簡易檢索 / 詳目顯示

研究生: Pius Kibet Koech
Pius Kibet Koech
論文名稱: 鎳基合金與鈦基合金鍍鋁後對高溫氧化及腐蝕性質之研究
High-Temperature Oxidation and Corrosion Behaviours of Aluminized Nickel-based IN-718 Superalloy and Titanium-based Ti-6Al-4V Alloys
指導教授: 王朝正
Chaur-Jeng Wang
口試委員: 王朝正
Chaur-Jeng Wang
鄭偉鈞
Wei-Chun Cheng
郭俞麟
Yu-Lin Kuo
李志偉
Zhi-Wei Lee
蔡文達
Wen-Da Tsai
開物
Wu Kai
學位類別: 博士
Doctor
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2018
畢業學年度: 107
語文別: 英文
論文頁數: 185
中文關鍵詞: IN 718Ti-6Al-4VHot-dipPlasma sprayPlasma sprayCyclic oxidationHot-corrosion
外文關鍵詞: IN 718, Hot-dip, Plasma spray, Cyclic oxidation, Hot-corrosion
相關次數: 點閱:265下載:15
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Inconel 718 (IN-718) 和 Ti-6Al-4V (Ti64) 合金具優異耐蝕性及高溫下良好機械性質,常用於航太、核能、化工、生物醫學。然而這些合金在高溫熱循環下造成氧化層破裂及剝落,氧化現象增加導致組件失效。研究指出,高溫循環期間因受到水蒸氣、NaCl、熱循環之影響,進而氧化形成兩種氧化鍍層之形貌。經熱浸鍍鋁及等離子噴塗鍍層之In-718及Ti64合金置於臥式管爐中,分別在乾燥及濕空氣條件下進行650、750℃循環氧化,每循環為加熱10小時再空冷至室溫30分鐘。記錄重量變化後,使用XRD、OM、SEM、EDS分析氧化層組成、顯微結構。
    Inconel 718裸材表層在空氣中氧化形成Cr2O3氧化層,但合金表層檢測到Fe、Ni元素。而In-718裸材暴露於NaCl熱循環中,表層形成多孔Fe2O3氧化層,且腐蝕層有剝落嚴重產生。由於Fe2O3的揮發較Cr2O3快,Fe2O3氧化物在Cr2O3氧化物上方形成。Ti64裸材在空氣中氧化,生成TiO2與Al2O3為主要形成之氧化層。熱浸鍍鋁後之鋁塗層能改善In-718及Ti64合金的抗氧化性。然而隨著熱循環次數的增加,Al2O3氧化物及鋁化層中因為Kirkendall effect 形成之空洞數量增加。於熱腐蝕環境中,熱浸塗層改善合金的耐腐蝕性,但也由於裂縫和Kirkendall effect所產生空隙,導致鋁化層的降解,使腐蝕鹽侵蝕至底材造成大量腐蝕。鋁塗層向外擴散形成氧化層,而向內擴散則形成NiAl層。
    由單位面積之重量變化量結果顯示,熱浸鍍鋁熱增重變化最小,而等離子噴塗及裸材之熱增重最後因氧化層剝離而略微下降。熱浸塗層與等離子噴塗層形成之氧化層有不同形貌及成長速率。乾空氣與濕空氣中氧化層也有所差異,濕空氣測試中,因水存在而形成氧化鋁(Al2O3)使界面韌性降低,造成高氧化速率及空隙,幾乎無保護性之氧化鋁層。儘管如此,與等離子噴塗相比,水蒸氣似乎不會對熱浸塗層產生大的影響。結果可知,熱浸鍍層較等離子塗層有更好的抗氧化性。


    Inconel 718 and Ti-6Al-4V alloys are commonly used in aerospace, nuclear, biomedical and chemical industries due to their excellent corrosion resistance with good mechanical properties at elevated temperatures. However, these alloys among other metallic materials are susceptible to high temperature oxidation due to cracking and spallation of the scales especially under thermal-cycling conditions which resulted in the failure of components.
    In the present work, effects of water vapour, NaCl salts, and thermocycling commonly prevailing on the morphology and composition of alumina formed during high-temperature cyclic-oxidation were studied using two types of aluminide coatings. The aluminide hot-dip and plasma spray coatings prepared on inconel 718 and Ti-6Al-4V alloys were cyclically oxidized in horizontal tube furnace at 650 and 750 °C respectively. Test were done both in dry and moist air conditions by passing dry air through hot water bath at a flow rate of 200 cc/min. The exposure period was 10 hours in hot the chamber and 30 minutes at 25 C in room temperature per cycle. After recording mass changes, analyses of the composition, microstructure characterization, and morphology of the scales were conducted. Uncoated materials were also tested for comparisons.
    A Cr2O3 layer formed on uncoated inconel 718 alloy oxidized in dry air. Small amounts of Fe and Ni were also detected on the surface. However, porous oxide scale of Fe2O3 formed on the surface of uncoated inconel 718 substrate exposed to thermal-cycle in NaCl salt with extensive corrosive attack and scale spallation. Oxide of Fe2O3 formed on top of Cr2O3 oxide layer due to high volatilization of iron-chloride in respect to chromium-chloride. On the other hand, the scales formed on uncoated Ti-6Al-4V alloy in dry air consisted mainly TiO2 and minor oxide of Al2O3. The hot-dip coating provided a better oxidation resistance of both IN 718 and Ti-6Al-4V. However, spallation of Al2O3 oxide scale and formation of Kirkendall voids in the aluminide layer increased under thermal-cycle exposure. In presence of NaCl salts, the hot-dip coating improved corrosion resistance of the alloy compared to uncoated material. However, degradation of aluminide layer due to formation of cracks and voids allowed NaCl ions to diffuse into the substrate which resulted in an extensive corrosion.
    The mass change results show that aluminide hot-dip coating had the lowest value while both the plasma spray coating and uncoated specimens had an increase in mass then slightly decreased probably due to spallation of the oxide layer. The results also show that the oxide scale formed on the surface of the hot-dip coating has an inherently different morphology and growth rate compared to those formed on the plasma spray coating. Such discrepancies were also noted in coatings oxidized in dry air compared to those oxidized in moist air. High oxidation rate, severe spallation, extensive blistering and large voids with little protective alumina scale were observed in wet air. This can be attributed to decreased interfacial toughness of alumina oxide in the presence of water.
    Thus, it was concluded that the hot-dip coating has a better oxidation resistance compared to plasma spray coating.

    Dedication.…. i Abstract……… ii Acknowledgements v Table of Contents vi List of Tables.. x List of Figures xi Nomenclature.. xvi Chapter 1: Introduction 1 1.1 Nickel based superalloy - Inconel 718 2 1.2 Titanium based alloy - Ti-6Al-4V 4 1.3 Statement of research problem 5 1.4 Objectives 5 1.4.1 Broad objective 5 1.4.2 Specific objectives 5 Chapter 2: Literature Review 6 2.1 Background 7 2.1.1 Nickel based superalloys 7 2.1.2 Titanium based alloys 9 2.2 Thermodynamics of oxidation and diffusion 13 2.2.1 Chemical activities 13 2.2.2 Kinetics of oxidation 16 2.2.3 Wagner’s theory of oxidation 18 2.2.4 Solid - state diffusion and transport mechanism in oxides 19 2.2.4.1 Lattice diffusion: - Point defects in oxides 19 2.2.4.2 Short-circuit diffusion: - Linear and planar defects 20 2.2.5 Kirkendall Effect (Interdiffusion) 21 2.3 High temperature oxidation of metal alloys 22 2.3.1 Selective oxidation 22 2.3.2 Internal oxidation 23 2.3.2.1 Transition from internal to external oxidation 24 2.3.2.2 Subsurface void formation 24 2.3.3 Oxide formation and growth 25 2.3.4 Oxidation of some commercial alloys 26 2.3.4.1 Growth of Cr2O3 scales on Ni, Fe and Co-based alloys 26 2.3.4.2 Growth of Al2O3 scales on Ni, Fe and Co-based alloys 27 2.3.4.3 Growth of TiO2 scales on titanium-based alloys 29 2.3.5 Stresses generation in oxide scale 31 2.3.5.1 Oxide growth stress (Pilling-Bedworth ratio) 31 2.3.5.2 Thermal stress (Coefficient of Thermal Expansion) 32 2.3.5.3 External Stresses 33 2.3.6 Healing of oxide scale cracks 34 2.3.7 Effect of alloy elements on oxidation behavior of alloys 35 2.3.8 Formation of intermetallics in commercial alloys 36 2.3.8.1 Ni-Al based intermetallics 36 2.3.8.2 Ti-Al-based intermetallics 37 2.3.8.3 Fe-Al based intermetallics 38 2.3.9 Effects of water-vapor on the oxidation behavior of alloys 38 2.4 High temperature corrosion of metal alloys 40 2.4.1 Corrosion environment 40 2.4.2 Mechanism of hot corrosion 40 2.4.3 Types of hot corrosion 41 2.4.4 Corrosion mechanisms in chlorine gas 43 2.4.5 Hot corrosion of super alloys (Ni-Cr alloys) 43 2.5 Protective coatings for high temperature applications 44 2.5.1 Pack cementation 45 2.5.2 Chemical vapor deposition (CVD) coatings 45 2.5.3 Physical vapour deposition (PVD) coatings 46 2.5.4 Plasma electrolytic oxidation (PEO) coatings 46 2.5.5 Thermally sprayed coatings 47 2.5.5.1 High velocity oxy-fuel flame (HVOF) 47 2.5.5.2 Plasma spray coatings 48 2.5.5.3 Thermal barrier coatings (TBC) 49 2.5.6 Hot-dip coatings 51 2.5.6.1 Factors influencing aluminizing process 51 2.5.6.2 Growth of intermetallic phases during aluminizing process 53 Chapter 3: Experimental Procedures 54 3.1 Overview 55 3.2 Design of experiment 56 3.3 Experimental methodology 56 3.3.1 Substrate materials 56 3.3.2 Specimen preparation 57 3.3.3 Substrate coating 58 3.3.4 Cyclic oxidation and corrosion test 59 3.3.5 Kinetics calculation 61 3.4 Specimen analysis 61 3.4.1 Mounting, grinding, polishing and etching procedures 61 3.4.2 X-ray diffraction (XRD) analysis 62 3.4.3 Scanning electron microscopy (SEM) for metallographic examination 63 Chapter 4: Results 64 4.1 Preface 65 4.2 As-deposited aluminium coating specimens 65 4.2.1 Microstructure of as-coated IN-718 superalloy specimens 65 4.2.2 Microstructure of as-coated titanium-based Ti64 alloy 67 4.3 Kinetics of oxidation 69 4.3.1 Oxidation kinetics of bare and coated IN-718 superalloy 69 4.3.2 Oxidation kinetics of bare and coated titanium-based Ti64 alloy 71 4.4 High temperature cyclic oxidation of bare material 72 4.4.1 Cyclic oxidation of bare IN-718 72 4.4.2 Cyclic oxidation of titanium based Ti64 alloy 76 4.5 Scale constitution and phases of aluminized specimens 78 4.5.1 Cyclic oxidation of aluminized IN-718 alloys at elevated temperatures 77 4.5.1.1 Effect of hot-dip coatings on cyclic oxidation of IN-718 superalloys 79 4.5.1.2 Effect of plasma spray coatings on cyclic oxidation of IN-718 superalloy 87 4.5.2 Cyclic oxidation of aluminized Ti64 alloy at elevated temperatures 93 4.5.2.1 Cyclic oxidation of hot-dip aluminized Ti64 alloy 93 4.5.2.2 Cyclic oxidation of plasma-spray aluminized Ti64 alloy 102 4.6 NaCl induced hot corrosion on bare and coated materials 107 4.6.1 Corrosion of bare IN-718 in NaCl at elevated temperatures 107 4.6.2 Corrosion of hot-dip aluminized IN-718 in NaCl 110 Chapter 5: Discussion 115 5.1 Outline 116 5.2 Formation of intermetallic phases on as-coated specimens 116 5.2.1 Phase formation in aluminized as-coated IN-718 superalloys 116 5.2.2 Phase formation in as-coated titanium-based Ti64 alloy 119 5.3 Effect of Temperature with respect to oxidation kinetics 121 5.4 Oxidation mechanisms of bare specimens 124 5.4.1 Oxidation mechanisms of bare IN-718 superalloy 124 5.4.2 Oxidation mechanisms of bare titanium based Ti64 alloy 127 5.5 Effect of aluminized coating on oxidation mechanism 130 5.5.1 Oxidation mechanisms of aluminized IN-718 superalloy 130 5.5.2 Oxidation mechanisms of aluminized titanium based Ti64 alloy 136 5.6 Analysis of protective scale failures due to NaCl salt 141 5.6.1 Failures mechanisms of bare IN-718 due to NaCl salt deposits 142 5.6.2 Failures mechanisms of hot-dip coating due to NaCl deposits 147 Chapter 6: Conclusion and Future Works 149 6.1 Conclusions 150 6.2 Future works 152 References…. 153 Publications… 165 Short Resume 166

    [1] J.R. Davis, 'ASM specialty handbook, nickel, cobalt and their alloys,' ASM International, (2000).
    [2] S. Kamal, C.V. Kumar, 'High Temperature Oxidation/ Corrosion and Degradation Mechanisms of Superalloys - Review,' International Journal of Surface Engineering & Materials Technology, 2 (2012), p. 16-19.
    [3] G.A. El-Awadi, S. Abdel-Samad, E.S. Elshazly, 'Hot corrosion behavior of Ni based Inconel 617 and Inconel 738 superalloys,' Appl Surf Sci, 378 (2016), p. 224-230.
    [4] G.S. Mahobia, N. Paulose, V. Singh, 'Hot Corrosion Behavior of Superalloy IN718 at 550 and 650 °C,' J Mater Eng Perform, 22 (2013), p. 2418-2435.
    [5] Z.-N. Bi, J.-X. Dong, M.-C. Zhang, L. Zheng, X.-S. Xie, 'Mechanism of α-Cr precipitation and crystallographic relationships between α-Cr and δ phases in Inconel 718 alloy after long-time thermal exposure,' Int J Min Met Mater, 17 (2010), p. 312-317.
    [6] C.J. Wang, S.M. Chen, 'Microstructure and cyclic oxidation behavior of hot dip aluminized coating on Ni-base superalloy Inconel 718,' Surface & Coatings Technology, 201 (2006), p. 3862-3866.
    [7] L. Geng, Y.S. Na, N.K. Park, 'Oxidation behavior of Alloy 718 at a high temperature,' Mater Design, 28 (2007), p. 978-981.
    [8] S. Saladi, J. Menghani, S. Prakash, 'A Study on the cyclic oxidation behavior of detonation-gun-sprayed Ni-5Al coatings on inconel-718 at 900 °C,' J Mater Eng Perform, 23 (2014), p. 4394-4403.
    [9] K.A. Al-hatab, M.A. Al-bukhaiti, U. Krupp, M. Kantehm, 'Cyclic Oxidation Behavior of IN 718 Superalloy in Air at High Temperatures,' Oxidation of Metals, 75 (2011), p. 209-228.
    [10] C.T. Liu, J. Ma, X.F. Sun, P.C. Zhao, 'Mechanism of the oxidation and degradation of the aluminide coating on the nickel–base single-crystal super alloy DD32M,' Surface & Coatings Technology, 204 (2010), p. 3641-3646.
    [11] D. Mudgal, S. Singh, S. Prakash, 'Cyclic Hot Corrosion Behavior of Superni 718, Superni 600, and Superco 605 in Sulfate and Chloride Containing Environment at 900 °C,' Metallography, Microstructure, and Analysis, 4 (2015), p. 13-25.
    [12] S. Saladi, J. Menghani, S. Prakash, 'Hot Corrosion Behaviour of Detonation-Gun Sprayed Cr3C2–NiCr Coating on Inconel-718 in Molten Salt Environment at 900 °C,' T Indian I Metals, 67 (2014), p. 623-627.
    [13] F.H. Stott, G.C. Wood, J. Stringer, 'The influence of alloying elements on the development and maintenance of protective scales,' Oxidation of Metals, 44 (1995), p. 113-145.
    [14] C.J. Wang, Y.C. Chang, 'NaCl-induced hot corrosion of Fe-Mn-Al-C alloys,' Materials Chemistry and Physics, 76 (2002), p. 151-161.
    [15] P. Visuttipitukul, N. Limvanutpong, P. Wangyao, 'Aluminizing of nickel-based superalloys Grade IN 738 by powder liquid coating,' Mater Trans, 51 (2010), p. 982-987.
    [16] G.W. Goward, D.H. Boone, 'Mechanisms of formation of diffusion aluminide coatings on nickel-base superalloys,' Oxidation of Metals, 3 (1971), p. 475-495.
    [17] M. Zielinska, J. Sieniawski, M. Yavorska, M. Motyka, 'Influence of chemical composition of nickel based superalloy on the formation of aluminide coatings,' Archives of Metallurgy and Materials, 56 (2011), p. 193-197.
    [18] A. Magdziarz, Z. Kalicka, 'Hot corrosion behaviour of Ni3Al in sulphate–chloride mixtures in the atmosphere,' Corrosion Science, 49 (2007), p. 1869-1877.
    [19] W.H. Lee, 'Oxidation and sulfidation of Ni3Al,' Materials Chemistry and Physics, 76 (2002), p. 26-37.
    [20] S.C. Choi, H.J. Cho, Y.J. Kim, L. D. B, 'High-temperature oxidation behavior of pure Ni3AI,' Oxidation of Metals, 46 (1996), p.
    [21] W.H. Lee, R.Y. Lin, 'Hot corrosion mechanism of intermetallic compound Ni3Al,' Materials Chemistry and Physics, 77 (2003), p. 86-96.
    [22] H.L. Du, P.K. Datta, D.B. Lewis, J.S. Burnellgray, 'Air Oxidation Behavior of Ti-6Al-4V Alloy between 650 and 850 °C,' Corrosion Science, 36 (1994), p. 631-642.
    [23] M.J. Donachie, 'Titanium: A technical guide, 2nd edition,' ASM International, Materials Park, Ohio, (2000).
    [24] M. Anuwar, R. Jayaganthan, V.K. Tewari, N. Arivazhagan, 'A study on the hot corrosion behavior of Ti-6Al-4V alloy,' Materials Letters, 61 (2007), p. 1483-1488.
    [25] L. Christoph, P. Manfred, 'Titanium and titanium alloys, fundamentals and applications,' Die Deutsche Bibliothek, Federal Republic of Germany, (2003).
    [26] H. Guleryuz, H. Cimenoglu, 'Oxidation of Ti-6Al-4V alloy,' Journal of Alloys and Compounds, 472 (2009), p. 241-246.
    [27] W.B. Li, S.L. Zhu, C. Wang, M.H. Chen, M.L. Shen, F.H. Wang, 'SiO2-Al2O3-glass composite coating on Ti-6Al-4V alloy: Oxidation and interfacial reaction behavior,' Corrosion Science, 74 (2013), p. 367-378.
    [28] Z.W. Li, W. Gao, D.L. Zhang, Z.H. Cai, 'High temperature oxidation behaviour of a TiAl-Al2O3 intermetallic matrix composite,' Corrosion Science, 46 (2004), p. 1997-2007.
    [29] D.W. Mckee, K.L. Luthra, 'Plasma-sprayed coatings for titanium-alloy oxidation protection,' Surface & Coatings Technology, 56 (1993), p. 109-117.
    [30] C. Leyens, R. Braun, M. Fröhlich, P.E. Hovsepian, 'Recent progress in the coating protection of gamma titanium-aluminides,' The Journal of The Minerals, Metals & Materials Society 58 (2006), p. 17-21.
    [31] Z.G. Zhang, Y.P. Peng, Y.L. Mao, C.J. Pang, L.Y. Lu, 'Effect of hot-dip aluminizing on the oxidation resistance of Ti-6Al-4V alloy at high temperatures,' Corrosion Science, 55 (2012), p. 187-193.
    [32] M.Z. Alam, D.K. Das, 'Effect of cracking in diffusion aluminide coatings on their cyclic oxidation performance on Ti-based IMI-834 alloy,' Corrosion Science, 51 (2009), p. 1405-1412.
    [33] N. Birks, G.H. Meter, F.S. Pettit, 'Introduction to the high-temperature oxidation of metals,' Second ed., Cambridge University Press, United States of America, (2006).
    [34] Y.N. Zhang, X. Cao, P. Wanjara, M. Medraj, 'Oxide films in laser additive manufactured Inconel 718,' Acta Materialia, 61 (2013), p. 6562-6576.
    [35] V. Mannava, A.S. Rao, N. Paulose, M. Kamaraj, R.S. Kottada, 'Hot corrosion studies on Ni-base superalloy at 650 degrees C under marine-like environment conditions using three salt mixture (Na2SO4 + NaCl + NaVO3),' Corrosion Science, 105 (2016), p. 109-119.
    [36] M.C. Chaturvedi, Y.-f. Han, 'Strengthening mechanisms in Inconel 718 superalloy,' Metal Science, 17 (1983), p. 145-149.
    [37] M. Sundararaman, P. Mukhopadhyay, S. Banerjee, 'Some aspects of the precipitation of metastable intermetallic phases in INCONEL 718,' Metallurgical Transactions A, 23 (1992), p. 2015-2028.
    [38] R. Cozar, A. Pineau, 'Morphology of g’ and g” precipitates and thermal stability of inconel 718 type alloys,' Metallurgical Transactions, 4 (1973), p. 47-59.
    [39] H. Jianhong, S. Fukuyama, K. Yokogawa, 'g" Precipitate in Inconel 718,' Journal of material science technology, 10 (1994), p. 293-303.
    [40] C. Slama, C. Servant, G. Cizeron, 'Aging of the Inconel 718 alloy between 500 and 750 °C,' Journal of Materials Research, 12 (2011), p. 2298-2316.
    [41] J. Zurek, D.J. Young, E. Essuman, M. Hänsel, H.J. Penkalla, L. Niewolak, W.J. Quadakkers, 'Growth and adherence of chromia based surface scales on Ni-base alloys in high- and low-pO2 gases,' Materials Science and Engineering: A, 477 (2008), p. 259-270.
    [42] L. Kumar, R. Venkataramani, M. Sundararaman, P. Mukhopadhyay, S.P. Garg, 'Studies on the oxidation behavior of Inconel 625 between 873 and 1523 K,' Oxidation of Metals, 45 (1996), p. 221-244.
    [43] K. Zhao, Y.H. Ma, L.H. Lou, Z.Q. Hu, 'm Phase in a Nickel Base Directionally Solidified Alloy,' Mater Trans, 46 (2005), p. 54-58.
    [44] G. Lütjering, J.C. Williams, 'Titanium, engineering materials and processes,' 2nd ed., Berlin Heidelberg, (2007).
    [45] H.D. Shashikala, S.V. Suryanarayana, K.S.N. Murthy, 'Thermal expansion characteristics of Ti3Al and the effect of additives,' Journal of the Less-Common Metals, 155 (1989), p. 23-29.
    [46] Z. Guo, S. Malinov, W. Sha, 'Modelling beta transus temperature of titanium alloys using artificial neural network,' Computational Materials Science, 32 (2005), p. 1-12.
    [47] ASM-International, 'ASM Handbook: Volume 3: Alloy Phase Diagrams,' 10 ed., Materials Park, Ohio : ASM International, (1992).
    [48] M. Sujata, S. Bhargava, S. Sangal, 'On the formation of TiAl3 during reaction between solid Ti and liquid Al,' Journal of Materials Science Letters, 16 (1997), p. 1175-1178.
    [49] S.L. Semiatin, V. Seetharaman, I. Weiss, 'Hot workability of titanium and titanium aluminide alloys—an overview,' Materials Science and Engineering: A, 243 (1998), p. 1-24.
    [50] F.H. Stott, 'The protective action of oxide scales in gaseous environments at high temperature,' Reports on Progress in Physics, 50 (1987), p. 861-913.
    [51] P. Sarrazin, A. Galerie, J. Fouletier, 'Mechanisms of High Temperature Corrosion: A Kinetic Approach,' Trans Tech Publications Ltd, Switzerland, (2008).
    [52] C.S. Giggins, F.S. Pettit, 'Oxidation of Ni ‐ Cr ‐ Al alloys between 1000° and 1200 °C,' Journal of The Electrochemical Society, 118 (1971), p. 1782-1790.
    [53] R. Prescott, M.J. Graham, 'The formation of aluminum oxide scales on high-temperature alloys,' Oxidation of Metals, 38 (1992), p. 233-254.
    [54] J.H. Chen, P.M. Rogers, J.A. Little, 'Oxidation behavior of several chromia-forming commercial Nickel-base superalloy,' Oxidation of Metals, 47 (1997), p. 381-410.
    [55] G.Y. Lai, 'High temperature corrosion and materials applications,' ASM International, United Sates of America, (2007).
    [56] B.W. Dunnington, F.H. Beck, M.G. Fontana, 'The mechanism of scale formation on iron at high temperature,' Corrosion, 8 (1952), p. 2-12.
    [57] B. Pieraggi, 'Calculations of parabolic reaction rate constants,' Oxidation of Metals, 27 (1987), p. 177–185.
    [58] D.L. Douglass, 'The oxidation mechanism of dilute Ni-Cr alloys,' Corrosion Science, 8 (1968), p. 665-678.
    [59] M. Mizutani, 'Study on high temperature oxidation of Ni-Cr ceramic alloys. Effects of Cr and Mo,' Aichi Gakuin Daigaku Shigakkai Shi. Japanese, 28 (1990), p. 59-78.
    [60] A.S. Khanna, 'Introduction to high temperature oxidation and corrosion,' ASM International, (2002).
    [61] P. Kofstad, 'Defects and transport-properties of metal-oxides,' Oxidation of Metals, 44 (1995), p. 3-27.
    [62] D.J. Young, 'High temperature oxidation and corrosion of metals,' Second ed., John Fedor, (2015).
    [63] G.F. Bastin, G.D. Rieck, 'Diffusion in the titanium-aluminium system: I. Occurrence and growth of the various intermetallic compounds,' Met. Trans, 5 (1974), p. 1817-1826.
    [64] M.D. Thouless, 'Cracking and delamination of coatings,' Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 9 (1991), p. 2510-2515.
    [65] M.P. Brady, B.A. Pint, P.F. Tortorelli, I.G. Wright, R.J. Hanrahan, 'High temperature oxidation and corrosion of intermetallics,' in: M. Schütze (Ed.) Corrosion and Environmental Degradation of Materials, Vol., (Wiley-VCH: Weinheim, Germany, 2000).
    [66] M. Schütze, 'Corrosion and Environmental Degradation, Volumes I,' Wiley-VCH Verlag GmbH, Federal Republic of German, (2000).
    [67] A. Gil, V. Shemet, R. Vassen, M. Subanovic, J. Toscano, D. Naumenko, L. Singheiser, W.J. Quadakkers, 'Effect of surface condition on the oxidation behaviour of MCrAlY coatings,' Surface & Coatings Technology, 201 (2006), p. 3824-3828.
    [68] H. Hindam, D.P. Whittle, 'Microstructure, adhesion and growth kinetics of protective scales on metals and alloys,' Oxidation of Metals, 18 (1982), p. 245-284.
    [69] F.H. Stott, 'Principles of Growth and Adhesion of Oxide Scales,' in: The Role of Active Elements in the Oxidation Behaviour of High Temperature Metals and Alloys, (Springer, Dordrecht, 1989), p. 3-21.
    [70] F.H. Stott, G.C. Wood, M.G. Hobbyt, 'A comparison of the oxidation behavior of Fe-Cr-Al, Ni-Cr-Al, and Co-Cr-Al alloys,' Oxidation of Metals, 3 (1971), p. 103-113.
    [71] C. Leyens, K. Fritscher, R. Gehrling, M. Peters, W.A. Kaysser, 'Oxide scale formation on an MCrAlY coating in various H2-H2O atmospheres,' Surface and Coatings Technology, 82 (1996), p. 133-144.
    [72] F.H. Stott, G.C. Wood, 'The mechanism of oxidation of Ni-Cr-Al alloys at 1000°–1200°C,' Corrosion Science, 11 (1971), p. 799-812.
    [73] J.L. Smialek, R. Gibala, 'Structure of transient oxides formed on nicrai alloys,' Metallurgical Transactions A, 14 (1983), p. 2143-2161.
    [74] F.S. Pettit, G.H. Meier, 'Oxidation and hot corrosion of superalloys,' edited by M.Gell et al., The Metallurgical Society of AIME, (1984), p. 651-687.
    [75] I. Cvijovic, M.T. Jovanovic, D. Perusko, 'Cyclic oxidation behaviour of Ti3Al-based alloy with Ni-Cr protective layer,' Corrosion Science, 50 (2008), p. 1919-1925.
    [76] M. Goral, L. Swadzba, G. Moskal, G. Jarczyk, J. Aguilar, 'Diffusion aluminide coatings for TiAl intermetallic turbine blades,' Intermetallics, 19 (2011), p. 744-747.
    [77] J.L. Smialek, J.A. Nesbitt, W.J. Brindley, M.P. Brady, J. Doychak. 'Service limitations for oxidation resistant intermetallic compounds'. in Materials Research Society. 1995.
    [78] V.K. Tolpygo, D.R. Clarke, 'Wrinkling of alpha-alumina films grown by oxidation - II. Oxide separation and failure,' Acta Materialia, 46 (1998), p. 5167-5174.
    [79] A. Rouaix-Vande Put, K.A. Unocic, M.P. Brady, B.A. Pint, 'Performance of chromia- and alumina-forming Fe- and Ni-base alloys exposed to metal dusting environments: The effect of water vapor and temperature,' Corrosion Science, 92 (2015), p. 58-68.
    [80] I.G. Wright, 'High Temperature Corrosion,' in: Metals Handbook, Vol. 13, (ASM, Metals Park, OH, 1987), p. 97.
    [81] J.M. Herbelin, M. Mantel, 'Effects of Al addition and minor elements on oxidation behaviour of FeCr alloys,' Journal De Physique Iv, 5 (1995), p. 365-374.
    [82] I. Gurrappa, 'Influence of alloying elements on hot corrosion of superalloys and coatings: necessity of smart coatings for gas turbine engines,' Mater Sci Tech-Lond, 19 (2003), p. 178-183.
    [83] J.E. Benci, J.C. Ma, T.P. Feist, 'Evaluation of the intermetallic compound Al2Ti for elevated-temperature applications,' Mat Sci Eng a-Struct, 192 (1995), p. 38-44.
    [84] M. Haerig, S. Hofmann, 'Mechanisms of Ni3Al oxidation between 500°C and 700°C,' Appl Surf Sci, 125 (1998), p. 99-114.
    [85] S. Chevalier, P. Juzon, K. Przybylski, J.-P. Larpin, 'Water vapor effect on high-temperature oxidation behavior of Fe3Al intermetallics,' Science and Technology of Advanced Materials, 10 (2009), p. 1-7.
    [86] C.J. Wang, M. Badaruddin, 'The dependence of high temperature resistance of aluminized steel exposed to water-vapour oxidation,' Surface and Coatings Technology, 205 (2010), p. 1200-1205.
    [87] I.G. Wright, R.B. Dooley, 'A review of the oxidation behaviour of structural alloys in steam,' International Materials Reviews, 55 (2010), p. 129-167.
    [88] S.R.J. Saunders, M. Monteiro, F. Rizzo, 'The oxidation behaviour of metals and alloys at high temperatures in atmospheres containing water vapour: A review,' Progress in Materials Science, 53 (2008), p. 775-837.
    [89] W.J. Quadakkers, P.J. Ennis, J. Zurek, M. Michalik, 'Steam oxidation of ferritic steels – laboratory test kinetic data,' Materials at High Temperatures, 22 (2014), p. 47-60.
    [90] J. Ehlers, D.J. Young, E.J. Smaardijk, A.K. Tyagi, H.J. Penkalla, L. Singheiser, W.J. Quadakkers, 'Enhanced oxidation of the 9%Cr steel P91 in water vapour containing environments,' Corrosion Science, 48 (2006), p. 3428-3454.
    [91] S. Jansson, W. Hübner, G. Östberg, M.d. Pourbaix, 'Oxidation Resistance of Some Stainless Steels and Nickel-Based Alloys in High-Temperature Water and Steam,' British Corrosion Journal, 4 (1969), p. 21-31.
    [92] E.J. Opila, 'Volatility of common protective oxides in high-temperature water vapor: Current understanding and unanswered questions,' Mater Sci Forum, 461-464 (2004), p. 765-773.
    [93] S. Kamal, K.V. Sharma, A.M. Abdul-Rani, 'Hot Corrosion Behavior of Superalloy in Different Corrosive Environments,' Journal of Minerals and Materials Characterization and Engineering, 03 (2015), p. 26-36.
    [94] T.S. Sidhu, A. Malik, S. Prakash, R.D. Agrawal, 'Cyclic oxidation behavior of Ni- and Fe-based superalloys in air and Na2SO4-25%NaCl molten salt environment at 800 oC,' International Journal of Physical Sciences, 1 (2006), p. 27-33.
    [95] A.S. Khanna, 'High Temperature Oxidation,' in: W. Andrew (Ed.) Handbook of Environmental Degradation of Materials, Vol., Great Britain, 2012), p. 181.
    [96] W. Gao, 'Developments in high-temperature corrosion and protection of materials,' 1 ed., Woodhead, CRC Press LLC,, (2008).
    [97] S. Kamal, R. Jayaganthan, S. Prakash, 'High temperature cyclic oxidation and hot corrosion behaviours of superalloys at 900°C,' Bull. Mater. Sci, 33 (2010), p. 299-306.
    [98] J.H. Chen, J.A. Little, 'Degradation of the platinum aluminide coating on CMSX4 at 1100 °C,' Surface & Coatings Technology, 92 (1997), p. 69-77.
    [99] M. Zagula-Yavorska, K. Kubiak, J. Sieniawski, 'Oxidation behaviour of palladium modified aluminide coatings deposited by CVD method on nickel-based superalloys under air atmosphere,' Journal of Achievements in Materials and Manufacturing Engineering, 55 (2012), p. 848-854.
    [100] W.-J. Cheng, C.-J. Wang, 'Effect of chromium on the formation of intermetallic phases in hot-dipped aluminide Cr-Mo steels,' Applied Surface Science, 277 (2013), p. 139-145.
    [101] S. Rossi, L. Fedrizzi, M. Leoni, P. Scardi, Y. Massiani, '(Ti,Cr)N and Ti/TiN PVD coatings on 304 stainless steel substrates: wear-corrosion behaviour,' Thin Solid Films, 350 (1999), p. 161-167.
    [102] R. Bayón, R. Nevshupa, C. Zubizarreta, U. Ruiz de Gopegui, J. Barriga, A. Igartua, 'Characterisation of tribocorrosion behaviour of multilayer PVD coatings,' Anal Bioanal Chem, 396 (2010), p. 2855-2862.
    [103] R.C. Barik, J.A. Wharton, R.J.K. Wood, K.R. Stokes, R.L. Jones, 'Corrosion, erosion and erosion-corrosion performance of plasma electrolytic oxidation (PEO) deposited Al2O3 coatings,' Surface & Coatings Technology, 199 (2005), p. 158-167.
    [104] H. Latreche, G. Tegeder, G. Wolf, P.J. Masset, T. Weber, M. Schütze, 'New Approaches to Improve High Temperature Corrosion Resistance in Chlorine-Based Atmospheres,' Materials Science Forum, 595-598 (2008), p. 307-321.
    [105] B.Q. Wang, 'Erosion-Corrosion of Coatings by Biomass-Fired Boiler Fly-Ash,' Wear, 188 (1995), p. 40-48.
    [106] D. Zheng, S. Zhu, F. Wang, 'The influence of TiAlN and enamel coatings on the corrosion behavior of Ti6Al4V alloy in the presence of solid NaCl deposit and water vapor at 450 °C,' Surface and Coatings Technology, 201 (2007), p. 5859-5864.
    [107] N.P. Padture, M. Gell, E.H. Jordan, 'Thermal barrier coatings for gas-turbine engine applications,' Science, 296 (2002), p. 280-284.
    [108] Y. Song, C. Zhou, H. Xu, 'Corrosion behavior of thermal barrier coatings exposed to NaCl plus water vapor at 1050 °C,' Thin Solid Films, 516 (2008), p. 5686-5689.
    [109] W.J. Brindley, R.A. Miller, 'Thermal barrier coating life and isothermal oxidation of low-pressure plasma-sprayed bond coat alloys,' Surface and Coatings Technology, 43-44 (1990), p. 446-457.
    [110] W. Deqing, S. Ziyuan, T. Yingli, 'Microstructure and oxidation of hot-dip aluminized titanium at high temperature,' Appl Surf Sci, 250 (2005), p. 238-246.
    [111] M. Badaruddin, 'Parameters of hot-dipping,' in: Effects of Water-Vapour on the High Temperature Oxidation of Low Carbon Steel and Hot-Dip Aluminized Steel, Vol. Ph.d Thesis, (NTUST, Taiwan, 2011), p. 11-23.
    [112] Y. Tamarin, 'Protective Coatings for Turbine Blades,' ASM-International, (2002).
    [113] W.-J. Cheng, C.-J. Wang, 'Effect of chromium on the formation of intermetallic phases in hot-dipped aluminide Cr–Mo steels,' Appl Surf Sci, 277 (2013), p. 139-145.
    [114] S.C. Jeng, 'Oxidation behavior and microstructural evolution of hot-dipped aluminum coating on Ti-6Al-4V alloy at 800 °C,' Surface & Coatings Technology, 235 (2013), p. 867-874.
    [115] S.Y. Jiang, S.C. Li, 'Formation mechanism and prediction of new phases in binary metallic liquid/solid interface,' Rare Metals, 30 (2011), p. 486-491.
    [116] M.K. Hossain, S.R.J. Saunders, 'A microstructural study of the influence of NaCl vapor on the oxidation of a Ni-Cr-Al alloy at 850°C,' Oxidation of Metals, 12 (1978), p. 1-22.
    [117] X.Y. Li, Y.C. Zhu, K. Fujita, N. Iwamoto, Y. Matsunaga, K. Nakagawa, S. Taniguchi, 'Influence of Al film deposition and following treatment on the high temperature isothermal oxidation behavior of a γ-TiAl-based alloy,' Surface and Coatings Technology, 136 (2001), p. 276-280.
    [118] M. Goral, G. Moskal, L. Swadzba, 'Gas phase aluminizing of TiAl intermetallics,' Intermetallics, 17 (2009), p. 669-671.
    [119] S. Taniguchi, N. Hongawara, T. Shibata, 'Influence of water vapour on the isothermal oxidation behaviour of TiAl at high temperatures,' Mat Sci Eng a-Struct, 307 (2001), p. 107-112.
    [120] E. Essuman, G.H. Meier, J. Zurek, M. Hansel, W.J. Quadakkers, 'The effect of water vapor on selective oxidation of Fe-Cr alloys,' Oxidation of Metals, 69 (2008), p. 143-162.
    [121] Y. Xie, J. Zhang, D.J. Young, 'Temperature effect on oxidation behavior of Ni-Cr alloys in CO2 gas atmosphere,' Journal of the Electrochemical Society, 164 (2017), p. C285-C293.
    [122] H. Jiang, J. Dong, M. Zhang, L. Zheng, Z. Yao, 'Oxidation Behavior and Mechanism of Inconel 740H Alloy for Advanced Ultra-supercritical Power Plants Between 1050 and 1170 °C,' Oxidation of Metals, 84 (2015), p. 61-72.
    [123] D.L. Douglass, P. Kofstad, A. Rahmel, G.C. Wood, 'International workshop on high-temperature corrosion,' Oxidation of Metals, 45 (1996), p. 529-620.
    [124] D.M. England, A.V. Virkar, 'Oxidation kinetics of some nickel-based superalloy foils in humidified hydrogen and electronic resistance of the oxide scale formed part II,' Journal of the Electrochemical Society, 148 (2001), p. A330-A338.
    [125] T. Sasaki, T. Yagi, T. Watanabe, A. Yanagisawa, 'Aluminizing of TiAl-based alloy using thermal spray coating,' Surface & Coatings Technology, 205 (2011), p. 3900-3904.
    [126] K. Yan, H. Guo, S. Gong, 'High-temperature oxidation behavior of β-NiAl with various reactive element dopants in dry and humid atmospheres,' Corrosion Science, 83 (2014), p. 335-342.
    [127] J. Zygmuntowicz, P. Wiecińska, A. Miazga, K. Konopka, 'Characterization of composites containing NiAl2O4 spinel phase from Al2O3/NiO and Al2O3/Ni systems,' Journal of Thermal Analysis and Calorimetry, 125 (2016), p. 1079-1086.
    [128] C.G. Anchieta, L. Tochetto, H.B. Madalosso, R.D. Sulkovski, C. Serpa, M.A. Mazutti, A.R.F.d. Almeida, A. Gündel, E.L. Foletto, 'Effect of thermal treatment on the synthesis of NiAl2O4 spinel oxide using chitosan as precursor,' Cerâmica, 61 (2015), p. 477-481.
    [129] C.C. Tsaur, J.C. Rock, Y.Y. Chang, 'The effect of NaCl deposit and thermal cycle on an aluminide layer coated on 310 stainless steel,' Materials Chemistry and Physics, 91 (2005), p. 330-337.
    [130] D.W. Susnitzky, S.R. Summerfelt, C.B. Carter, 'Thin-film NiO-Al2O3 reaction couples prepared by CVD,' Scripta Metallurgica, 22 (1988), p. 1149-1154.
    [131] C.E. Inglis. 'Stress in a plate due to the presence of cracks and sharp corners'. in Spring Meetings of the Fifty-fourth Session of the Institution of Naval Architects. 1913. Cambridge, p. 219-241.
    [132] Z.J. Lin, M.S. Li, J.Y. Wang, Y.C. Zhou, 'Influence of water vapor on the oxidation behavior of Ti3AlC2 and Ti2AlC,' Scripta Materialia, 58 (2008), p. 29-32.
    [133] M. Badaruddin, C.J. Wang, 'Microstructure and high temperature oxidation of the hot-dipping Al-Si coating on low carbon steel in ethanol, water vapor and air at 700°C,' Advanced Materials Research, 79-82 (2009), p. 1775-1778.
    [134] K. Onal, M.C. Maris-Sida, G.H. Meier, F.S. Pettit, 'Water vapor effects on the cyclic oxidation resistance of alumina forming alloys,' Materials at High Temperatures, 20 (2003), p. 327-337.
    [135] M.C. Maris-Sida, G.H. Meier, F.S. Pettit, 'Some water vapor effects during the oxidation of alloys that are α-Al2O3 formers,' Metallurgical and Materials Transactions A, 34 (2003), p. 2609–2619.
    [136] N. Birks, G.H. Meier, F.S. Pettit, 'High-Temperature Corrosion Resistance,' Journal of Metals, 39 (1987), p. 28-31.
    [137] Y. Shinata, Y. Nishi, 'NaCl-induced accelerated oxidation of chromium,' Oxidation of Metals, 26 (1986), p. 201-212.
    [138] H. Fujikawa, N. Maruyama, 'Corrosion behaviour of austenitic stainless steels in the high chloride-containing environment,' Materials Science and Engineering: A, 120-121 (1989), p. 301-306.
    [139] Y. Shinata, M. Hara, T. Nakagawa, 'Accelerated Oxidation of Chromium by Trace of Sodium Chloride Vapor,' Materials Transactions, JIM, 32 (1991), p. 969-972.
    [140] C.J. Wang, C.C. Li, 'The high-temperature corrosion of austenitic stainless steel with a NaCl deposit at 850 °C,' Oxidation of Metals, 61 (2004), p. 485-505.
    [141] C. Edeleanu, R. Littlewood, 'Thermodynamics of corrosion in fused chlorides,' Electrochimica Acta, 3 (1960), p. 195-207.
    [142] H.P. Nielsen, F.J. Frandsen, K. Dam-Johansen, L.L. Baxter, 'The implications of chlorine-associated corrosion on the operation of biomass-fired boilers,' Progress in Energy and Combustion Science, 26 (2000), p. 283-298.
    [143] Y.S. Li, M. Spiegel, S. Shimada, 'Corrosion behaviour of various model alloys with NaCl–KCl coating,' Materials Chemistry and Physics, 93 (2005), p. 217-223.
    [144] N. Hiramatsu, Y. Uematsu, T. Tanaka, M. Kinugasa, 'Effects of alloying elements on NaCl-induced hot corrosion of stainless steels,' Materials Science and Engineering: A, 120 (1989), p. 319-328.
    [145] C.J. Wang, Y.C. Chang, 'TEM study of the internal oxidation of an Fe-Mn-Al-C alloy after hot corrosion,' Oxidation of Metals, 57 (2002), p. 363-378.

    QR CODE