簡易檢索 / 詳目顯示

研究生: 李曉庭
Siao-Ting Li
論文名稱: 以有效視域演算法優化影像品質之微型化全彩全像顯示系統
Image Quality Optimization for Miniaturized Full-Color Holographic Display with Effective Viewshed Algorithm
指導教授: 陳建宇
Chien-Yu Chen
口試委員: 林伯昰
Bor-Shy Lin
胡國瑞
Kuo-Jui Hu
鄧清龍
Qing-Long Deng
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 色彩與照明科技研究所
Graduate Institute of Color and Illumination Technology
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 77
中文關鍵詞: 優化型Gerchberg-Saxton演算法全彩電腦全像三維電腦全像
外文關鍵詞: modified Gerchberg-Saxton algorithm, full-color computer holography, full-color computer holography, three-dimensional computer holography
相關次數: 點閱:210下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

在電腦產生全像技術中,全彩全像顯示已是非常熱門的研究主題。在系統的實現上,雖可以紅、綠、藍三通道對應各自的空間光調制器來實現全彩顯示,但其系統體積與成本也較不符合發展需求。有鑑於此,如何以單一空間光調制器實現全彩顯示系統便是一個值得探討的議題。在單一空間光調制器的系統中,若要實現全彩混光,時間多工的方式會受限於空間光調制器的反應速率與調制的穩定度,在切換時也較易產生影像閃爍或是色彩不均勻等問題。因此本論文基於單一空間光調制器的系統,以空間多工的方式實現微型化全彩全像顯示系統。
在光學系統上,本研究透過光波導的設計,達到系統微型化與色彩混光。而影像優化上,除了採用有效視域演算法(Effective Viewshed Algorithm)外,亦加入震動光波導的概念,以降低雷射光斑對重建影像的影響。最後本論文將透過以下影像客觀評價方法以驗證影像優化的結果,分別為相對繞射效率(Relative Diffraction Dfficiency, RDE)、均方根誤差(Root Mean Square Error, RMSE)、訊噪比(Signal to Noise Ratio, SNR)、雷射光斑對比度(Speckle Contrast, SC)以及結構相似性指標(Structural Similarity Index, SSIM)。


In computer generated holographic technology, full-color holographic display has become a very popular research topic. Although three channels of red, green, and blue can be used to realize the full-color display corresponding to their respective spatial light modulators, their system volume and cost are less in line with development needs. In view of this, how to realize a full-color display system with a single spatial light modulator is a topic worth discussing. In a single spatial light modulator system, to achieve full color display, the time-division method is limited by the spatial light modulator's response rate and modulation stability, and it is easier to produce image flicker or uneven color durning switching. Therefore, based on a single spatial light modulator system, this thesis realized a miniaturized full-color holographic display system in a spatial-division method.
In the optical system, this thesis designed a light guide to achieve system miniaturization and color mixing. For image optimization, in addition to the Effective Viewshed Algorithm, the concept of a vibrating optical waveguide is also added to reduce the speckle on the reconstructed image. Finally, this thesis will verify the results of image optimization through the following image objective evaluation methods, which are Relative Diffraction Dfficiency (RDE), Root Mean Square Error (RMSE), Signal to Noise Ratio (SNR), Speckle Contrast (SC) and Structural Similarity Index (SSIM).

摘要 I ABSTRACT II 誌謝 III 目錄 IV 圖目錄 VI 表目錄 IX 第一章、 緒論 1 1.1 前言 1 1.2 研究動機與目的 2 1.3 論文架構 4 第二章、 研究背景與文獻回顧 5 2.1 全像術的發展 5 2.2 電腦全像術發展之近況 10 2.3 全彩電腦全像術之發展 13 第三章、 重建影像之優化 19 3.1 優化型Gerchberg-Saxton演算法 19 3.2 MGSA位置多工技術 21 3.3 三維CGH影像優化演算法 23 3.3.1 三維電腦全像演算法之分類 23 3.3.2 有效視域之點對點式優化型Gerchberg-Saxton演算法 26 第四章、 微型化全彩全像顯示系統模擬與驗證 29 4.1 實驗步驟 29 4.2 R、G、B之CGH設計 31 4.3 光波導之設計與模擬 35 4.4 光學重建系統架設 38 4.4.1 二維全彩電腦全像影像之重建 40 4.4.2 三維全彩電腦全像影像之重建 42 第五章、 結果討論 43 5.1 影像品質評估 43 5.2 光波導之應用 50 5.3 三維多色彩影像重建 53 5.4 結論 55 5.5 未來展望 56 參考文獻 57

[1] T. Shibata, J. Kim, D. M. Hoffman, and M. S. Banks, “Visual discomfort with stereo displays: effects of viewing distance and direction of vergence-accommodation conflict,” International Society for Optics and Photonics, Vol. 7863, p. 78630P. (2011)
[2] M. Lambooij, W. IJsselsteijn, M. Fortuin and I. Heynderickx, “Visual Discomfort and Visual Fatigue of Stereoscopic Displays: A Review,” Journal of Imaging Science and Technology, vol. 53, no. 3, p. 030201, (2009).
[3] S. Reichelt, R. Häussler, G. Fütterer, N. Leister, “Depth cues in human visual perception and their realization in 3D displays,” International Society for Optics and Photonics. Vol. 7690, p. 76900B, (2010).
[4] H. Hua and B. Javidi, "A 3D integral imaging optical see-through head-mounted display", Optics Express, vol. 22, no. 11, p. 13484, (2014).
[5] L. Ryana, K. J. MacKenziea, and S. J. Watta, “Multiple-focal-planes 3D displays: A practical solution to the vergence-accommodation conflict?” International Conference on 3D Imaging (IC3D) pp. 1-6, (2012).
[6] X. Hu and H. Hua, “High-resolution optical see-through multi-focal-plane head-mounted display using freeform optics”, Optics Express, vol. 22, no. 11, p. 13896, (2014).
[7] D. Gabor, “A new microscope principle”, Nature, Vol. 161, pp. 777-779. (1948).
[8] E. N. Leith and J. Upatnieks, “Wavefront reconstruction with diffused illumination and three dimensional objects,” Journal of Optical Society America, Vol. 54, No. 11, pp. 1295-1301. (1964).
[9] C. J. Kuo and M. H. Tsai, “Three-Dimensional Holohraphic Imaging,” John Wiley & Sons, Inc., New York, 2003.
[10] S. A. Benton, “Hologram reconstruction with extended incoherent sources,” Journal of Optical Society America, Vol. 59, pp. 1545-1546, 1969.
[11] D. Senderakova, “White Light Reconstructed Holograms,” Holography-Basic Principles and Cpntemporary Applications, Chapter 3, pp. 75-78, 2013.
[12] Y. N. Denisyuk, “on the reproduction of the properties of an object in the wave field of the radiation scattered by it,” Dokl. Akad. Nuak SSSR, Vol. 144, pp. 1275-1276, 1962.
[13] D. J. Debitetto, “Hologram panorami stereograms synthesized from white-light recordings,” Appl. Opt., Vol. 8, No. 8, pp. 1740-1741, 1969.
[14] U. Schnars and W. P. Juepter, “Direct recording of holograms by a CCD target and numerical reconstruction,” Appl. Opt., Vol. 33, No. 2, pp. 179-181, 1994.
[15] T. C. Poon, “Digital Holgraphy and Three-Dimensional Display – Principles and Applications,” Springer, New York, 2006.
[16] B. R. Brown, and A. W. Lohmann, “Computer-generated binary holograms”, IBM J. Res. Dev., Vol. 13, No. pp. 160-168, 1969.
[17] Q. L. Deng, B. S. Lin, H. T. Chang, Senior Member, IEEE, G. S. Huang, and C. Y. Chen, “MGSA-type Computer-Generated Holography for Vision Training with Head-Mounted Display,” J. Disp. Technol., Vol. 10, No. 6, pp. 433-437, 2014.
[18] M. Bayraktar, and M. Özcan, “Method to calculate the far field of three-dimensional objects for computer-generated holography”, Appl. Opt., Vol. 49, No. 24, pp. 4647-4654, 2010.
[19] H. T. Chang, H. E. Hwang, C. L. Lee, and M. T. Lee, “Wavelength multiplexing multiple-image encryption using cascaded phase-only masks in the Fresnel transform domain,” Appl. Opt., Vol. 50, No. 5, pp. 710-716, 2011.
[20] J. P. Liu, W. Y. Hsieh, T. C. Poon, and P. Tsang, “Complex Fresnel hologram display using a single SLM,” Appl. Opt., Vol. 50, No. 34, pp. 128-135, 2011.
[21] J. Bu, G. Yuan, Y. Sun, S. Zhu, and X. Yuan, “Optimization of computer-generated holograms for dynamic optical manipulation with uniform structured light spots,” Chin. Opt. Lett., Vol. 9, No. 6, pp. 061202-1¬-061202-4, 2011.
[22] C. Y. Chen, Q. L. Deng, P. J. Wu, B. S. Lin, H. T. Chang, H. E. Hwang, and G. S. Huang, “Speckle reduction by combination of digital filter and optical suppression in holographic display,” Appl. Opt., Vol. 53, No. 27, pp. G163-G168, 2014.
[23] P. J. Wu, C. Y. Chen, Q. L. Deng, H. T. Chang, B. S. Lin, and G. S. Huang, “Integral computer-generated hologram via a modified Gerchberg-Saxton algorithm”, J. Opt., Vol. 17, No. 1, 2014.
[24] C. Y. Chen, W. C. Li, H. T. Chang, C. H. Chuang, and T. J. Chang, “3-D modified Gerchberg-Saxton algorithm developed for panoramic computer-generated phase-only holographic display,” J.O.S.A. B, vol. 34, pp. b42-b48, 2017.
[25] N. Hashimoto, S. Morokawa, and K. Kitamura, “Real-time holography using the high-resolution LCTV-SLM”, Proc. SPIE, Vol. 1461, pp. 291-302, 1991.
[26] M. Lucente, and T. A. Galyean, “Rendering interactive holographic images,” Proc. ACM SIGGRAPH’95, pp. 387-394, New York, 1995.
[27] H. Nakayama, N. Takada, Y. Ichihashi, S. Awazu, T. Shimobaba, N. Masuda, and T. Ito, “Real-time color electroholography using multiple graphics processing units and multiple high-difinition liquid-crystal display panels,” Appl. Opt., Vol. 49, No. 31, pp. 5993-5996, 2010.
[28] D. E. Smalley, Q. Y. J. Smithwick, V. M. Bove Jr, J. Barabas, and S. Jolly, “Anisotropic leaky-mode modulator for holographic video displays,” Nature, Vol. 498, pp. 313-317, 2013.
[29] E. Moon, M. Kim, J. Roh, H. Kim, and J. Hahn, “Holographic head-mounted display with RGB light emitting diode light source,” Opt. Express, Vol. 22, No. 6, pp. 6526-6534, 2014.
[30] Y. Takaki and M. Yokouchi, "Speckle-free and grayscale hologram reconstruction using time-multiplexing technique", Optics Express, vol. 19, no. 8, p. 7567, (2011).
[31] D. Pi, J. Liu, X. Duan, Y. Han and P. He, “Design methods to generate a computer hologram for improving image quality”, Applied Optics, vol. 57, no. 10, p. 2720, (2018).
[32] C. Chang, J. Xia, and Y. Jiang, “Holographic image projection on titled planes byphase-only computer generated hologram using fractional Fourier transformation”, J. Disp. Technol., Vol. 10, No. 2, pp. 107-113, 2014.
[33] Y. Pan, Y. Wang, J. Liu, X. Li, and J. Jia, “Fast polygon-based method for calculating computer-generated holograms in three-dimensional display”, Appl. Opt., Vol. 52, No. 1 , pp. A290-A299, 2013.
[34] Y. Takaki, and N. Okada, “Hologram generation by horizontal scanning of a high- speed spatial light modulator”, Appl. Opt., Vol. 48, No. 17, pp. 3255-3260, 2009.
[35] M. Bayraktar, and M. Özcan, “Method to calculate the far field of three-dimensional objects for computer-generated holography”, Appl. Opt., Vol. 49, No. 24, pp. 4647-4654, 2010.
[36] K. Yamamoto, Y. Ichihashi, T. Senoh, R. Oi, and T. Kurita, “Calculating the Fresnel diffraction of light from a shifted and tilted plane”, Opt. Express, Vol. 20, No. 12, pp. 12949-12958, 2012.
[37] M. Makowski, "Three-plane phase-only computer hologram generated with iterative Fresnel algorithm", Optical Engineering, vol. 44, no. 12, p. 125805, (2005).
[38] M. Makowski, M. Sypek, & A. Kolodziejczyk, “Colorful reconstructions from a thin multi-plane phase hologram.” Optics express, 16(15), 11618-11623. (2008).
[39] M. Oikawa, T. Shimobaba, T. Yoda, H. Nakayama, A. Shiraki, N. Masuda, and T. Ito, “Time-division color electroholography using one-chip RGB LED and synchronizing controller,” Opt. Express, Vol. 19, No. 13, pp. 12008-12013, 2011.
[40] Y. Matsumoto and Y. Takaki, "Time-multiplexed color image generation by viewing-zone scanning holographic display employing MEMS-SLM", Journal of the Society for Information Display, vol. 25, no. 8, pp. 515-523, (2017).
[41] T. Shimobaba, T. Takahashi, N. Masuda and T. Ito, "Numerical study of color holographic projection using space-division method", Optics Express, vol. 19, no. 11, p. 10287, (2011).
[42] M. Makowski, I. Ducin, M. Sypek, A. Siemion, J. Suszek, and A. Kolodziejczyk, “Color iamge projection based on Fourier holograms,” Opt. Lett., Vol. 35, No. 8, pp. 1227-1229, 2010.
[43] H. Sasaki, K. Yamamoto, K. Wakunami, Y. Ichihashi, R. Oi, and T. Senoh, “Large size three-dimensional video by electronic holography using multiple spatial light modulators.” Scientific Reports, (2014).
[44] Y. Ogihara, T. Ichikawa, and Y. Sakamoto, “Fast calculation with point based method to make CGHs of the polygon model.” Proc. of SPIE, Vol. 9006, pp. 90060T-1-90060T-9, 2014.
[45] Y. Ogihara and Y. Sakamoto, “Fast calculation method of a CGH for a patch model using a point-based method,” Appl. Opt., Vol. 54, No. 1, pp. 76-83, 2015.
[46] H. Zhang, Y. Zhao, L. Cao, and G. Jin, “Fully computed holographic stereogram based algorithm for computer-generated holograms with accurate depth cues,” Opt. Express, Vol. 22, No. 15, pp. 18473-18482, 2014.
[47] Y. Sando, D. Barada, and T. Yatagai, “Hidden surface removal of computer-generated holograms for arbitrary diffraction directions,” Appl. Opt., Vol. 52, No. 20, pp. 4871-4876, 2013.
[48] T. Nishitsuii, T. Shimobaba, T. Kakue, N. Masuda, and T. Ito, “Fast calculation of computer-generated hologram using the circular symmetry of zone plates,” Opt. Express, Vol. 20, No. 25, pp. 27496-27502, 2012.
[49] H. Niwase, N. Takada, H. Araki, H. Nakayama, A. Sugiyama, T. Kakue, T. Shimobaba, and T. Ito, “Real-time spatiotemporal division multiplexing electroholography with a single graphics processing unit utilizeing movie features,” Opt. Express, Vol. 22, No. 23, pp. 28052-28057, 2014.
[50] H. Kang, T. Yamaguchi, and H. Yoshikawa, “Accurate phase-added stereogram to improve the coherent stereogram,” Appl. Opt., Vol. 47, No. 19, pp. 44-54, 2008.
[51] B. P. Hilderbrand and K. A. Haines, “Multiple-Wavelength and Multiple-Source Holography Applied to Contour Genereation,” J.O.S.A., Vol. 47, No. 2, pp. 155-162, 1967.
[52] Y. Rivenson, A. Stern, and J. Rosen, “Compressive multiple view projection incoherent holography,” Opt. Express, Vol. 19, No. 7, pp. 6109-6118, 2011.
[53] F. Yang, A. Kaczorowski, and Tim D. Wilkinson, “Fast precalculated triangular mesh algorithm for 3D binary computer-generated holograms,” Appl. Opt., Vol. 53, No. 35, pp. 8261-8267, 2014.
[54] C. Chang, J. Xia, J. Wu, W. Lei, Y. Xie, M. Kang, and Q. Zhang, “Scaled diffraction calculation between tilted planes using nonuniform fast Fourier transform,” Opt. Express, Vol. 22, No. 14, pp. 17331-17340, 2014.
[55] K. Yamamoto, Y. Ichihashi, T. Senoh, R. Oi, and T. Kurita, “Calculating the Fresnel diffraction of light from a shifted and tilted plane,” Opt. Express, Vol. 20, No. 12, pp. 12949-12958, 2012.
[56] T. Shimobaba, N. Masuda, and T. Ito, “Simple and fast calculation algorithm for computer-generated hologram with wavefront recording plane,” Opt. Lett., Vol. 34, No. 20, pp. 3133-3135, 2009.
[57] T. Shimobaba, H. Nakayama, N. Masuda, and T. Ito, “Rapid calculation algorithm of Fresnel computer-generated-hologram using look-up table and wavefront-recording plane methods for three-dimensional display,” Opt. Express, Vol. 18, No. 19, pp. 19504-19509, 2010.
[58] J. Weng, T. Shimobaba, N. Okada, H. Nakayama, M. Oikawa, N. Masuda, and T. Ito, “Generation of real-time large computer generated hologram using wavefront recording method,” Opt. Express, Vol. 20, No. 4, pp. 4018-4023, 2012.
[59] D. Arai, T. Shimobaba, K. Murano, Y. Endo, R. Hirayama, D. Hiyama, T. Kakue, and T. Ito, “Acceleration of computer-generated holograms using tilted wavefront recording plane method,” Opt. Express, Vol. 23, No. 2, pp. 1740-1747, 2015.
[60] G. Xue, J. Liu, X. Li, J. Jia, Z. Zhang, B. Hu, and Y. Wang, “Multiplexing encoding method for full-color dynamic 3D holographic display,” Opt. Express, Vol. 22, No. 15, pp. 18473-18482, 2014.
[61] J. Jia, J. Liu, G. Jin, and Y. Wang, “Fast and effective occlusion culling for 3D holographic displays by inverse orthographic projection with low angular sampling,” Appl. Opt., Vol. 53, No. 27, pp. 6287-6293, 2014.
[62] L. P. Yaroslavskii and N. S. Merzlyakov, Methods of Digital Holgraphy, Springer, New York, 2013.
[63] E. O. Brigham, The Fast Fourier Transform: An Introduction to Its Theory and Application, 1st ed., Prentice-Hall, Inc., New Jersey, 1974.
[64] K. Choi, H. Kim, and B. Lee, “Synthetic phase holograms for auto-stereoscopic image display using a modified IFTA,” Opt. Express, Vol. 12, No. 11, pp. 2454-2462, 2004.
[65] W. D. Koek, N. Bhattacharya, J. J. M. Braat, T. A. Ooms, and J. Westerweel, “Influence of virtual images on the signal-to-noise ratio in digital in-line particle holography,” Opt. Express, Vol. 13, No. 7, pp. 2578-2589, 2005.
[66] J. C. Dainty, A. E. Ennos, M. Francon, and J. W. Goodman, T. S. McKechnie, and G. Parry, Laser Speckle and Related Phenomena, Springer, Berlin and Heidelberg, pp. 9-76, 1975.
[67] F. Riechert, G. Bastian, and U. Lemmer, “Laser speckle reduction via colloidal-dispersion-filled projection screens,” Appl. Opt., Vol. 48, No. 19, pp. 3742-3749, 2009.
[68] Wang, Z., Bovik, A. C., Sheikh, H. R., & Simoncelli, E. P. Image quality assessment: from error visibility to structural similarity. IEEE transactions on image processing, 2004.
[69] Chih-Hao Chuang,Chuan-Feng Kuo, Chun-Chi Chan, Hoang-Yan Lin, Chien-Yu Chen, “Quality assessment of 3D holographic image by using structural similarity index”, International Conference of 3D Systems and Applications (3DSA 2018), Taiwan, August 2018
[70] Deng, Q., Lin, B., Wu, P., Chiu, K., Fan, P. and Chen, C., “A hybrid temporal and spatial speckle-suppression method for laser displays.” Optics Express, 21(25), p.31062, (2013).
[71] Zhang, H., Zhao, Y., Cao, L., & Jin, G. (2016). Layered holographic stereogram based on inverse Fresnel diffraction. Applied optics, 55(3), A154-A159.
[72] M. Francon, “Laser speckle and applications in optics, Academic Press,” New York,San Francisco, London, 1979.
[73] 鄧清龍(2014)。以雷射為光源之立體顯示技術。國立交通大學光電系統博士學位學程博士論文,新竹市。 取自https://hdl.handle.net/11296/a68tww

無法下載圖示 全文公開日期 2025/08/17 (校內網路)
全文公開日期 2040/08/17 (校外網路)
全文公開日期 2040/08/17 (國家圖書館:臺灣博碩士論文系統)
QR CODE