簡易檢索 / 詳目顯示

研究生: 郭權鋒
Nehemiah Chuanfeng Kuo
論文名稱: 降低多視點全像影像中離焦資訊串擾影響之方法
The approach for reducing the effect of crosstalk noise from defocused multi-view holographic image
指導教授: 陳建宇
Chien-Yu Chen
口試委員: 林晃巖
Hoang Yan Lin
李宗憲
Tsung-Xian Lee
張軒庭
Hsuan-Ting Chang
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 色彩與照明科技研究所
Graduate Institute of Color and Illumination Technology
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 105
中文關鍵詞: 光場全像優化型Gerchberg-Saxton演算法角度多工相位加密演算法
外文關鍵詞: Light field hologram, Modefied Gerchberg-Saxton algorithm, Angular-multiplexing, Phase encryption
相關次數: 點閱:216下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在全像顯示的相關領域中,可視角範圍的限制一直是一個重要的課題,尤其是應用於重建高擬真度的三維立體顯示,不過高擬真度的重建影像伴隨著許多的問題,如離焦影像的串擾、影像移動容忍度等。本論文提出降低多視點全像影像中離焦資訊串擾影響之方法,目的設計一光場全像顯示系統。本文給多視點的定義為多視角加上多深度。在這研究中我們提出四種機構,搭配兩種優化後的演算法,以實現多視點全像顯示。前三種機構分別為透鏡陣列合光系統、雙稜鏡合光系統與半穿反合光系統,前三種機構大部分在解決多視角所產生的問題,並搭配角度多工演算法,可以做到在不同視角看到不同角度的影像。兩種演算法分別為光柵演加密演算法與相位加密演算法,其中演算法方面大部分在解決多深度所產生的問題。最後我們選擇使用相位加密演算法搭配第四種光學機構,模擬上可以達到多視點影像的觀看,而且大幅降低離焦影像的干擾,前後移動容忍度也大幅提升。不過目前還在模擬階段,未來將於光學桌上實現,以開發一光場全像顯示系統。


    In the related field of holographic display, the limitation of the viewing angle has always been a significant issue, especially for reconstructing high-fidelity three-dimensional display. As high-fidelity reconstruction images progress, many problems are aroused, such as crosstalk of image defocus, image tolerance, etc. In this research, we propose a method to reduce the effect of crosstalk noise from defocused multi-view holographic image. The aim to this study is to design a light field holographic display system. We define the multi-view as combining the multi-angle and multi-depth in this article. We propose four optical systems, with two optimized algorithms to implement multi-view holographic display. Three of prior systems are lens array combine system, dual prism combine system and semi-reflecting mirror combine system. These three mechanisms solve the problems caused by multi-angle images. By utilizing the angular-multiplexing algorithm, we can watch images at different angles from different perspectives. The two algorithms are raster encryption algorithm and phase encryption algorithm, respectively. The main purpose of both are solving the problems caused by multi-depth. Finally, we use the phase encryption algorithm with the fourth optical system. The simulation can achieve multi-view watching, and reduce the crosstalk noise from defocused images, as well as the tolerance of moving back and forth is also improved. However, it is still in the simulation stage, we will implement a light field holographic display system on the optical table in the future.

    摘要 1 ABSTRACT 2 誌謝 3 目錄 4 表目錄 7 圖目錄 8 第一章、 緒論 12 1.1 前言 12 1.2 研究動機與目的 16 1.3 論文架構 18 第二章、 研究背景與文獻回顧 19 2.1 全像術的發展 19 2.1.1 穿透式全像 19 2.1.2 反射式全像 22 2.1.3 複合式全像 23 2.1.4 數位全像 24 2.1.5 電腦全像 25 2.2 廣視域全像術的發展 26 2.2.1 廣視域全像投影系統 32 2.2.2 光場顯示技術 34 2.3 光場全像術原理 35 2.3.1 光場的雙平面 37 2.3.2 全光函數定義 40 2.3.3 五維全光函數 41 2.3.4 四維光場 42 第三章、 電腦全像術原理 44 3.1 全像術基本原理 44 3.2.1 菲涅耳繞射原理(Fresnel diffraction principle) 46 3.2.2 菲涅耳近似(The Fresnel approximation) 47 3.2.3 夫朗和斐近似(The Fraunhofer approximation) 49 3.3 電腦全像術的重建 50 3.3.1 空間光調製器簡介 (Sapatial light modulators, SLM) 51 3.3.2 扭轉式向列型液晶之光學特性 55 第四章、 降低多視點全像影像中離焦資訊串擾影響之方法 58 4.1 簡介 58 4.2 實驗步驟 58 4.3 優化型Gerchberg-Saxton演算法 60 4.4 MGSA演算法之應用 62 4.4.1 位置多工技術 62 4.4.2 角度多工技術 64 4.5 透鏡陣列合光系統 66 4.5.1 介紹 66 4.5.2 MGSA-type CGH編碼與光學架構設計 66 4.5.3 實驗結果 69 4.6 雙稜鏡合光系統 70 4.6.1 介紹 70 4.6.2 光學架構設計 70 4.6.3 實驗結果 71 4.7 半穿反合光系統 72 4.7.1 介紹 72 4.7.2 光學架構設計與CGH製作 72 4.7.3 實驗結果 73 4.8 光柵加密演算法 74 4.8.1 演算法架構 74 4.8.2 光學架構設計 75 4.8.3 實驗結果 76 4.9 相位加密演算法 76 4.9.1 演算法架構 77 4.9.2 光學架構設計與驗證 79 4.9.3 實驗結果 80 第五章、 結果分析與討論 83 5.1 結果與評估分析 83 5.2 討論 87 5.3 未來展望 89 參考文獻 91 圖文獻 104

    [1] G. Tricoles, "Computer generated holograms: an historical review, " Applied optics 26.20, 4351-4360, 1987.
    [2] Lee, Byoungho, "Three’Dimensional," Phys. Today 66.4, 36, 2013.
    [3] J. H. Park, K. Hong, and B. Lee, "Recent progress in three-dimensional information
    processing based on integral imaging," Applied optics, Vol. 48, No. 34, 2009.
    [4] S. Chris, C. Cameron, and M. Stanley, "Computer-generated holography as a generic display technology, " Computer, 46-53, 2005.
    [5] Knight, Timothy J., et al. "Light Field Camera Image, File and Configuration Data, and Methods of Using, Storing and Communicating Same," U.S. Patent Application No. 12/703, 367, 2010.
    [6] D. Lanman, and D. Luebke, "Near-eye light field displays," ACM Transactions on Graphics (TOG), 32(6) : 220, 2013.
    [7] L. Shi, et al, "Near-eye light field holographic rendering with spherical waves for wide field of view interactive 3d computer graphics," ACM Transactions on Graphics (TOG), 36(6) : 236, 2017.
    [8] W. H. Welch, R. D. TeKolste, H. Chung, and H. C. Cheng, "Methods and system for creating focal planes in virtual and augmented reality," U.S. Patent Application No. 14/726,429, 2015.
    [9] K. Akeley, S. J. Watt, A.R. Girshick, and M. S. Banks, "A stereo display prototype with multiple focal distances," In ACM transactions on graphics (TOG), Vol. 23, No. 3, pp. 804-813, ACM, 2004.
    [10] Y. Yamaguchi, and Y. Takaki, "See-through integral imaging display with background occlusion capability," Applied optics, 55(3), A144-A149, 2016.
    [11] X. Xia, X. Liu, H. Li, Z. Zheng, H. Wang, Y. Peng, and W. Shen, "A 360-degree floating 3D display based on light field regeneration," Optics express, 21(9), 11237-11247, 2013.
    [12] J. Hong, S. W. Min, and B. Lee, "Integral floating display systems for augmented reality," Applied optics, 51(18), 4201-4209, 2012.
    [13] J. Mansson, Stereovision: A model of human stereopsis, Lund University Cognitive Science, Technology, pp. 1-22, 1998.
    [14] C. Y. Chen, W. C. Li, H. T. Chang, C. H. Chuang, and T. J. Chang, "3-D modified Gerchberg–Saxton algorithm developed for panoramic computer-generated phase-only holographic display," JOSA B 34(5) : B42-B48, 2017.
    [15] H. E. Hwang, H. T. Chang, and W. N. Lie, "Multiple-image encryption and multiplexing using a modified Gerchberg-Saxton algorithm and phase modulation in Fresnel-transform domain," Optics letters, 34(24), 3917-3919, 2009.
    [16] H. E. Hwang, H. T. Chang, and W. N. Lie, "Fast double-phase retrieval in Fresnel domain using modified Gerchberg-Saxton algorithm for lensless optical security systems.” Optics express, 17(16), 13700-13710, 2009.
    [17] D. Gabor, "A new microscope principle," Nature, Vol. 161, pp. 777-779, 1948.
    [18] E. N. Leith, and J. Upatnieks, "Wavefront reconstruction with diffused illumination and three dimensional objects," J. O. S. A, Vol. 54, No. 11, pp. 1295-1301, 1964.
    [19] Y. N. Denisyuk, "On the reproduction of the properties of an object in the wave field of the radiation scattered by it," Dokl. Akad. Nauk SSSR, Vol. 144, pp. 1275-1276, 1962.
    [20] K. S. Pennington, and L. H. Lin, "Multilcolor Wavefront Reconstruction," Appl. Opt., Vol. 6, No. 3, pp. 529-536 1967.
    [21] B. R. Brown, and A. W. Lohmann, “Computer-generated binary holograms”, IBM J. Res. Dev., Vol. 13, No. pp. 160-168, 1969.
    [22] D. Chu, J. Jia, and J. Chen, "Digital Holographic Display," 113-129, 2018.
    [23] C. J. Kuo, and M. H. Tsai, "Three-Dimensional Holographic Imaging", John Wiley, and Sons, Inc., New York, 2003.
    [24] S. A. Benton, "Hologram reconstructions with extended incoherent sources", J. O. S. A., Vol. 59, pp. 1545-1546, 1969.
    [25] D. Senderakova, "White Light Reconstructed Holograms", Holography-Basic Principles and Contemporary Applications, Chapter 3, pp. 75-78, 2013.
    [26] D. J. Debitetto, "Hologram panoramic stereograms synthesized from white-light recordings," Appl. Opt. Vol. 8, No 8, pp. 1740-1741, 1969.
    [27] L. Cross, "The multiple technique for cylindrical holographic stereograms," Proc. SPIE, 1977.
    [28] G. Saxby, "Practical Holography," 2nd ed., Prentice Hall, New York, 1994.
    [29] Y. S. Cheng, and R. C. Chang, "Image-plane cylindrical holographic stereogram," Appl. Opt., Vol. 39, No. 23, pp. 4058-4069, 2000.
    [30] Y. S. Cheng, W. H. Su, and R. C. Chang, "Disk-type multiplex holography," Appl. Opt., Vol. 38, No. 14, pp. 3093-3100, 1999.
    [31] K. Okada, T. Honda, and J. Tsujiuchi, "A method of distortion compensation of multiplex holograms," Opt. Commun., Vol. 48, No.3, pp. 167-170, 1983.
    [32] J. W. Goodman, and R.W. Lawrence, "Digital image formation from electronically detected holograms," Appl. Phys. Lett. 11, 77–79 1967.
    [33] U. Schnars, and W. Juptner, "Direct recording of holograms by a CCD target and numerical reconstruction," Appl. Opt. 33, 179–181 1994.
    [34] W. Osten, A. Faridian, P. Gao, K. Körner, D. Naik, G. Pedrini, A. K. Singh, M. Takeda, and M. Wilke, "Recent advances in digital holography," Appl. Opt., Vol. 53, No. 27, 44-63. 2014.
    [35] M. K. Kim, "Principles and techniques of digital holographic microscopy," SPIE Rev. 1(1), 018005, 1 April 2010.
    [36] H. T. Chang, H. E. Hwang, C. L. Lee, and M. T. Lee, "Wavelength multiplexing multiple-image encryption using cascaded phase-only masks in the Fresnel transform domain," Appl. Opt., Vol. 50, No. 5, pp. 710-716, 2011.
    [37] J. P. Liu, W. Y. Hsieh, T. C. Poon, and P. Tsang, "Complex Fresnel hologram display using a single SLM," Appl. Opt., Vol. 50, No. 34, pp. 128-135, 2011.
    [38] J. Bu, G. Yuan, Y. Sun, S. Zhu, and X. Yuan, "Optimization of computer-generated holograms for dynamic optical manipulation with uniform structured light spots," Chin. Opt. Lett., Vol. 9, No. 6, pp. 061202-1-061202-4, 2011.
    [39] Q. L. Deng, B. S. Lin, H. T. Chang, Senior Member, IEEE, G. S. Huang, and C. Y. Chen, "MGSA-type Computer-Generated Holography for Vision Training with Head-Mounted Display," J. Disp. Technol., Vol. 10, No. 6, pp. 433-437, 2014.
    [40] M. Bayraktar, and M. Özcan, "Method to calculate the far field of three-dimensional objects for computer-generated holography," Appl. Opt., Vol. 49, No. 24, pp. 4647-4654, 2010.
    [41] C. Y. Chen, Q. L. Deng, P. J. Wu, B. S. Lin, H. T. Chang, H. E. Hwang, and G. S. Huang, "Speckle reduction by combination of digital filter and optical suppression in holographic display," Appl. Opt., Vol. 53, No. 27, pp. G163-G168, 2014.
    [42] P. J. Wu, C. Y. Chen, Q. L. Deng, H. T. Chang, B. S. Lin, and G. S. Huang, "Integral computer-generated hologram via a modified Gerchberg-Saxton algorithm," J. Opt., Vol. 17, No. 1, 2014.
    [43] C. Y. Chen, W. C. Li, H. T. Chang, C. H. Chuang, and T. J. Chang, "3-D modified Gerchberg-Saxton algorithm developed for panoramic computer-generated phase-only holographic display," J.O.S.A. B, vol. 34, pp. b42-b48, 2017.
    [44] G. Lippmann, "Epreuves reversible. Photographies integrals," C. R. Acad. Sci. 146, 446–451,1908.
    [45] A. P. Sokolov, ed., "Autostereoscopy and Integral Photography by Professor Lippmann’s Method, Moscow State University, 1911.
    [46] H. E. Ives, "Optical properties of a Lippmann lenticulated sheet," J. Opt. Soc. Am. 21, 171–176, 1931.
    [47] C. W. Kanolt, "Photographic method and apparatus," U.S. patent, 1,260,682, 1918.
    [48] A. Lohmann, "Optische Einseitenbandubertragung angewandt auf das Gabor-Mikroskop," Opt. Acta 3, 97–99, 1956.
    [49] B. R. Brown, and A. W. Lohmann, "Complex spatial filtering with binary masks," Appl. Opt. 5, 967–969, 1966.
    [50] A. W. Lohmann, and D. P. Paris, "Binary Fraunhofer holograms, generated by computer,” Appl. Opt. 6, 1739–1748, 1967.
    [51] J. P. Waters, "Holographic image synthesis utilizing theoretical methods," Applied physics letters, 9(11), 405-407, 1966.
    [52] A. Chutjian, and R. J. Collier, "Recording and reconstructing three-dimensional images of computer-generated subjects by Lippmann integral photography," Appl. Opt, 7(1), 99-103, 1968.
    [53] R. V. Pole, "3‐D Imagery and Holograms of Objects Illuminated in White Light," Appl. Phys. Lett. 10(1), 20-22, 1967.
    [54] J. T. McCrickerd, and N. George, "Holographic stereogram from sequential component photographs," Applied Physics Letters, 12(1), 10-12, 1968.
    [55] L. Cross, "The multiplex technique for cylindrical holographic stereograms," In Proc. SPIE, annual technical conference San Diego seminar, 1977.
    [56] L. Huff, and R. L. Fusek, "Color holographic stereograms," Optical Engineering, 19(5), 195691, 1980.
    [57] J. R. Andrews, B. Tuttle, M. Rainsdon, R. Damm, K. Thomas, and W. E. Haas, "Holographic stereograms generated with a liquid crystal spatial light modulator," Proc. SPIE 902, 92-94, 1988.
    [58] T. Honda, M. Yamaguchi, D. K. Kang, K. Shimura, J. Tsujiuchi, and N. Ohyama,"Printing of holographic stereogram using liquid-crystal TV," Proc. SPIE 1051, 186-191, 1989.
    [59] Y. S. Cheng, and J. Y. Lin,"Experimental use of a low cost liquid crystal TV in multiplex holography," Appl. Opt. 28, 829–830, 1989.
    [60] M. A. Klug, M. W. Halle, M. E. Lucente, and W. J. Plesniak,"Compact prototype one-step ultragram printer," Proc. SPIE 1914, 15–24, 1993.
    [61] M. Yamaguchi, N. Ohyama, and T. Honda, "Holographic 3-D printer, " Proc. SPIE 1212, 84-92, 1990.
    [62] T. Yatagai, "Three-dimensional displays using computer-generated holograms," Opt. Commun, 12, 43-45, 1974.
    [63] A. D. Stein, Z. Wang, and J. J. S. Leigh, "Computer-generated holograms: a simplified ray-tracing approach," Comput. Phys. 6, 389-392, 1992.
    [64] M. Yamaguchi, H. Hoshino, T. Honda, and N. Ohyama, "Phase added stereogram: calculation of hologram using computer graphics technique," Proc. SPIE 1914, 25-31, 1993.
    [65] H. Yoshikawa, and H. Kameyama, "Integral holography,"mProc. SPIE 2406, 226–234, 1995.
    [66] P. St. Hilaire, S. A. Benton, M. Lucente, M. L. Jepsen, J. Kollin, and H. Yoshikawa, "Electronic display system for computational holography," Proc. SPIE 1212, 174-182, 1990.
    [67] P. S. Hilaire, S. A. Benton, M. Lucente, and P. M. Hubel, "Color images with the MIT holographic video display," Proc. SPIE 1667, 73-84, 1992.
    [68] K. Maeno, N. Fukaya, O. Nishikawa, K. Sato, and T. Honda, "Electroholographic display using 15mega pixels LCD," Proc. SPIE 2652, 15-23, 1996.
    [69] M. Stanley, R. W. Bannister, C. D. Cameron, S. D. Coomber, I. G. Cresswell, J. R. Hughes, V. Hui, P. O. Jackson, K. A. Milham, R. J. Miller, D. A. Payne, J. Quarrel, D. C. Scattergood, A. P. Smith, M. A. G. Smith, D. L. Tipton, P. J. Watson, P. J. Webber, and C. W. Slinger, "100-megapixel computer-generated holographic images from active tiling: a dynamic and scalable electro-optic modulator system," Proc. SPIE 5005, 247-258, 2003.
    [70] A. Schwerdtner, R. Häussler, and N. Leister, "A new approach to electro-holographic displays for large object reconstructions," in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (CD), paper PMA5, 2007.
    [71] F. Yaraş, H. Kang, and L. Onural, "Real-time phase-only color holographic video display system using LED illumination," Appl. Opt. 48, H48–H53, 2009.
    [72] T. Kozacki, G. Finke, P. Garbat, W. Zaperty, and M. Kujawi ´nska, "Wide angle holographic display system with spatiotemporal multiplexing," Opt. Express 20, 27473–27481, 2012.
    [73] H. Sasaki, K. Yamamoto, K. Wakunami, Y. Ichihashi, R. Oi, and T. Senoh, "Large size three-dimensional video by electronic holography using multiple spatial light modulators," Sci. Rep. 4, 6177, 2014.
    [74] Y. Takaki, Y. Matsumoto, and T. Nakajima, "Color image generation for screen-scanning holographic display," Opt. Express 23, 26986-6998, 2015.
    [75] D. E. Smalley, Q. Y. J. Smithwick, V. M. Bove, J. Barabas, and S. Jolly, "Anisotropic leaky-mode modulator for holographic video displays," Nature 498, 313-317, 2013.
    [76] R. B. Collender, "Methods for electronic 3-D moving pictures without glasses," Proc. SPIE 0761, 2-22, 1987.
    [77] R. Borner, "Progress in projection of parallax-panoramagrams onto wide-angle lenticular screens," Proc. SPIE 0761, 35-43, 1987.
    [78] J. B. Eichenlaub, "Autostereoscopic display for use with a personal computer," Proc. SPIE 1256, 156-163, 1990.
    [79] H. Isono, M. Yasuda, D. Takemori, H. Kanayama, C. Yamada, and K. Chiba, "50-inch autostereoscopic full-color 3D TV display system," Proc. SPIE 1669, 176-185, 1992.
    [80] S. C. Gustafson, G. R. Little, T. P. Staub, J. S. Loomis, J. M. Brown, and N. F. O’Brien," Design of a real-time unskeletonized autostereoscopic display system enabled by new technology," Proc. SPIE, 150-159, 1993.
    [81] Y. Kajiki, H. Yoshikawa, and T. Honda, "Ocular accommodation by super multi-view stereogram and 45-view stereoscopic display," in Proceedings of International Display Workshops (IDW), Vol. 2, pp. 489-492, 1996.
    [82] W. Matusik, and H. Pfister, "3D TV: a scalable system for real-time acquisition, transmission, and autostereoscopic display of dynamic scenes," ACM Trans. Graph. 23, 814-824, 2004.
    [83] Y. Takaki,"Thin-type natural three-dimensional display with 72 directional images," Proc. SPIE 5664, 56-63, 2005.
    [84] T. Balogh,"The HoloVizio system," Proc. SPIE 6055, 60550U, 2006.
    [85] D. Lanman, M. Hirsch, Y. Kim, and R. Raskar, "Content-adaptive parallax barriers: optimizing dual-layer 3D displays using low-rank mlight field factorization," ACM Trans. Graph. 29, 163, 2010.
    [86] M. Kawakita, S. Iwasawa, M. Sakai, Y. Haino, M. Sato, and N. Inoue, "3D image quality of 200-inch glasses-free 3D display system," Proc. SPIE 8288, 82880B, 2012.
    [87] K. Nagano, A. Jones, J. Liu, J. Busch, X. Yu, M. Bolas, and P. Debevec,"An autostereoscopic projector array optimized for 3D facial display," in ACM SIGGRAPH Emerging Technologies, 2013.
    [88] D. Teng, Z. Pang, Y. Zhang, D. Wu, J. Wang, L. Liu, and B. Wang, "Improved spatiotemporal-multiplexing super-multiview display based on planar aligned OLED microdisplays," Opt. Express 23, 21549-21564, 2015.
    [89] M. McCormick, N. Davies, A. Aggoun, and M. Brewin,"Examination of the requirements for autostereoscopic, full parallax 3D-TV," in International Broadcasting Convention, pp. 477-482, 1994.
    [90] M. Brewin, M. Forman, and N. Davies, "Electronic capture and display of full parallax 3D images," Proc. SPIE 2409, 118-124, 1995.
    [91] J. Arai, F. Okano, H. Hoshino, and I. Yuyama, "Gradient-index lens-array method based on real-time integral photography for threedimensional images," Appl. Opt. 37, 2034-2045, 1998.
    [92] B. Lee, S. Jung, S. W. Min, and J. H. Park, "Three-dimensional display by use of integral photography with dynamically variable image planes," Opt. Lett. 26, 1481-1482, 2001.
    [93] T. Koike, M. Oikawa, K. Utsugi, M. Kobayashi, and M. Yamasaki, "Autostereoscopic display with 60 ray directions using LCD with optimized color filter layout," Proc. SPIE 6490, 64900T, 2007.
    [94] J. Arai, F. Okano, M. Kawakita, M. Okui, Y. Haino, M. Yoshimura, M. Furuya, and M. Sato, "Integral three-dimensional television using a 33-megapixel imaging system," J. Display Technol. 6, 422-430, 2010.
    [95] H. Y. Chen and T. D. Wilkinson,"Field of view expansion for 3-D holographic display using a single spatial light modulator with scanning reconstruction light," 3DTV Conference, 2009.
    [96] K. Yamamoto, Y. Ichihashi, T. Senoh, R. Oi, and T. Kurita, "3D object enlargement technique using an optical system and multiple SLMs for electronic holography," Opt. Express, vol. 20, pp. 21137-21144, 2012.
    [97] J. S. hen, Q. Y. J. mithwick, and D. P. Chu, "Carse integral holography approach for real 3D color video displays," Optics express, 24(6), 6705-6718, 2016.
    [98] J. Li, Q. Smithwick, and D. Chu, "Full bandwidth dynamic coarse integral holographic displays with large field of view using a large resonant scanner and a galvanometer scanner," Opt. Express, 26(13), 17459-17476, 2018.
    [99] S. Oh, J. Hong, J. Park, and B. Lee, "Efficient Algorithm to Generate Elemental Images in Integral Imaging," Journal of the Optical Society of Korea, Vol. 8, No. 3, pp. 115-121, 2004.
    [100] M. O. Jeong, N. Kim, and J. Park, "Elementa Image Synthesis for Integral Imaging Using Phase-shifting Digital Holography," Journal of the Optical Society of Korea, Vol. 12, No. 4, pp. 275-280, 2008.
    [101] Y. Kim, J. Park, H. Choi, S. Jung, S. Min, and B. Lee, "Viewing-angle-enhanced integral imaging system using a curved lens array," Opt. Express, Vol. 12, NO. 3, pp. 421-429, 2004.
    [102] Y. Kim, J. Park, S. Min, S. Jung, H. Choi, and B. Lee, "Wide-viewing-angle integral three-dimensional imaging system by curving a screen and a lens array," Appl. Opt., Vol. 44, No. 4, pp. 546-552, 2005.
    [103] H. H. Lee, P. J. Huang, J. Y. Wu, P. Y. Hsieh, and Y. P. Huang, "A 2D/3D hybrid integral imaging display by using fast switchable hexagonal liquid crystal lens array," In Three-Dimensional Imaging, Visualization, and Display 2017 (Vol. 10219, p. 1021910), International Society for Optics and Photonics, 2017.
    [104] X. Xia, X. Liu, H. Li, Z. Zheng, H. Wang, Y. Peng, and W. Shen, "A 360-degree floating 3D display based on light field regeneration," Optics express, 21(9), 11237-11247, 2013.
    [105] J. Hong, S. W. Min, and B. Lee, “Integral floating display systems for augmented reality.” Applied optics, 51(18), 4201-4209. (2012).
    [106] A.Gershun,"The light field, " Journal of Mathematics and Physics, 18(1-4), 51-151, 1939.
    [107] E. H Adelson and J. R. Bergen, "The plenoptic function and the elements of early vision, " 1991.
    [108] Adelson, E. H., & Bergen, J. R. "The plenoptic function and the elements of early vision (pp. 3-20)," Vision and Modeling Group, Media Laboratory, Massachusetts Institute of Technology, 1991.
    [109] M. Levoy and P. Hanrahan, "Light field rendering," In Proceedings of the 23rd annual conference on Computer graphics and interactive techniques (pp. 31-42), ACM, 1996.
    [110] R. Ng, M. Levoy, M. Brédif, G. Duval, M. Horowitz, and Hanrahan, "Light field photography with a hand-held plenoptic camera," Computer Science Technical Report CSTR, 2(11), 1-11, 2005.
    [111] R. Ng, M. Levoy, M. Brédif, G. Duval, M. Horowitz, and P. Hanrahan, "Light field photography with a hand-held plenoptic camera," Computer Science Technical Report CSTR, 2(11), 1-11, 2005.
    [112] H. Zhu, Q. Wang, and J. Yu, "Light field imaging: models, calibrations, reconstructions, and applications. Frontiers of Information Technology & Electronic Engineering," 18(9), 1236-1249, 2017.
    [113] S. J. Gortler, R. Grzeszczuk, R. Szeliski and M. F. Cohen, "The lumigraph," In Siggraph (Vol. 96, No. 30, pp. 43-54), 1996.
    [114] J. F. Blinn and M. E. Newell, "Texture and reflection in computer generated images," Communications of the ACM, 19(10), 542-547, 1976.
    [115] J. W. Goodman, "An introduction to the principles and applications of holography," Proceedings of the IEEE, 59(9), 1292-1304, 1971.
    [116] M. V. Klein, and T. E. Furtak, Optics, 2nd ed., John Wiley & Sons, Inc., New York, 1986.
    [117] Z. Zhang, Z. You and D. Chu, "Fundamentals of phase-only liquid crystal on silicon (LCOS) devices," Light: Science & Applications, 3(10), e213, 2014.
    [118] W. Osten, and N. Reingand, Optical Imaging and Metrology: Advanced Technologism, 1st ed., Chapter 1 pp. 1-29, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2012.
    [119] M. H. Kalmanash, "Status of development of LCOS projection displays for F-22A, F/A-18E/F, and JSF cockpits," Proc. SPIE, Vol. 4362, pp. 161-169, 2001.
    [120] G. Friedel, "The Mesomorphic States of Matter, " Ann. Phys.-Paris, Vol. 18, pp. 273-474, 1922.
    [121] Q. Li, Liquid Crystals Beyond Displays: Chemistry, Physics, and Applications, 1st ed., John Wiley & Sons, Inc., New York, 2012.
    [122] C. W. Oseen, "The theory of liquid crystals," Trans. Faraday Soc., Vol. 29, pp. 883-889, 1932.
    [123] E. Hällsting, "Nematic Liquid Crystal Spatial Light Modulators for Laser Beam Steering," Uppsala University, Doctoral thesis, 2004.
    [124] J. Zang, Z. Xie and Y. Zhang, "Optical image encryption with spatially incoherent illumination," Optics letters, 38(8), 1289-1291, 2013.
    [125] B. Javidi, A. Carnicer, M. Yamaguchi, T. Nomura, E. Pérez-Cabré, M. S. Millán and Peng, X, et al, "Roadmap on optical security," Journal of Optics, 18(8), 083001. 2016.
    [126] W. Chen, B. Javidi and X. Chen, "Advances in optical security systems," Advances in Optics and Photonics, 6(2), 120-155, 2014, 2014.
    [127] X. Pan, X. Meng, X. Yang, Y. Wang, X. Peng, W. He and H. Chen, et al, "Triple-image encryption based on phase-truncated Fresnel transform and basic vector operation," Appl. Opt., 54(28), 8485-8493, 2015.
    [128] A. Benoit, P. L. Callet, P. Campisi, and R. Cousseau, "Quality Assessment of Stereoscopic Images, " EURASIP Journal on Image and Video Proc., Vol. 2008, No. 659024, 2008.
    [129] X. Wang, M. Yu, Y. Yang, and G. Jiang, "Research on subjective stereoscopic image quality assessment," Proc. of SPIE Electronic Imaging, Vol. 7255, No. 725509, 2009.
    [130] Y. F. Peng, X. Dun, Q. L. Sun, W. G. Heidrich, "Mix-and-Match Holography," ACM Transactions on Graphics, Vol. 36, No. 6, article 191, 2017.
    [131] K. Choi, H. Kim, and B. Lee, "Synthetic phase holograms for auto-stereoscopic image display using a modified IFTA," Opt. Express, Vol. 12, No. 11, pp. 2454-2462, 2004.
    [132] W. D. Koek, N. Bhattacharya, J. J. M. Braat, T. A. Ooms, and J. Westerweel, "Influence of virtual images on the signal-to-noise ratio in digital in-line particle holography," Opt. Express, Vol. 13, No. 7, pp. 2578-2589, 2005.

    無法下載圖示 全文公開日期 2024/08/27 (校內網路)
    全文公開日期 2034/08/27 (校外網路)
    全文公開日期 2034/08/27 (國家圖書館:臺灣博碩士論文系統)
    QR CODE