX B. Original dataset ........................................................................................... 75 B.1 Original dataset of water quality ............................................................................... 75 APPENDIX C. Performance measure using the baseline models ..................................... 127 C.1 Performance measure using RapidMiner Studio..................................................... 127 C.2 Performance measure using Microsoft Azure Machine Learning Studio ............... 128 C.3 Performance measure using IBM SPSS Modeler ................................................... 129 C.4 Performance measure using WEKA ....................................................................... 130 APPENDIX D. Performance measure using the ensemble models ................................... 131 D.1 Performance measure using voting method ............................................................ 131 D.2 Performance measure using bagging method ......................................................... 132 D.3 Performance measure using stacking method ......................................................... 133 D.4 Performance measure using tiering method ............................................................ 134 APPENDIX E. Performance measure via cross-fold using the hybrid model ................... 135 E.1 Performance measure via cross-fold using hybrid metaheuristic regression model ....................................................................................................................................... 135 APPENDIX F. Analysis report of hybrid metaheuristic regression model ....................... 136 F.1 Analysis report of hybrid metaheuristic regression model ...................................... 136

    Al-Haidarey, M. J. S. A., C., A. M., A., A. I., and N., A.-A. (2016). "The trophic state index of Bahr Al-Najaf depression reservoir, Iraq." Journal of Environmental Hydrology, 24, 1-10.
    Alemayehu, D., and Hackett, F. (2016). "Water Quality and Trophic State of Kaw Lake." Journal of Environmental Studies, 2(1), 1-7.
    Antanasijević, D., Pocajt, V., Perić-Grujić, A., and Ristić, M. (2014). "Modelling of dissolved oxygen in the Danube River using artificial neural networks and Monte Carlo Simulation uncertainty analysis." Journal of Hydrology, 519, Part B, 1895-1907.
    Baban, S. M. J. (1996). "Trophic classification and ecosystem checking of lakes using remotely sensed information." Hydrological Sciences Journal, 41(6), 939-957.
    Banati, H., and Bajaj, M. (2011). "Firefly Based Feature Selection Approach " International Journal of Computer Science Issues, 8(4), 473-480.
    Breiman, L. (1996). "Bagging predictors." Machine Learning, 24(2), 123-140.
    Breiman, L., Friedman, J., Olshen, R., and Stone, C. (1984). Classification and Regression Trees, Chapman & Hall/CRC, New York.
    Brown, T., and Simpson, J. (2001). "Determining the Trophic State of Your Lake." Urban Lake Management, Center for Watershed Protection, 771-781.
    Carlson, R. E. (1977). "A trophic state index for lakes." Limnology and Oceanography, 22(2), 361-369.
    Carlson, R. E., and Simpson, J. (1996). A Coordinator's Guide to Volunteer Lake Monitoring Methods, North American Lake Management Society.
    Chang, C. L., and Liu, H. C. (2015). "Applying the Back-Propagation Neural Network model and fuzzy classification to evaluate the trophic status of a reservoir system." Environmental Monitoring and Assessment, 187(9), 560-567.
    Chau, K.-w. (2006). "A review on integration of artificial intelligence into water quality modelling." Marine Pollution Bulletin, 52(7), 726-733.
    Chen, W.-B., and Liu, W.-C. (2015). "Water Quality Modeling in Reservoirs Using Multivariate Linear Regression and Two Neural Network Models." Advances in Artificial Neural Systems, 2015, 1-12.
    Chen, W. C., Chang, N.-B., and Chen, J.-C. (2003). "Rough set-based hybrid fuzzy-neural controller design for industrial wastewater treatment." Water Research, 37(1), 95-107.
    Chen, X. Y., Chau, K. W., and Busari, A. O. (2015). "A comparative study of population-based optimization algorithms for downstream river flow forecasting by a hybrid neural network model." Engineering Applications of Artificial Intelligence, 46, Part A, 258-268.
    Chou, J.-S., Chong, W. K., and Bui, D.-K. (2016). "Nature-Inspired Metaheuristic Regression System: Programming and Implementation for Civil Engineering Applications." Journal of Computing in Civil Engineering, 30(5), 1-17.
    Chou, J.-S., Ngo, N.-T., and Chong, W. K. (2016). "The use of artificial intelligence combiners for modeling steel pitting risk and corrosion rate." Engineering Applications of Artificial Intelligence, 1-13.
    Chou, J.-S., and Pham, A.-D. (2015). "Smart Artificial Firefly Colony Algorithm-based Support Vector Regression for Enhanced Forecasting in Civil Engineering." Computer-Aided Civil and Infrastructure Engineering, 30(9), 715-732.
    Chou, J.-S., and Tsai, C.-F. (2012). "Concrete compressive strength analysis using a combined classification and regression technique." Autom. Constr., 24, 52-60.
    Chou, J.-S., Yang, K.-H., and Lin, J.-Y. (2016). "Peak Shear Strength of Discrete Fiber-Reinforced Soils Computed by Machine Learning and Metaensemble Methods." Journal of Computing in Civil Engineering, 30(6), 1-17.
    Couto, C., Vicente, H., Machado, J. M., Abelha, A., and Neves, J. (2012). "Water quality modeling using artificial intelligence-based tools." International Journal of Design & Nature and Ecodynamics, 7(3), 300 - 309.
    Elmaci, A., Ozengin, N., Teksoy, A., Topac, F. O., and Baskaya, H. S. (2009). "Evaluation of trophic state of Lake Uluabat, Turkey." Journal of environmental biology, 30(5), 757-760.
    Elshemy, M., and Meon, G. (2017). "Water Quality Assessment of Aswan High Dam Reservoir." The Nile River, A. M. Negm, ed., Springer International Publishing, Cham, 105-143.
    Fister Jr, I., Perc, M., Kamal, S. M., and Fister, I. (2015). "A review of chaos-based firefly algorithms: Perspectives and research challenges." Applied Mathematics and Computation, 252, 155-165.
    Guo, Y., Wang, G., Zhang, X., and Deng, W. (2014). "An improved hybrid ARIMA and support vector machine model for water quality prediction." Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 411-422.
    Haifeng, W., and Dejin, H. "Comparison of SVM and LS-SVM for Regression." Proc., Neural Networks and Brain, 2005. ICNN&B '05. International Conference on, 279-283.
    Hamed, M. M., Khalafallah, M. G., and Hassanien, E. A. (2004). "Prediction of wastewater treatment plant performance using artificial neural networks." Environmental Modelling & Software, 19(10), 919-928.
    He, D., He, C., Jiang, L. G., Zhu, H. W., and Hu, G. R. (2001). "Chaotic characteristics of a one-dimensional iterative map with infinite collapses." IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 48(7), 900-906.
    Ji, X., Shang, X., Dahlgren, R. A., and Zhang, M. (2017). "Prediction of dissolved oxygen concentration in hypoxic river systems using support vector machine: a case study of Wen-Rui Tang River, China." Environmental Science and Pollution Research, 1-15.
    Khan, Y., and See, C. S. "Predicting and analyzing water quality using Machine Learning: A comprehensive model." Proc., 2016 IEEE Long Island Systems, Applications and Technology Conference (LISAT), 1-6.
    Kisi, O., and Parmar, K. S. (2016). "Application of least square support vector machine and multivariate adaptive regression spline models in long term prediction of river water pollution." Journal of Hydrology, 534, 104-112.
    Kittler, J., Hatef, M., Duin, R. P. W., and Matas, J. (1998). "On combining classifiers." IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(3), 226-239.
    Kohavi, R. (1995). "A study of cross-validation and bootstrap for accuracy estimation and model selection." Proceedings of the 14th international joint conference on Artificial intelligence - Volume 2, Morgan Kaufmann Publishers Inc., Montreal, Quebec, Canada, 1137-1143.
    Kuh, A. (2004). "Least Squares Kernel Methods and Applications." Soft Computing in Communications, Springer Berlin Heidelberg, 365-387.
    Kumar, R. (2013). "Decision Tree for the Weather Forecasting." International Journal of Computer Applications, 76(2), 31-34.
    Kuo, J.-T., Wang, Y.-Y., and Lung, W.-S. (2006). "A hybrid neural–genetic algorithm for reservoir water quality management." Water Research, 40(7), 1367-1376.
    Li, Y., Deng, S., and Xiao, D. (2011). "A novel Hash algorithm construction based on chaotic neural network." Neural Computing and Applications, 20(1), 133-141.
    Lin, Y.-C. (2013). "Construction network-based interface management system." Automation in Construction, 30, 228-241.
    Liou, S.-M., Lo, S.-L., and Wang, S.-H. (2004). "A Generalized Water Quality Index for Taiwan." Environmental Monitoring and Assessment, 96(1), 35-52.
    Liou, Y.-T., and Lo, S.-L. (2005). "A fuzzy index model for trophic status evaluation of reservoir waters." Water Research, 39(7), 1415-1423.
    Liu, M., and Lu, J. (2014). "Support vector machine―an alternative to artificial neuron network for water quality forecasting in an agricultural nonpoint source polluted river?" Environmental Science and Pollution Research, 21(18), 11036-11053.
    Mahmoudi, N., Orouji, H., and Fallah-Mehdipour, E. (2016). "Integration of Shuffled Frog Leaping Algorithm and Support Vector Regression for Prediction of Water Quality Parameters." Water Resources Management, 30(7), 2195-2211.
    Maier, H. R., and Dandy, G. C. (2000). "Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications." Environmental Modelling & Software, 15(1), 101-124.
    Matthews, R., Hilles, M., and Pelletier, G. (2002). "Determining trophic state in Lake Whatcom, Washington (USA), a soft water lake exhibiting seasonal nitrogen limitation." Hydrobiologia, 468(1), 107-121.
    N.Barki, D., and Singa, P. (2014). "Assessment of Trophic State of Lakes in Terms of Carlson’s Trophic State Index." International Journal of Innovative Research in Science, Engineering and Technology, 3(7), 297-302.
    Najah, A., El-Shafie, A., Karim, O. A., and El-Shafie, A. H. (2013). "Application of artificial neural networks for water quality prediction." Neural Computing and Applications, 22(1), 187-201.
    Najah, A., Elshafie, A., Karim, O. A., and Jaffar, O. (2009). "Prediction of johor river water quality parameters using artificial neural networks." European Journal of Scientific Research, 28(3), 422-435.
    Pal, S. K., Rai, C. S., and Singh, A. P. (2012). "Comparative Study of Firefly Algorithm and Particle Swarm Optimization for Noisy Non-Linear Optimization Problems." International Journal of Intelligent Systems and Applications, 4(10), 50-57.
    Parparov, A., Hambright, K. D., and Berman, T. (2014). "Water Quality Assessment." Lake Kinneret: Ecology and Management, T. Zohary, A. Sukenik, T. Berman, and A. Nishri, eds., Springer Netherlands, Dordrecht, 607-615.
    Prasad, A. G. D., and Siddaraju (2012). "Carlson's Trophic State Index for the assessment of trophic status of two lakes in Mandya district." Advances in Applied Science Research, 3(5), 2992-2996.
    S.K., T., J., A. H. M., and M., A. S. (2014). "Prediction of Water Quality of Euphrates River by using Artificial Neural Network Model (spatial and temporal study)." International Research Journal of Natural Sciences, 2(3), 25-38.
    Sellami, I., Hamza, A., Bouain, A., Aleya, L., and Ayadi, H. (2012). "Environmental factors and zooplanktonic community." Trophic condition of seven mediterranean freshwater reservoirs, M. P. a. J. C. Editors, ed., Nova Sciences Publishers, Inc., New York, 155-169.
    Seshan, H., Goyal, M. K., Falk, M. W., and Wuertz, S. (2014). "Support vector regression model of wastewater bioreactor performance using microbial community diversity indices: Effect of stress and bioaugmentation." Water Research, 53, 282-296.
    Sh. M. Farahani, A. A. Abshouri, B. Nasiri, and Meybodi, M. R. (2011). "A Gaussian Firefly Algorithm." International Journal of Machine Learning and Computing, 1(5), 448-453.
    Singh, T. N., Sinha, S., and Singh, V. K. (2007). "Prediction of thermal conductivity of rock through physico-mechanical properties." Building and Environment, 42(1), 146-155.
    Sofwan, N. M., and Fong, S. S. (2014). "Evaluation of Various Water Quality Indices for Water Quality Assessment of Sg. Sarawak." From Sources to Solution: Proceedings of the International Conference on Environmental Forensics 2013, A. Z. Aris, T. H. Tengku Ismail, R. Harun, A. M. Abdullah, and M. Y. Ishak, eds., Springer Singapore, Singapore, 227-231.
    Suykens, J. A. K., Gestel, T. V., Brabanter, J. D., Moor, B. D., and Vandewalle, J. (2002). Least Squares Support Vector Machines, World Scientific, Singapor.
    Suykens, J. A. K., and Vandewalle, J. (1999). "Least Squares Support Vector Machine Classifiers." Neural Processing Letters, 9(3), 293-300.
    Taheri Tizro, A., Ghashghaie, M., and Nozari, H. (2016). "Assessment of Carson Trophic Index in Dam Lake: a Case Study of Ekbatan Dam." Iranian Journal Of Health Sciences, 4(4), 25-33.
    Taiwan Environmental Protection Administration, R. O. C. T. (2017). "Monitoring items and methods." <http://wq.epa.gov.tw/Code/Business/ItemMethod.aspx?Languages=en>.
    Taiwan Environmental Protection Administration, R. O. C. T. (2017). "Water Quality Standards." <http://wq.epa.gov.tw/Code/Business/Standard.aspx?Languages=en>.
    Tan, G., Yan, J., Gao, C., and Yang, S. (2012). "Prediction of water quality time series data based on least squares support vector machine." Procedia Engineering, 31, 1194-1199.
    Tarmizi, A., Ahmed, A. N., and El-Shafie, A. (2014). "Dissolved Oxygen Prediction Using Support Vector Machine in Terengganu River." Middle-East Journal of Scientific Research, 21(11), 2182-2188.
    Vapnik, V. N. (1995). The nature of statistical learning theory, Springer-Verlag, New York.
    Verma, A. K., and Singh, T. N. (2013). "Prediction of water quality from simple field parameters." Environmental Earth Sciences, 69(3), 821-829.
    Walker, D., Jakovljević, D., Savić, D., and Radovanović, M. (2015). "Multi-criterion water quality analysis of the Danube River in Serbia: A visualisation approach." Water Research, 79, 158-172.
    Wetzel, R. G., and G., R. (1975). Limnology, Saunders College Publishing/Holt, Rhinehart and Winston, Philadelphia, Pennsylvania.
    Wolpert, D. H. (1992). "Stacked generalization." Neural Netw., 5, 241-259.
    Wu, W., Dandy, G. C., and Maier, H. R. (2014). "Protocol for developing ANN models and its application to the assessment of the quality of the ANN model development process in drinking water quality modelling." Environmental Modelling & Software, 54, 108-127.
    Yang, D., Li, G., and Cheng, G. (2007). "On the efficiency of chaos optimization algorithms for global optimization." Chaos, Solitons & Fractals, 34(4), 1366-1375.
    Yang, X.-S. (2008). Nature-Inspired Metaheuristic Algorithms, Luniver Press.
    Yang, X.-S. (2010). "Firefly algorithm, stochastic test functions and design optimisation." Int. J. Bio-Inspired Comput., 2(2), 78-84.
    Yang, X.-S. (2011). "Chaos-Enhanced Firefly Algorithm with Automatic Parameter Tuning." International Journal of Swarm Intelligence Research (IJSIR), 2(4), 1-11.
    Yang, X.-S. (2013). "Multiobjective firefly algorithm for continuous optimization." Engineering with Computers, 29(2), 175-184.
    Zapata, A., Menéndez, V. H., Prieto, M. E., and Romero, C. (2013). "A framework for recommendation in learning object repositories: An example of application in civil engineering." Advances in Engineering Software, 56, 1-14.
    Zare Abyaneh, H. (2014). "Evaluation of multivariate linear regression and artificial neural networks in prediction of water quality parameters." Journal of Environmental Health Science and Engineering, 12(1), 40-47.
    Zhang, N., and Lai, S. "Water quantity prediction based on particle swarm optimization and evolutionary algorithm using recurrent neural networks." Proc., The 2011 International Joint Conference on Neural Networks, 2172-2176.
    Zhao, W. G., and Wang, L. Y. (2010). "Water quality evaluation based on Multiclass Fuzzy Support Vector Machine." Advanced Materials Research, 708-711.

    無法下載圖示 全文公開日期 2022/07/27 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE