簡易檢索 / 詳目顯示

研究生: 江宜欣
Yi-Sin Jiang
論文名稱: 心血管支架聚合物塗層裂痕及剝離的探討
Study on Cracking and Delamination in Polymer Coatings of Cardiovascular Stents
指導教授: 張復瑜
Fuh-Yu Chang
口試委員: 林建宏
Chien-Hung Lin
何羽健
Yu-Chien Ho
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 158
中文關鍵詞: 塗藥支架鎂合金支架聚合物塗層有限元素分析
外文關鍵詞: drug-eluting stent, magnesium alloy stent, polymer coating, finite element analysis
相關次數: 點閱:173下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

冠狀動脈疾病(Coronary Artery Disease, CAD)是指冠狀動脈內發生斑塊堆積進而導致動脈變狹窄、血管硬化甚至阻塞的現象,此時會出現心絞痛或心肌梗塞的症狀,而常見治療方式是以氣球導管將塗藥支架(Drug-Eluting Stent)置入狹窄的部位,經由氣球擴張及支架支撐恢復血流通暢。
本研究以有限元素模擬分析兩款市售代表性支架Xience V (Abbott Vascular)以及Resolute (Medtronic Cardio Vascular)在支架壓縮及擴張時聚合物塗層的等效應力應變,及探討其與塗層缺陷的關聯性。本研究也以有限元素模擬分析鎂合金支架塗層在支架壓縮、擴張及彎曲時的等效應變分佈與支架降解速率的關係。接著,本研究使用可進行破壞模擬(Fracture)的連接區模型(Cohesive Zone Model, CZM)的混合模式(Mixed Model)探討支架與塗層界面在壓縮與擴張過程中的黏脫機制。最後,本研究製作有聚合物塗層的傳統V型支架,及使用漸進式擴張方法觀察支架與塗層界面的分離情形,並與模擬結果進行比較。
本研究的有限元素模擬結果可以成功預估塗藥支架在壓縮與氣球擴張時,塗層可能產生缺陷的區域及型式,並可解釋鎂合金支架塗層等效應變分佈與支架降解情形的關係。


Coronary artery disease (CAD) is a condition in which plaque builds up in coronary arteries, leading to stenosis, sclerosis, or even blockage of the arteries, which can lead to angina or myocardial infarction. The common treatment is to place a drug-eluting stent through a balloon catheter into the stenosis, then blood flow can be restored through balloon expansion and stent support.
In this study, Finite element analysis (FEA) was performed to simulate the stress response of two commercial stents, Xience V (Abbott Vascular) and Resolute (Medtronic Cardio Vascular), during compression and expansion, and to investigate the association with the defects of stent coating. In the following, the strain distribution of magnesium alloy stent coating during the stent compression, expansion and bending was analyzed in relation to the stent degradation rate using FEA. Then, the mixed model of Cohesive Zone Model (CZM) was used to investigate the adhesion and separation mechanism of a stent-coating interface during compression and expansion. Finally, a conventional V-shaped polymer coated stent was manufactured. The adhesion and separation phenomena between the stent and coating was investigated by expanding the stent progressively, and the experimental result was compared with simulation.
The finite element simulation results of this study can successfully predict the defect location and type of stent polymer coating during the stent compression and balloon expansion, and it can explain the relationship between the strain distribution of magnesium alloy stent coating and stent degradation.

摘要 I Abstract III 誌謝 V 圖目錄 XI 表目錄 XXI 第一章、 緒論 1 1.1. 研究背景 1 1.2. 研究動機與目的 3 第二章、 文獻回顧 5 2.1. 塗藥支架 5 2.1.1. 第一代塗藥支架 5 2.1.2. 第二代塗藥支架 6 2.2. 生物可降解支架 9 2.2.1. 高分子材料 9 2.2.2. 金屬材料 10 2.2.3. 市售鎂合金支架 11 2.3. 支架塗層 12 2.3.1. 塗層製造 12 2.3.2. 塗層缺陷 15 2.4. 連接區模型(Cohesive Zone Model, CZM) 25 2.4.1. 模式一(Model I) 26 2.4.2. 模式二(Model II) 27 2.4.3. 混合模式(Mixed Model) 29 第三章、 實驗方法 32 3.1. 市售支架塗層的有限元素分析 34 3.1.1. 3D模型建置 35 3.1.2. 建立有限元素模型 38 3.1.3. 材料性質設定 39 3.1.4. 接觸條件設定 44 3.1.5. 邊界條件設定 45 3.2. 鎂合金支架塗層的有限元素分析 48 3.2.1. 3D模型建置 48 3.2.2. 材料參數設定 50 3.2.3. 接觸條件設定 51 3.2.4. 邊界條件設定 51 3.2.5. 網格大小與收斂性分析 53 3.3. 連接區模型設定 55 3.3.1. 3D模型建置 55 3.3.2. 材料參數設定 57 3.3.3. 支架與塗層連接面破壞模式設定 60 3.4. V型支架製作 62 3.4.1. 奈秒光纖雷射加工 62 3.4.2. 噴砂加工參數 65 3.4.3. 酸洗加工參數 67 3.4.4. 電解拋光製程參數 67 3.4.5. 支架覆膜 68 3.5. V型支架實驗 71 3.5.1. 支架壓縮 71 3.5.2. 氣球擴張 72 3.6. 使用設備與儀器 74 3.6.1. 後處理設備 74 3.6.2. 分析儀器 79 第四章、 實驗結果 83 4.1. 市售支架 83 4.1.1. 市售支架壓縮模擬 83 4.1.2. 市售支架擴張模擬 86 4.1.3. 市售支架分析結果探討 89 4.2. 鎂合金支架 91 4.2.1. 鎂合金支架塗層壓縮模擬 91 4.2.2. 鎂合金支架塗層擴張模擬 92 4.2.3. 鎂合金支架塗層三點彎曲模擬 94 4.2.4. 模擬結果與降解實驗探討 95 4.3. V型支架模擬結果 99 4.3.1. 支架壓縮模擬結果 99 4.3.2. 支架擴張模擬結果 100 4.3.3. 連接區模型模擬結果 101 4.4. V型支架製作 109 4.4.1. 奈秒雷射加工 109 4.4.2. 支架後處理 110 4.4.3. 支架覆膜製程 112 4.5. V型支架實驗結果 115 4.5.1. 支架壓縮實驗 115 4.5.2. 支架擴張實驗 116 第五章、 結論與未來展望 123 5.1. 結論 123 5.2. 未來展望 125 參考文獻 127

[1] C. McCormick, "Overview of cardiovascular stent designs," in Functionalised Cardiovascular Stents, pp. 3-26, 2018.
[2] P. W. Serruys et al., "A comparison of balloon-expandable-stent implantation with balloon angioplasty in patients with coronary artery disease," New England Journal of Medicine, vol. 331, no. 8, pp. 489-495, 1994.
[3] A. Firouzi, "Percutaneous coronary intervention," in Practical Cardiology, pp. 455-461, 2022.
[4] U. Sigwart et al., "Emergency stenting for acute occlusion after coronary balloon angioplasty," Circulation, vol. 78, no. 5, pp. 1121-1127, 1988.
[5] T. L. P. Slottow et al., "Observations and outcomes of definite and probable drug-eluting stent thrombosis seen at a single hospital in a four-year period," The American journal of cardiology, vol. 102, no. 3, pp. 298-303, 2008.
[6] M. Pfisterer et al., "Late clinical events after clopidogrel discontinuation may limit the benefit of drug-eluting stents: an observational study of drug-eluting versus bare-metal stents," Journal of the american College of Cardiology, vol. 48, no. 12, pp. 2584-2591, 2006.
[7] L. Mauri, W.-h. Hsieh, J. M. Massaro, K. K. Ho, R. D'Agostino, and D. E. Cutlip, "Stent thrombosis in randomized clinical trials of drug-eluting stents," New England journal of medicine, vol. 356, no. 10, pp. 1020-1029, 2007.
[8] 李政良, "淺談冠狀動脈支架," 血管醫學防治季刊, no. 20, pp. 7-8, 2015.
[9] S. Schulz et al., "Stent thrombosis after drug-eluting stent implantation: incidence, timing, and relation to discontinuation of clopidogrel therapy over a 4-year period," European Heart Journal, vol. 30, no. 22, pp. 2714-2721, 2009.
[10] L. Mauri et al., "Drug-eluting or bare-metal stents for acute myocardial infarction," New England Journal of Medicine, vol. 359, no. 13, pp. 1330-1342, 2008.
[11] M.-H. Kang et al., "An asymmetric surface coating strategy for improved corrosion resistance and vascular compatibility of magnesium alloy stents," Materials & Design, vol. 196, p. 109182, 2020.
[12] J. E. Sousa, P. W. Serruys, and M. A. Costa, "New frontiers in cardiology: drug-eluting stents: Part II," Circulation, vol. 107, no. 18, pp. 2383-2389, 2003.
[13] W. Khan, S. Farah, and A. J. Domb, "Drug eluting stents: Developments and current status," Journal of Controlled Release, vol. 161, no. 2, pp. 703-712, 2012.
[14] A. E. Alahmar et al., "Reduction in mortality and target-lesion revascularisation at 2 years: A comparison between drug-eluting stents and conventional bare-metal stents in the “real world”," International Journal of Cardiology, vol. 132, no. 3, pp. 398-404, 2009.
[15] J. W. Moses et al., "Sirolimus-eluting stents versus standard stents in patients with stenosis in a native coronary artery," New England Journal of Medicine, vol. 349, no. 14, pp. 1315-1323, 2003.
[16] A. J. Kirtane et al., "Safety and efficacy of drug-eluting and bare metal stents: comprehensive meta-analysis of randomized trials and observational studies," Circulation, vol. 119, no. 25, pp. 3198-3206, 2009.
[17] M.-Y. Ho et al., "The Development of Coronary Artery Stents: From Bare-Metal to Bio-Resorbable Types," Metals, vol. 6, no. 7, p. 168, 2016.
[18] M.-C. Morice et al., "A randomized comparison of a sirolimus-eluting stent with a standard stent for coronary revascularization," New England Journal of Medicine, vol. 346, no. 23, pp. 1773-1780, 2002.
[19] L. Pinchuk, G. J. Wilson, J. J. Barry, R. T. Schoephoerster, J.-M. Parel, and J. P. Kennedy, "Medical applications of poly (styrene-block-isobutylene-block-styrene)(“SIBS”)," Biomaterials, vol. 29, no. 4, pp. 448-460, 2008.
[20] E. Grube et al., "TAXUS I: six- and twelve-month results from a randomized, double-blind trial on a slow-release paclitaxel-eluting stent for de novo coronary lesions," Circulation, vol. 107, no. 1, pp. 38-42, 2003.
[21] M. Pfisterer, C. Kaiser, F. Bader, H. Brunner-La Rocca, P. Bonetti, and P. Buser, "Late clinical events related to late stent thrombosis after stopping clopidogrel: prospective randomized comparison between drug-eluting versus bare-metal stenting," in Program and abstracts from the American College of Cardiology 55th Annual Scientific Session, pp. 422-11, 2006.
[22] N. Kukreja, Y. Onuma, and P. W. Serruys, "Xience V everolimus-eluting coronary stent," Expert Rev Med Devices, vol. 6, no. 3, pp. 219-29, 2009.
[23] L. Räber and S. Windecker, "Current status of drug‐eluting stents," Cardiovascular therapeutics, vol. 29, no. 3, pp. 176-189, 2011.
[24] 黃雪娥, 陳科呈, 殷偉賢, 蔡維河, and 葉明陽, "塗藥心臟血管支架之醫療費用結構與成本效益分析—與傳統支架之比較," 內科學誌, vol. 21, no. 4, pp. 258-269, 2010.
[25] D. M. Martin and F. J. Boyle, "Drug-eluting stents for coronary artery disease: A review," Medical Engineering & Physics, vol. 33, no. 2, pp. 148-163, 2011.
[26] C. J. Van Dyck, V. Y. Hoymans, S. Haine, and C. J. Vrints, "New‐G eneration Drug‐E luting Stents: Focus on Xience V® Everolimus‐E luting Stent and Resolute® Zotarolimus‐E luting Stent," Journal of Interventional Cardiology, vol. 26, no. 3, pp. 278-286, 2013.
[27] S. Silber, S. Windecker, P. Vranckx, and P. W. Serruys, "Unrestricted randomised use of two new generation drug-eluting coronary stents: 2-year patient-related versus stent-related outcomes from the RESOLUTE All Comers trial," The Lancet, vol. 377, no. 9773, pp. 1241-1247, 2011.
[28] M. W. Z. Basalus et al., "TWENTE Study: The Real-World Endeavor Resolute Versus Xience V Drug-Eluting Stent Study in Twente: study design, rationale and objectives," Neth Heart J, vol. 18, no. 7-8, pp. 360-364, 2010.
[29] G. Galyfos et al., "Bioabsorbable stenting in peripheral artery disease," Cardiovascular Revascularization Medicine, vol. 16, no. 8, pp. 480-483, 2015.
[30] S. T. van Haelst, S. M. P. Weem, F. L. Moll, and G. J. de Borst, "Current status and future perspectives of bioresorbable stents in peripheral arterial disease," Journal of Vascular Surgery, vol. 64, no. 4, pp. 1151-1159. e1, 2016.
[31] Y. Zhu et al., "The current status of biodegradable stent to treat benign luminal disease," Materials Today, vol. 20, no. 9, pp. 516-529, 2017.
[32] H. Khamis, K. Shokry, A. Ramzy, and A. Samir, "Bioresorbable Vascular Scaffold (ABSORB BVS); first report in Egyptian patients with 6month angiographic/IVUS follow up," The Egyptian Heart Journal, vol. 66, no. 3, pp. 227-232, 2014.
[33] J. Iqbal, Y. Onuma, J. Ormiston, A. Abizaid, R. Waksman, and P. Serruys, "Bioresorbable scaffolds: rationale, current status, challenges, and future," European heart journal, vol. 35, no. 12, pp. 765-776, 2014.
[34] R. Lillard, C. Valot, M. Hill, P. Dickerson, and R. Hanrahan, "Influence of Preoxidation on the Corrosion of Steels in Liquid Lead-Bismuth Eutectic, November 2004," Corrosion, vol. 60, no. 11, 2004.
[35] D. Pierson et al., "A simplified in vivo approach for evaluating the bioabsorbable behavior of candidate stent materials," Journal of Biomedical Materials Research Part B: Applied Biomaterials, vol. 100, no. 1, pp. 58-67, 2012.
[36] K. Kumar, R. S. Gill, and U. Batra, "Challenges and opportunities for biodegradable magnesium alloy implants," Materials Technology, vol. 33, no. 2, pp. 153-172, 2018.
[37] W. Jiang et al., "Comparison study on four biodegradable polymer coatings for controlling magnesium degradation and human endothelial cell adhesion and spreading," ACS Biomaterials Science & Engineering, vol. 3, no. 6, pp. 936-950, 2017.
[38] E. Mostaed, M. Sikora-Jasinska, J. W. Drelich, and M. Vedani, "Zinc-based alloys for degradable vascular stent applications," Acta Biomater, vol. 71, pp. 1-23, 2018.
[39] C. M. Campos et al., "Bioresorbable drug-eluting magnesium-alloy scaffold for treatment of coronary artery disease," Int J Mol Sci, vol. 14, no. 12, pp. 24492-24500, 2013.
[40] R. Erbel et al., "Temporary scaffolding of coronary arteries with bioabsorbable magnesium stents: a prospective, non-randomised multicentre trial," The Lancet, vol. 369, no. 9576, pp. 1869-1875, 2007.
[41] Y. H. Bouchi, B. D. J. G. C. S. Gogas, and Practice, "Biocorrodible metals for coronary revascularization: Lessons from PROGRESS-AMS, BIOSOLVE-I, and BIOSOLVE-II," Global Cardiology Science and Practice, no. 5, p. 63, 2016.
[42] M. Livingston and A. Tan, "Coating Techniques and Release Kinetics of Drug-Eluting Stents," J Med Device, vol. 10, no. 1, 2019.
[43] M. Ammam, "Electrophoretic deposition under modulated electric fields: a review," RSC advances, vol. 2, no. 20, pp. 7633-7646, 2012.
[44] R. K. Nukala, H. Boyapally, I. J. Slipper, A. P. Mendham, and D. Douroumis, "The application of electrostatic dry powder deposition technology to coat drug-eluting stents," Pharmaceutical research, vol. 27, no. 1, pp. 72-81, 2010.
[45] C. Shanshan, T. Lili, T. Yingxue, Z. Bingchun, and Y. Ke, "Study of drug-eluting coating on metal coronary stent," Materials Science and Engineering: C, vol. 33, no. 3, pp. 1476-1480, 2013.
[46] Y. Otsuka, N. Chronos, R. P. Apkarian, and K. A. Robinson, "Scanning electron microscopic analysis of defects in polymer coatings of three commercially available stents: comparison of BiodivYsio, Taxus and Cypher stents," The Journal of invasive cardiology, vol. 19, no. 2, pp. 71-76, 2007.
[47] M. W. Basalus et al., "Scanning electron microscopic assessment of coating irregularities and their precursors in unexpanded durable polymer‐based drug‐eluting stents," Catheterization and cardiovascular interventions, vol. 79, no. 4, pp. 644-653, 2012.
[48] D. S. Dugdale, "Yielding of steel sheets containing slits," Journal of the Mechanics and Physics of Solids, vol. 8, no. 2, pp. 100-104, 1960.
[49] G. I. Barenblatt, "The Mathematical Theory of Equilibrium Cracks in Brittle Fracture," in Advances in Applied Mechanics, vol. 7, H. L. Dryden, T. von Kármán, G. Kuerti, F. H. van den Dungen, and L. Howarth Eds., pp. 55-129, 1962.
[50] A. Hillerborg, M. Modéer, and P. E. Petersson, "Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements," Cement and Concrete Research, vol. 6, no. 6, pp. 773-781, 1976.
[51] X. P. Xu and A. Needleman, "Void nucleation by inclusion debonding in a crystal matrix," Modelling and Simulation in Materials Science and Engineering, vol. 1, no. 2, pp. 111-132, 1993.
[52] G. Alfano and M. Crisfield, "Finite element interface models for the delamination analysis of laminated composites: mechanical and computational issues," International journal for numerical methods in engineering, vol. 50, no. 7, pp. 1701-1736, 2001.
[53] C. G. Hopkins, P. E. McHugh, and J. P. McGarry, "Computational Investigation of the Delamination of Polymer Coatings During Stent Deployment," Annals of Biomedical Engineering, vol. 38, no. 7, pp. 2263-2273, 2010.
[54] C. Chen et al., "Modeling and Experimental Studies of Coating Delamination of Biodegradable Magnesium Alloy Cardiovascular Stents," ACS Biomaterials Science & Engineering, vol. 4, no. 11, pp. 3864-3873, 2018.
[55] K. Yun et al., "A Damage Model Reflecting the Interaction between Delamination and Intralaminar Crack for Failure Analysis of FRP Laminates," Applied Sciences, vol. 9, no. 2, p. 314, 2019.
[56] M. Basalus, M. Ankone, G. K. van Houwelingen, F. De Man, and C. von Birgelen, "Coating irregularities of durable polymer-based drug-eluting stents as assessed by scanning electron microscopy," EuroIntervention, vol. 5, no. 1, pp. 157-165, 2009.
[57] F. Costa et al., "Does Large Vessel Size Justify Use of Bare-Metal Stents in Primary Percutaneous Coronary Intervention? Insights From the EXAMINATION Trial," Circulation: Cardiovascular Interventions, vol. 12, no. 9, p. e007705, 2019.
[58] C. J. Van Dyck, V. Y. Hoymans, S. Haine, and C. J. Vrints, "New-generation drug-eluting stents: focus on Xience V® everolimus-eluting stent and Resolute® zotarolimus-eluting stent," J Interv Cardiol, vol. 26, no. 3, pp. 278-86, 2013.
[59] J. A. Shand, A. Ramsewak, C. G. Hanratty, M. S. Spence, and S. J. Walsh, "The'concertina effect'and the limitations of current drug-eluting stents: is it time to revisit and prioritize stent design over efficacy?," Interventional Cardiology, vol. 4, no. 3, p. 325, 2012.
[60] A. Schiavone, T.-Y. Qiu, and L.-G. Zhao, "Crimping and deployment of metallic and polymeric stents--finite element modelling," Vessel Plus, vol. 1, pp. 12-21, 2017.
[61] L. Ramanan, "Simulation of non-linear analysis in ANSYS," in ANSYS India users conference, 2006.
[62] R. Busch, A. Strohbach, S. Peterson, K. Sternberg, and S. Felix, "Parameters of endothelial function are dependent on polymeric surface material," Biomedical Engineering/Biomedizinische Technik, vol. 58, no. SI-1-Track-C, p. 000010151520134053, 2013.
[63] R.-X. Yin, D.-Z. Yang, and J.-Z. Wu, "Nanoparticle drug- and gene-eluting stents for the prevention and treatment of coronary restenosis," (in eng), Theranostics, vol. 4, no. 2, pp. 175-200, 2014.
[64] S. Mirkhalaf and M. Fagerström, "The mechanical behavior of polylactic acid (PLA) films: fabrication, experiments and modelling," Mechanics of Time-Dependent Materials, vol. 25, no. 2, pp. 119-131, 2021.
[65] A. Schiavone and L. G. Zhao, "A study of balloon type, system constraint and artery constitutive model used in finite element simulation of stent deployment," Mechanics of Advanced Materials and Modern Processes, vol. 1, no. 1, p. 1, 2015.
[66] G. Ginsberg et al., "In vivo evaluation of a new bioabsorbable self-expanding biliary stent," Gastrointestinal Endoscopy, vol. 58, no. 5, pp. 777-784, 2003.
[67] S. K. Yazdani, A. Sheehy, S. Pacetti, B. Rittlemeyer, F. D. Kolodgie, and R. Virmani, "Stent coating integrity of durable and biodegradable coated drug eluting stents," Journal of Interventional Cardiology, vol. 29, no. 5, pp. 483-490, 2016.
[68] C. M. Campos et al., "Bioresorbable drug-eluting magnesium-alloy scaffold for treatment of coronary artery disease," International Journal of Molecular Sciences, vol. 14, no. 12, pp. 24492-24500, 2013.
[69] 徐顥澄, "可吸收鎂合金動靜脈廔管支架開發," 碩士, 機械工程系, 國立臺灣科技大學, 台北市, 2021.
[70] Q. Wang, G. Fang, Y.-H. Zhao, and J. J. A. S. Zhou, "Improvement of mechanical performance of bioresorbable magnesium alloy coronary artery stents through stent pattern redesign," Applied Sciences, vol. 8, no. 12, p. 2461, 2018.
[71] W. Wu et al., "Finite element analyses for design evaluation of biodegradable magnesium alloy stents in arterial vessels," Materials Science and Engineering: B, vol. 176, no. 20, pp. 1733-1740, 2011.
[72] W. Wu et al., "Finite element shape optimization for biodegradable magnesium alloy stents," Annals of Biomedical Engineering, vol. 38, no. 9, pp. 2829-2840, 2010.
[73] D. Gastaldi, V. Sassi, L. Petrini, M. Vedani, S. Trasatti, and F. J. J. o. t. m. b. o. b. m. Migliavacca, "Continuum damage model for bioresorbable magnesium alloy devices—Application to coronary stents," Journal of the Mechanical Behavior of Biomedical Materials, vol. 4, no. 3, pp. 352-365, 2011.
[74] B. Hsieh, "Transient analysis of a flywheel battery containment during a full rotor burst event," Argonne National Lab., IL (US), 1998.
[75] W. Wei et al., "Modeling and Experimental Studies of Peeling of Polymer Coating for Biodegradable Magnesium Alloy Stents," Rare Metal Materials and Engineering, vol. 43, no. 12, pp. 2877-2882, 2014.
[76] K. Stuka, "Finite Element Modelling of the Interfacial Debonding Behaviour between Carbon Fibre Textile and Concrete," 2020.
[77] 鄭博謙, "膽管支架擴張製程與可取回設計," 碩士, 機械工程系, 國立臺灣科技大學, 2015.
[78] 陳正宗, "膽管支架之設計與光纖雷射加工," 碩士, 機械工程系, 國立臺灣科技大學, 2013.
[79] 林俊傑, "加工腦部取栓支架的飛秒雷射製程探討," 碩士, 機械工程系, 國立臺灣科技大學, 2020.
[80] C. Zheng, F. Nie, Y. Zheng, Y. Cheng, S. Wei, and R. J. A. S. S. Valiev, "Enhanced in vitro biocompatibility of ultrafine-grained titanium with hierarchical porous surface," Applied Surface Science, vol. 257, no. 13, pp. 5634-5640, 2011.
[81] H. Zhao, J. Van Humbeeck, and I. De Scheerder, "Surface conditioning of NiTi and Ta stents," Biomedical Research, pp. 439-448, 2001.
[82] 蘇星翰, "膽管支架雷射切割後製程的改善與探討," 碩士, 機械工程系, 國立臺灣科技大學, 2020.
[83] M. W. Z. Basalus et al., "Scanning electron microscopic assessment of coating irregularities and their precursors in unexpanded durable polymer-based drug-eluting stents," Catheterization and Cardiovascular Interventions, vol. 79, no. 4, pp. 644-653, 2012.
[84] M. W. Basalus and C. von Birgelen, "Benchside testing of drug-eluting stent surface and geometry," 2010.
[85] Z. Zhou, Q. Yi, X. Liu, L. Liu, and Q. Liu, "In vitro degradation behaviors of poly-L-lactide/bioactive glass composite materials in phosphate-buffered solution," Polymer bulletin, vol. 63, no. 4, pp. 575-586, 2009.
[86] N. Scharnagl, C. Blawert, and W. Dietzel, "Corrosion protection of magnesium alloy AZ31 by coating with poly(ether imides) (PEI)," Surface and Coatings Technology, vol. 203, no. 10, pp. 1423-1428, 2009.
[87] H. C. Hyun, F. Rickhey, J. H. Lee, J. H. Hahn, and H. Lee, "Characteristics of indentation cracking using cohesive zone finite element techniques for pyramidal indenters," International Journal of Solids and Structures, vol. 51, no. 25, pp. 4327-4335, 2014.

無法下載圖示 全文公開日期 2032/08/18 (校內網路)
全文公開日期 2032/08/18 (校外網路)
全文公開日期 2032/08/18 (國家圖書館:臺灣博碩士論文系統)
QR CODE