簡易檢索 / 詳目顯示

研究生: 劉世揚
Shih-Yang Liu
論文名稱: 採用 LTPO 技術應用於1Hz至120Hz可調式畫面更新率暨超高效載子遷移率補償之AMOLED 顯示畫素電路設計
Novel AMOLED Pixel Circuit implementing LTPO Technology with enhanced Mobility-Compensating and Variable Frame Rate from 1 to 120 Hz for portable applications
指導教授: 范慶麟
Ching-Lin Fan
口試委員: 顏文正
Wen-Zheng Yan
李志堅
Zhi-Jian Li
劉舜維
Shun-Wei Liu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2022
畢業學年度: 111
語文別: 中文
論文頁數: 110
中文關鍵詞: 主動式驅動有機發光二極體低溫多晶矽氧化物可調變畫面更新率可攜式顯示器載子遷移率變異補償臨界電壓變異補償
外文關鍵詞: active-matrix organic light-emitting diode (AMOLED), low-temperature polycrystalline silicon and oxide (LTPO), variable frame rate, portable displays, mobility variations compensating, threshold voltage variations compensating
相關次數: 點閱:261下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

由於出色的色彩表現、快速的響應時間、高對比度和低功耗等優點,主動式有機發光二極體(AMOLED)廣泛應用於顯示技術。近年來,高階攜帶式產品的顯示面板不僅要求高解析度 (high resolution)和高密度顯示圖像 (pixels per inch, PPI),而且還提供低功耗。此外,具有可調式畫面更新率 (adjustable frame rates)的攜帶式產品為現今最尖端的技術。高畫面更新率 (High frame rate, HFR) 技術用於遊戲或觀看電影等高動態之應用中實現卓越的畫面表現。相反的,低畫面更新適用於智能手錶等節能應用。
在第三章中,我們提出一個全新的 6T1C LTPO AMOLED 畫素電路,其能夠應用於1 到 120 Hz 的可調式畫面更新率的攜帶式顯示器。為了精簡電路結構中的控制信號線(control signal lines)和電晶體的數量以達到高密度顯示圖像,操作時脈設計中加入了穩定區間(holding period)。且此電路能夠免疫於OLED的VTH變異,能夠補償OLED的老化問題。總結來說,於第三章提出之電路具有 5 V 的低壓驅動;操作於高畫面更新率120 Hz時,且驅動電晶體的臨界電壓變異量為±0.33 V,平均誤差率(error rate)為1.8%。此外畫素電路工作在低畫面更新率1 Hz時,OLED驅動電流的變變異最大僅3.56nA,在高低畫面更新率運作皆表現出極高的穩定度。
在第四章中,我們提出了新穎的 6T1C LTPO 畫素電路,可以同時補償臨界電壓和載子遷移率(Mobility)的變異,主要應用於4K(3840 × 2160,UHD)攜帶式裝置。電路中的遷移率補償方法使用兩種不同的補償機制,成功地降低遷移率變異的影響。為了提高顯示畫面品質,在提高解析度和顯示畫面密度的同時,簡化了電路架構複雜度。且電路對IR-drop和OLED的VTH變異的免疫能力將有利於呈現均勻的圖像。總結來說,於第四章提出之電路可以在5V低壓驅動下產生高度均勻和穩定的 OLED電流,在±0.33 V臨界電壓變異且±30%遷移率變異的條件下,OLED電流的最大誤差率分別為4.25%和0.013%。因此,所提出的6T1C畫素電路非常適合用於可攜式的AMOLED顯示器。


Because of the benefits of outstanding color characteristics, short response time, high contrast ratio, and low power dissipation, active-matrix organic light-emitting diodes (AMOLED) have been widely used in display technologies. Recently, the trend of the display panels of high-end portable devices not only requires high resolution and pixels per inch (PPI) but also provides low power consumption.
In the chapter 3, we proposed a novel 6T1C pixel circuit with an LTPO structure for portable displays with variable frame rates ranging from 1 to 120 Hz. To reduce the number of control signal lines and TFTs in the proposed circuit structure, a holding period is used. In addition, the proposed circuit is independent of the variations of VTH of OLED that provides the immunity to the OLED-degenerated issues. The proposed circuit is provided with low-voltage driving of 5 V, operating at 120 Hz with average error rates of 1.8% of OLED currents while the DTFT’s VTH variations are ±0.33 V. Furthermore, although the proposed pixel circuit operates at 1 Hz, the overall variations in OLED driving currents are less than 3.56nA.
In the chapter 4, we proposed a novel 6T1C LTPO pixel circuit that can compensate for both the threshold voltage and field-effect mobility variations, being mainly used in 4K (3840 × 2160, UHD) portable displays. The mobility compensating process of the proposed circuit is based on two different mechanisms that successfully minimize the influence of field-effect mobility variations. In order to improve the image quality, while increasing the screen resolution and PPI, the number of control signal lines and TFTs in the proposed circuit are simplified. The immunity of both IR-drop issues and the variations in VTH of OLED (VTH_OLED) are favorable for presenting a uniform image. The proposed pixel circuit can produce a highly uniform and stable OLED current with 5V low-voltage drive, operating with maximum error rates of 4.25% and 0.013% for OLED currents under the condition of VTH variations at ±0.33 V with mobility variations at ±30 %, respectively. As a result, the proposed 6T1C pixel circuit is a good candidate for use in portable AMOLED displays.

論文摘要 i Abstract iii 致謝 v 目錄 vi 圖目錄 ix 表目錄 xii Chapter 1 緒論 1 1.1 研究背景(平面顯示器的發展) 1 1.2 研究動機與文獻探討 4 1.3 論文核心理念概述 7 Chapter 2 AMOLED畫素電路科技與補償技術 8 2.1 OLED 架構與操作原理 8 2.1.1 反式結構OLED之應用(Inverted OLED Structure) 10 2.2 主動式OLED驅動(Active-matrix OLED, AMOLED) 12 2.3 應用於LTPO技術之薄膜電晶體 14 2.3.1 LTPS TFT 14 2.3.2 Metal Oxide TFT 15 2.3.3 薄膜電晶體的模擬模型(Simulated models) 17 2.4 畫素電路儲存電容之分析 21 2.5 AMOLED顯示器發光驅動方法(Emission Scheme) 25 2.5.1 Progressive Emission 25 2.5.2 Simultaneous Emission 28 2.6 Mobility補償機制 31 2.6.1 Current-programming畫素電路驅動 31 2.6.2 電容分壓之載子遷移率參數(Mobility-related parameter)補償 33 2.6.3 Diode-Connected架構之負回授補償 35 Chapter 3 應用於攜帶型顯示器支援可調式畫面更新率1Hz到120Hz之採用LTPO技術之AMOLED畫素電路設計 36 3.1 前言 36 3.2 6T1C電路操作與分析 39 3.3 結果與討論 46 3.4 結論 55 Chapter 4 應用於攜帶型顯示器採用LTPO技術之超高效載子遷移率補償AMOLED畫素電路設計 57 4.1 前言 57 4.2 6T1C電路操作與分析 61 4.3 6T1C畫素電路之載子遷移率補償分析 70 4.4 結果與討論 74 4.5 結論 85 Chapter 5 結論與未來展望 87 5.1 結論 87 5.2 未來展望 90 REFERENCE 91

[1] R. Mertens, The OLED Handbook: A Guide to OLED Technology, Industry & Market, OLED-Info, Mar. 2018.
[2] R. M. A. Dawson et al. “The impact of the transient response of organic light emitting diodes on the design of active matrix OLED displays”, IEDM Tech. Dig., pp. 875–878, Dec. 1998.
[3] M. Stewart et al. “Polysilicon VGA active matrix OLED displays-technology and performance”, IEDM Tech. Dig., pp. 871-874, Dec. 1998.
[4] G. Cheng et al. “White organic light-emitting devices using a phosphorescent sensitizer”, Appl. Phys. Lett., vol. 82, no. 24, pp. 4224-4226, Jun. 2003.
[5] A. Nathan et al. “Amorphous silicon thin film transistor circuit integration for organic LED displays on glass and plastic”, IEEE J. Solid-State Circuits, vol. 39, no. 9, pp. 1477-1486, Sep. 2004.
[6] T.-K. Chang et al. “LTPO TFT Technology for AMOLEDs”, SID 2019 Digest, vol.50, pp. 545–548, 2019.
[7] R. Yonebayashi et al. “High refresh rate and low power consumption AMOLED panel using top-gate n-oxide and p-LTPS TFTs”, Journal of the SID., vol. 28, no. 4, pp. 350-359, 2020.
[8] J. Fu et al. “Design of AMOLED Pixel Circuit Using LTPO TFTs with Enhanced Reliability”, SID 2021 Digest, vol. 51, 1116-1119, 2021.
[9] P.-C. Lai et al. “Novel top-anode OLED/a-IGZO TFTs pixel circuit for 8K4K AM-OLEDs”, IEEE Trans. Electron Devices, vol. 66, pp. 436–444, 2019.
[10] Y.-J. Park et al. “Voltage-programming based pixel circuit to compensate for threshold voltage and mobility using natural capacitance of organic light-emitting diode”, Japan. J. Appl. Phys., vol. 49, 3S, 03CD01, 2010.
[11] R.-L. Lin et al. “OLED equivalent circuit model with temperature coefficient and intrinsic capacitor”, IEEE Transactions on Industry Applications, vol. 52, no. 1, 7175001, pp. 493-501, 2016.
[12] W.-J. Wu et al. “An AC driving pixel circuit compensating for tfts threshold-voltage shift and oled degradation for amoled”, IEEE Journal of Display Technology, vol. 9, no. 7, 6479320, pp. 572-576, 2013.
[13] H. Chen et al. “Liquid crystal display and organic light-emitting diode display: present status and future perspectives”, Light Sci. Appl., vol. 7, 17168, 2018.
[14] B. Geffroy et al. “Organic light-emitting diode (OLED) technology: materials, devices and display technologies”, Polymer International, vol. 55, no 6, pp. 572–582, Jun. 2006.
[15] H.-H. Hsieh et al. “Active-matrix organic light-emitting diode displays with indium gallium zinc oxide thin-film transistors and normal, inverted, and transparent organic light-emitting diodes,” J. Soc. Inf. Display, vol. 19, no. 4, pp. 323–328, 2011.
[16] Y. Zeng et al. “A 5T1C pixel circuit compensating mobility and threshold voltage variation”, Microelectronics Journal 2021, 117, 105283, 2021.
[17] C.-L. Lin et al. “Pixel circuit design with simplified 2T1C structure using compensating architecture for AMOLED”, SID Conference Record of the International Display Research Conference, pp. 210–212, 2008.
[18] S. Van Slyke et al. “Passive matrix OLED displays: Operational and storage stability”, SID Conference Record of the International Display Research Conference, pp. 341-345, 2000.
[19] G. Yang et al. “1.8-in. 128×160 Full Color Passive Matrix OLED”, Proceedings of SPIE - The International Society for Optical Engineering, vol.6722, 67224H, 2007.
[20] H.-J. Chung “Novel 5T1C pixel circuit for high-ppi AMOLED displays with n-channel LTPS TFTs”, Journal of Information Display, vol. 20, no. 1, pp. 39-43, 2019.
[21] J. Lee et al. “5.8-inch QHD flexible AMOLED display with enhanced bendability of LTPS TFTs”, Journal of the Society for Information Display, vol. 26, no. 4, pp. 200-207, 2018.
[22] D. Zahorski et al. “Stability and uniformity of LTPS for AMLCD using high-energy-laser system”, ITG-Fachbericht, vol. 165, pp.199-201, 2001.
[23] L. Herbst et al. “New high stability excimer laser for LTPS manufacturing”, Proceedings of International Meeting on Information Display 2006, pp. 540-543, 2006.
[24] T. Ashitomi et al. “Appearance of the p-channel performance of poly-Si TFTs with a metal S/D electrode using BLDA aiming for lowcost CMOS”, Journal of Information Display, pp. 185-189, 2017.
[25] C.-L. Fan et al. “Novel LTPS-TFT Pixel Circuit with OLED Luminance Compensation for 3D AMOLED Displays”, J. Disp. Technol., vol.12, pp. 425–428, 2016.
[26] M.-W. Ma et al. “Electrical characteristics of high performance spc and milc p-channel ltps-tft with high- κ gate dielectric”, Electrochemical and Solid-State Letters, vol. 12, no. 10, pp. H361-H364, 2009.
[27] D. Zhao et al. “Instability issues of ltps tft for high performance of flexible amoled display”, Digest of Technical Papers - SID International Symposium, vol. 52, no. 1, pp. 5-8, 2021.
[28] Y. Morimoto et al. “Influence of the grain boundaries and intragrain defects on the performance of poly-Si thin film transistors”, Journal of the Electrochemical Society, vol. 144, no. 7, pp. 2495-2501, 1997.
[29] Y. Sohn et al. “Effects of TFT mobility variation in the threshold voltage compensation circuit of the OLED display”, Journal of Information Display, vol. 18, no. 1, pp. 25-30, 2017.
[30] W.C.-Y. Ma et al. “Threshold voltage reduction and mobility improvement of LTPS-TFTs with NH3 plasma treatment”, IEEE Transactions on Plasma Science, vol. 42, no. 12, 6893002, pp. 3722-3725, 2014.
[31] C.-L. Lin et al. “Pixel Circuit with Leakage Prevention Scheme for Low-Frame-Rate AMOLED Displays”, IEEE J. Electron Devices Soc., vol. 8, 235–240, 2020.
[32] C.-L. Lin et al. “Leakage-Prevention Mechanism to Maintain Driving Capability of Compensation Pixel Circuit for Low Frame Rate AMOLED Displays”, IEEE Trans. Electron Devices, vol. 68, no. 5, 2021.
[33] J. H. Park et al. “A novel design of quasi-lightly doped drain poly-Si thin-film transistors for suppression of kink and gate-induced drain leakage current”, IEEE Electron Device Lett., vol. 36, no. 4, pp. 351–353, 2015.
[34] J. H. Park et al. “Leakage current reduction using 350-nm ultra-violet irradiation in P-channel polycrystalline-silicon thin-film transistors,” IEEE Trans. Device Mater. Rel., vol. 15, no. 1, pp. 82–85, 2015.
[35] M. Kimura et al. “Temperature dependences of I–V characteristics of SD and LDD poly-Si TFTs”, IEEE Electron Device Lett., vol. 33, no. 5, pp. 682–684, 2012.
[36] M. Nakata et al., “Development of flexible displays using back-channel-etched In-Sn-Zn-O TFTs and air-stable inverted OLEDs,” in SID Tech. Dig., pp. 969–972, 2015.
[37] C. L. Fan et al., “Improvement in reliability of amorphous indium–gallium–zinc oxide thin-filmtransistors with Teflon/SiO2 bilayer passivation under gate bias stress”, Japanese Journal of Applied Physics, " vol. 55, no. 2, 2016.
[38] K. Nomura et al., “Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors,” Nature, vol. 432, pp. 488–492, 2004.
[39] J. Smith et al., “Charge emission induced transient leakage currents of a-Si:H and IGZO TFTs on flexible plastic substrates”, Electronics Letters, vol.50, no.2, pp. 105-106, 2014.
[40] Y. G. Mo et al., “Amorphous-oxide TFT backplane for large-sized AMOLED TVs,” J. Soc. Inf. Display, vol. 19, no. 1, pp. 16–20, 2011.
[41] M.-H.M. Lu et al., “Power consumption and temperature increase in large area active-matrix OLED displays”, IEEE Journal of Display Technology, vol. 4, no. 1, pp. 47-52, 2008.

[42] C.-L. Fan et al. “New Low-Frame-Rate Compensating Pixel Circuit Based on Low-Temperature Poly-Si and Oxide TFTs for High-Pixel-Density Portable AMOLED Displays,” Micromachines, vol. 12, no. 12, pp. 1514, 2021.
[43] M. D. H. Chowdhury et al. “Light-induced instabilities in amorphous indium-gallium-zinc-oxide thin-film transistors”, Appl. Phys. Lett., vol. 97, no. 17, pp. 10–13, 2010.
[44] H. Lee et al. “Improvement of Stability and Performance of Amorphous Indium Gallium Zinc Oxide Thin Film Transistor by Zinc-Tin-Oxide Spray Coating”, IEEE Electron Device Letters, vol. 41, no. 10, 9174866, pp. 1520-1523, 2020.
[45] S.Y. Lee et al. “Improvement on the stability of amorphous indium gallium zinc oxide thin film transistors using amorphous oxide multilayer source/drain electrodes”, Transactions on Electrical and Electronic Materials, vol.17, no. 3, pp. 143-145, 2016.
[46] S. An et al. “Improvement of bias-stability in amorphous indium-gallium-zinc-oxide thin-film transistors by using solution-processed Y2O3 passivation”, Applied Physics Letters, vol.105, no. 5, 053507, 2014.
[47] N.-H. Keum et al. “A Pixel Structure Using Block Emission Driving Method for High Image Quality in Active Matrix Organic Light-Emitting Diode Displays”, Journal of Display Technology, vol.12, no.11, 7523988, pp. 1250-1256, 2016.
[48] C.-L. Lin et al. “Compensation pixel circuit to improve image quality for mobile AMOLED displays”, IEEE J. Solid-State Circuits, vol. 54, no. 2, pp. 489–500, 2019.
[49] J.-H. Chang et al. “New Pixel Circuit with Negative Feedback Scheme for AMOLED Smartwatch Displays”, Proceedings of AM-FPD 2021 - 28th International Workshop on Active-Matrix Flatpanel Displays and Devices: TFT Technologies and FPD Materials, pp. 129-132, 2021.
[50] N.-H. Keum et al. “An AMOLED Pixel Circuit with a Compensating Scheme for Variations in Subthreshold Slope and Threshold Voltage of Driving TFTs”, IEEE Journal of Solid-State Circuits, vol. 55, no.11, 9173533, pp. 3087-3096, 2020.
[51] H. Luo et al. “Complementary LTPO technology, pixel circuits and integrated gate drivers for AMOLED displays supporting variable refresh rates”, Digest of Technical Papers - SID International Symposium, vol.51, no.1, pp. 351-354, 2020.
[52] C.-L. Lin et al. “Novel Pixel Circuit with Compensation for Normally-Off/On a-IGZO TFTs and OLED Luminance Degradation”, Journal of Display Technology, vol.12, no.12,7585085, pp. 1664-1667, 2016.
[53] C.-L. Lin et al. “Pixel Circuit with Parallel Driving Scheme for Compensating Luminance Variation Based on a-IGZO TFT for AMOLED Displays”, Journal of Display Technology, vol.12, no.12, 7588170, pp. 1681-1687, 2016.
[54] C.-L. Lin et al. “New pixel circuit to improve current uniformity for high-resolution AMOLED displays”, Digest of Technical Papers - SID International Symposium, vol.46, pp. 1297-1300, 2015.
[55] H. Qiu et al. “A Low Power and IR Drop Compensable AMOLED Pixel Circuit Based on Lowerature Poly-Si and Oxide (LTPO) TFTs Hybrid Technology”, IEEE Journal of the Electron Devices Society, vol.10, pp. 51-58, 2022.
[56] Q. Chen et al. “A New Compensation Pixel Circuit with LTPO TFTs”, Digest of Technical Papers - SID International Symposium, vol.50, pp. 638-639, 2019.
[57] C.-L. Lin et al. “A simple LTPS pixel circuit composed of two transistors and one capacitor for AMOLED displays”, Digest of Technical Papers - SID International Symposium, vol.45, no.1, pp. 990-993, 2014.
[58] M.-X. Wang et al. “Novel a-IGZO pixel circuit adopting external circuit for use in 3-D AMOLED displays”, Proceedings of AM-FPD 2016 - 23rd International Workshop on Active-Matrix Flatpanel Displays and Devices: TFT Technologies and FPD Materials, 7543622, pp. 69-71, 2016.
[59] C.-L. Lin et al. “A new current programming pixel circuit for compensating luminance degradation of AMOLED”, 49th Annual SID Symposium, Seminar, and Exhibition 2011, Display Week 2011, vol.3, pp. 1292-1295, 2011.
[60] A. Shin et al. “Design of an organic TFT pixel electrode circuit with enhanced current programming method for active-matrix OLED displays”, 2007 International Semiconductor Device Research Symposium, ISDRS, 4422329, 2007.
[61] H. Lee et al. “Current-scaling a-Si:H TFT pixel-electrode circuit for AM-OLEDs: Electrical properties and stability”, IEEE Transactions on Electron Devices, vol.54, no.9, pp. 2403-2410, 2007.
[62] C.-L. Lin et al. “New voltage-programmed AMOLED pixel circuit to compensate for nonuniform electrical characteristics of LTPS TFTs and voltage drop in power line”, IEEE Transactions on Electron Devices, vol.61, no.7,6824793, pp.2454-2458, 2014.
[63] C.-H. Ho et al. “An Enhanced voltage programming pixel circuit for compensating GB-induced variations in poly-Si TFTs for AMOLED displays”, IEEE/OSA Journal of Display Technology, vol.10, no.5,6714397, pp. 345-351, 2014.
[64] S.-J. Song et al. “In-pixel mobility compensation scheme for AMOLED pixel circuits”, J. Display Technol., vol.11, no.2, pp.209–213, 2015.
[65] J. Wu et al. “New AMOLED pixel circuit to compensate characteristics variations of LTPS TFTs and voltage drop”, Proc.AM-FPD, pp. 1–4, 2018.
[66] S. Choi et al. “Thin-film transistor-driven vertically stacked full-color organic light-emitting diodes for high-resolution active-matrix displays”, Nature Commun., vol. 11, no. 1, pp. 1–9, 2020.
[67] C. W. Tang, “An overview of organic electroluminescent materials and devices”, J. SID, vol. 5, pp. 11–14, 1997.
[68] S. Steudel et al. “Power saving through state retention in IGZO-TFT AMOLED displays for wearable applications”, Journal of the SID., vol. 25, no. 4, pp. 222–228, 2017.
[69] M. Aman et al. “Reliability improvement of IGZO-TFT in hybrid process with LTPS”, Journal of the SID., vol. 29, no. 5, pp. 416-427, 2021.
[70] H. Watakabe et al. “Development of Advanced LTPS TFT Technology for Low Power Consumption and Narrow Border LCDs”, SID 2019 Digest, 541–544, 2019.
[71] K. Kim et al. “Extremely Short-Channel LTPS TFT Technologies for High-Performance Low-Power, and Reliable AMOLED displays”, SID Symposium Digest of Technical Papers, vol. 53, no. 1, pp.147-150, 2022.
[72] Y. Kim et al. “An a-InGaZnO TFT pixel circuit compensating threshold voltage and mobility variations in AMOLEDs”, IEEE Journal of Display Technology, vol. 10, no. 5, 6732903 , pp. 402-406, 2014.
[73] C.-L. Lin et al. “UHD AMOLED driving scheme of compensation pixel and gate driver circuits achieving high-speed operation”, IEEE Journal of the Electron Devices Society, vol. 6, no. 1, pp. 26-33, 2018.

無法下載圖示 全文公開日期 2027/10/07 (校內網路)
全文公開日期 2027/10/07 (校外網路)
全文公開日期 2027/10/07 (國家圖書館:臺灣博碩士論文系統)
QR CODE