簡易檢索 / 詳目顯示

研究生: 詹畯棋
Chun-Chi Chan
論文名稱: 三維電腦全像影像優化之方法與驗證
An Optimization Method of Three Dimensional Computer Generated Hologram Image and Verification
指導教授: 陳建宇
Chien-Yu Chen
口試委員: 李宗憲
Tsung-Xian Lee
林晃巖
Hoang-Yan Lin
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 色彩與照明科技研究所
Graduate Institute of Color and Illumination Technology
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 119
中文關鍵詞: 三維顯示全彩電腦全像術優化型Gerchberg-Saxton演算法
外文關鍵詞: three-dimensional display, computer generated holography, modified Gerchberg-Saxton algorithm
相關次數: 點閱:198下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在全像相關的顯示領域中,重建影像品質一直以來都是相當重要的議題,尤其是講究重建真實度的三維立體顯示。本論文提出三維電腦全像影像優化之方法與驗證,結合三維電腦全像術與視網膜投影系統,以實現動態、大尺寸且具高擬真度之三維全彩電腦全像投影系統。本系統之三維電腦全像片的編碼是採用優化型Gerchberg-Saxton演算法,以點對點之形式擷取三維物體之純相位資訊(Phase-only Function, POF),其中加入旋轉矩陣搭配不同方向之重建光源來模擬重建物體的各個視角,並利用其波長加密與位置多工之特性計算三原色R、G、B之POF,演算完成後透過全彩光學重建系統重建出多深度之三維全彩電腦全像。本光學重建機構利用斜向入射光路結合正交線偏振片之消光特性來降低非影像光之干擾並同時大幅提升影像品質,而光源的部分三原色R、G、B採用同時混色方式並搭配十字分色稜鏡來達到低複雜性混光結構,動態三維電腦全像則是以快速切換多視角POF的方式來實現。最後,本研究針對影像擬真度與重建影像品質進行評估,擬真度方面採用結構相似性指標(Structural Similarity Index, SSIM)而重建影像品質評估則是採用相對繞射效率、均方根誤差、訊號雜訊比值與雷射光斑對比度進行客觀影像品質分析作為本論文之三維電腦全像品質之指標。


    The fidelity and reconstruction quality are critical in holography display applications, three-dimensional (3D) displays particularly. In this thesis, a high fidelity three-dimensional computer generated holographic projection system is proposed, which combines retina projection system and three-dimensional computer generated holography for achieving the dynamic and large size three-dimensional computer generated holographic display. Modified Gerchberg-Saxton algorithm is utilized with combing rotation matrix and different directions of light sources to transform 3D object to phase-only function (POF), which can reconstruct multi-view of 3D object. The point-to-point method is adopted in modified Gerchberg-Saxton algorithm to retrieve POF with high accuracy. The reconstruction image reconstructed by POF will clear or blurr when focusing on reconstruction plane or others, respectively. In the reconstruction system, X-cube is utilized for combining R, G and B and orthogonal linear polarizer with oblique incidence for eliminating reflection light, moreover, the dynamic iamge is achieved by switching POFs. Finally, the fidelity and reconstruction image quality is accessed by structural similarity index (SSIM), related diffraction efficiency (RDE), root-mean-square error (RMSE), signal-to-noise ratio (SNR) and speckle contrast (SC) for evaluating the reconstrted image.

    摘要 i ABSTRACT ii 目錄 iv 表目錄 vi 圖目錄 vii 專有名詞索引表 xi 第一章、 緒論 1 1.1 前言 1 1.2 研究動機與目的 3 1.3 論文架構 5 第二章、 全像顯示技術的發展與回顧 6 2.1 全像術之發展 6 2.2 全像顯示技術之分類 6 2.3 電腦全像術之發展近況 12 第三章、 電腦全像術原理 22 3.1 全像術基本原理 22 3.1 菲涅耳繞射原理(Fresnel diffraction principle) 24 3.2.1 菲涅耳近似(The Fresnel approximation) 25 3.2.2 夫朗和斐近似(The Fraunhofer approximation) 28 3.3 電腦全像術的重建 29 3.3.1 向列型液晶之光學特性 29 3.3.2 SLM之簡介 32 第四章、 三維電腦全像影像優化方法與驗證 38 4.1 摘要 38 4.2 實驗步驟 38 4.3 優化型Gerchberg-Saxton演算法 40 4.4 MGSA位置多工之技術 42 4.5 三維優化型Gerchberg-Saxton演算法 45 4.5.1 三維電腦全像演算法之分類 45 4.5.2 點對點式優化型Gerchberg-Saxton演算法 47 4.5.3 視角與影像坐標系旋轉矩陣 48 4.6 MGSA-type R、G、B CGH之設計與模擬重建 50 4.7 光學重建系統之設計與架設 65 4.7.1 單色光重建三維電腦全像影像之驗證 65 4.7.2 三維全彩電腦全像影像重建之驗證 67 第五章、 結論分析與討論 72 5.1 影像品質評估 72 5.2 討論 77 5.2.1 單色斜向重建機構驗證之結果 77 5.2.2 三維全彩電腦全像影像重建之結果 81 5.3 結論 84 5.4 未來展望 85 參考文獻 87 圖文獻 98

    [1] “Augmented/Virtual Reality Report 2016”, DIGI-CAPITAL, 2016.
    [2] T. Motoki, H. Isono, and I. Yuyama, “Present status of three-dimensional television research”, Proc. IEEE, Vol. 83, pp. 1009-1021, 1995.
    [3] T. Okoshi, Three dimensional imaging Techniques, Academic Press, London, 1976.
    [4] D. McAllister, Stereo computer graphics and other true 3D technologies, Princeton university press, 1993.
    [5] J. Mansson, Stereovision: A model of human stereopsis, Lund University Cognitive Science, Technology, pp. 1-22, 1998.
    [6] I. Sexton, and D. Crawford, “Parallax Barrier 3-D TV”, Proc. SPIE, Vol. 1083, pp. 84-91, 1989.
    [7] D. Gabor, “A new microscope principle”, Nature, Vol. 161, pp. 777-779, 1948.
    [8] Emment N. Leith and J. Upatnieks, “Reconstructed Wavefronts and Communication Theory,” Journal of the Optical Society of America, Vol. 52, No. 10, pp. 1123-1128, 1962.
    [9] E. Leith, and J. Upatnieks, “Wavefront reconstruction with continuour-tone objects”, J. O. S. A., Vol. 53, pp. 1377-1381, 1963.
    [10] C. Outwaterand, and V. hamersveld, “Practical Holography”, Dimensional Arts Inc., 1995.
    [11] B. R. Brown, and A. W. Lohmann, “Computer-generated binary holograms”, IBM J. Res. Dev., Vol. 13, No. pp. 160-168, 1969.
    [12] C. Chang, J. Xia, and Y. Jiang, “Holographic image projection on titled planes byphase-only computer generated hologram using fractional Fourier transformation”, J. Disp. Technol., Vol. 10, No. 2, pp. 107-113, 2014.
    [13] Y. Pan, Y. Wang, J. Liu, X. Li, and J. Jia, “Fast polygon-based method for calculating computer-generated holograms in three-dimensional display”, Appl. Opt., Vol. 52, No. 1 , pp. A290-A299, 2013.
    [14] Y. Takaki, and N. Okada, “Hologram generation by horizontal scanning of a high- speed spatial light modulator”, Appl. Opt., Vol. 48, No. 17, pp. 3255-3260, 2009.
    [15] M. Bayraktar, and M. Özcan, “Method to calculate the far field of three-dimensional objects for computer-generated holography”, Appl. Opt., Vol. 49, No. 24, pp. 4647-4654, 2010.
    [16] K. Yamamoto, Y. Ichihashi, T. Senoh, R. Oi, and T. Kurita, “Calculating the Fresnel diffraction of light from a shifted and tilted plane”, Opt. Express, Vol. 20, No. 12, pp. 12949-12958, 2012.
    [17] E. N. Leith and J. Upatnieks, “Wavefront reconstruction with diffused illumination and three dimensional objects,” Journal of Optical Society America, Vol. 54, No. 11, pp. 1295-1301, 1964.
    [18] C. J. Kuo and M. H. Tsai, “Three-Dimensional Holohraphic Imaging,” John Wiley & Sons, Inc., New York, 2003.
    [19] S. A. Benton, “Hologram reconstruction with extended incoherent sources,” Journal of Optical Society America, Vol. 59, pp. 1545-1546, 1969.
    [20] D. Senderakova, “White Light Reconstructed Holograms,” Holography-Basic Principles and Cpntemporary Applications, Chapter 3, pp. 75-78, 2013.

    [21] Y. N. Denisyuk, “on the reproduction of the properties of an object in the wave field of the radiation scattered by it,” Dokl. Akad. Nuak SSSR, Vol. 144, pp. 1275-1276, 1962.
    [22] D. J. Debitetto, “Hologram panorami stereograms synthesized from white-light recordings,” Appl. Opt., Vol. 8, No. 8, pp. 1740-1741, 1969.
    [23] Y. S. Cheng, W. H. Su, and R. C. Chang, “Disk-type multiplex holography,” Appl. Opt., Vol. 38, No. 14, pp. 3093-3100, 1999.
    [24] K. Okada, T. Honda, and J. Tsujiuchi, “A method of distortion compensation of multiplex holograms,” Opt. Commum., Vol. 48, No. 3, pp. 167-170, 1983.
    [25] L. Cross, “The multiple technique for cylindrical holographic stereograms,” Proc. SPIE, 1977.
    [26] U. Schnars and W. P. Juepter, “Direct recording of holograms by a CCD target and numerical reconstruction,” Appl. Opt., Vol. 33, No. 2, pp. 179-181, 1994.
    [27] T. C. Poon, “Digital Holgraphy and Three-Dimensional Display – Principles and Applications,” Springer, New York, 2006.
    [28] Q. L. Deng, B. S. Lin, H. T. Chang, Senior Member, IEEE, G. S. Huang, and C. Y. Chen, “MGSA-type Computer-Generated Holography for Vision Training with Head-Mounted Display,” J. Disp. Technol., Vol. 10, No. 6, pp. 433-437, 2014.
    [29] H. T. Chang, H. E. Hwang, C. L. Lee, and M. T. Lee, “Wavelength multiplexing multiple-image encryption using cascaded phase-only masks in the Fresnel transform domain,” Appl. Opt., Vol. 50, No. 5, pp. 710-716, 2011.
    [30] J. P. Liu, W. Y. Hsieh, T. C. Poon, and P. Tsang, “Complex Fresnel hologram display using a single SLM,” Appl. Opt., Vol. 50, No. 34, pp. 128-135, 2011.

    [31] J. Bu, G. Yuan, Y. Sun, S. Zhu, and X. Yuan, “Optimization of computer-generated holograms for dynamic optical manipulation with uniform structured light spots,” Chin. Opt. Lett., Vol. 9, No. 6, pp. 061202-1¬-061202-4, 2011.
    [32] C. Y. Chen, Q. L. Deng, P. J. Wu, B. S. Lin, H. T. Chang, H. E. Hwang, and G. S. Huang, “Speckle reduction by combination of digital filter and optical suppression in holographic display,” Appl. Opt., Vol. 53, No. 27, pp. G163-G168, 2014.
    [33] P. J. Wu, C. Y. Chen, Q. L. Deng, H. T. Chang, B. S. Lin, and G. S. Huang, “Integral computer-generated hologram via a modified Gerchberg-Saxton algorithm”, J. Opt., Vol. 17, No. 1, 2014.
    [34] C. Y. Chen, W. C. Li, H. T. Chang, C. H. Chuang, and T. J. Chang, “3-D modified Gerchberg-Saxton algorithm developed for panoramic computer-generated phase-only holographic display,” J.O.S.A. B, vol. 34, pp. b42-b48, 2017.
    [35] N. Hashimoto, S. Morokawa, and K. Kitamura, “Real-time holography using the high-resolution LCTV-SLM”, Proc. SPIE, Vol. 1461, pp. 291-302, 1991.
    [36] M. Lucente, and T. A. Galyean, “Rendering interactive holographic images,” Proc. ACM SIGGRAPH’95, pp. 387-394, New York, 1995.
    [37] H. Nakayama, N. Takada, Y. Ichihashi, S. Awazu, T. Shimobaba, N. Masuda, and T. Ito, “Real-time color electroholography using multiple graphics processing units and multiple high-difinition liquid-crystal display panels,” Appl. Opt., Vol. 49, No. 31, pp. 5993-5996, 2010.
    [38] D. E. Smalley, Q. Y. J. Smithwick, V. M. Bove Jr, J. Barabas, and S. Jolly, “Anisotropic leaky-mode modulator for holographic video displays,” Nature, Vol. 498, pp. 313-317, 2013.

    [39] E. Moon, M. Kim, J. Roh, H. Kim, and J. Hahn, “Holographic head-mounted display with RGB light emitting diode light source,” Opt. Express, Vol. 22, No. 6, pp. 6526-6534, 2014.
    [40] S. Jung, S.W. Min, J.H. Park, and B. Lee, “Study of Three-Dimensional System Based on Computer-Generated Integral Photography,” Journal of OSK, vol. 5, pp. 117-122, 2001.
    [41] H. Y. Chen and T. D. Wilkinson, “Field of view expansion for 3-D holographic display using a single spatial light modulator with scanning reconstruction light,” 3DTV Conference, 2009.
    [42] K. Yamamoto, Y. Ichihashi, T. Senoh, R. Oi, and T. Kurita, “3D object enlargement technique using an optical system and multiple SLMs for electronic holography,” Opt. Express, vol. 20, pp. 21137-21144, 2012.
    [43] T. Nakajima, Y. Matsumoto, and Y. Takaki, “Color Image Generation by Horizontally Scanning Holography,” Digital Holography and 3D Imaging Technical Digest (DH), DTh2A.2, Hawaii, 2013.
    [44] Y. Matsumoto and Y. Takaki, “Time-multiplexed color image generation by viewing-zone scanning holographic display employing MEMS-SLM,” OSA, vol. 25, pp. 515-523, 2017.
    [45] F. Yaras, H. Kang, and L. Onural, “Real-time phase-only color holograpgic video display system using LED illumination,” Appl. Opt., Vol. 48, No. 34, pp. H48-H49, 2009.
    [46] J. Jia, Y. Wang, J. Liu, X. Li, Y. Pan, Z. Sun, B. Zhang, Q. Zhao, and W. Jiang, “Reducing the memory usage for effective computer-generated hologram calculation using compressed look-up table in full-color holographic display,” Appl. Opt., Vol. 52, No. 7, pp. 1404-1412, 2013.
    [47] H. Sato, T. Kakue, Y. Ichihashi, Y. Endo, K. Wakunami, R. Oi, K. Yamamoto, H. Nakayama, T. Shimobaba, and T. Ito, “Real-time colour hologram generation based on ray-sampling plane with multi-GPU acceleration,” Scientific Reports, vol. 8, no. 1500, 2018.
    [48] T. Ito, “Color electroholography by three colored reference lights simultaneously incident upon one hologram panel,” Opt. Express, Vol. 12, No. 18, pp. 4320-4325, 2004.
    [49] T. Yamaguchi, G. Okabe, and H. Yoshikawa, “Real-time image plane full-color and full-parallax holographic video display system,” Opt. Eng., Vol. 46, No. 12, pp. 125801-1-125801-8, 2007.
    [50] M. Makowski, I. Ducin, M. Sypek, A. Siemion, J. Suszek, and A. Kolodziejczyk, “Color iamge projection based on Fourier holograms,” Opt. Lett., Vol. 35, No. 8, pp. 1227-1229, 2010.
    [51] M. Makowski, I. Ducin, K. Kakarenko, J. Suszek, M. Sypek, and A. Kolodziejczyk, “Simple holographic projection in color,” Opt. Express, Vol. 20, No. 22, pp. 25130-25136, 2012.
    [52] M. Oikawa, T. Shimobaba, T. Yoda, H. Nakayama, A. Shiraki, N. Masuda, and T. Ito, “Time-division color electroholography using one-chip RGB LED and synchronizing controller,” Opt. Express, Vol. 19, No. 13, pp. 12008-12013, 2011.
    [53] J. W. Goodman, “An Introduction to the Principle and Applications of Holography,” Proceeding of the IEEE, Vol. 59, No. 9, pp. 1305-1378, 1971.
    [54] J. W. Goodman, Introduction to Fourier Optics, 3rd ed., pp. 65-75, Roberts and Company Publishers, Greenwood Village, 2005.
    [55] M. V. Klein, and T. E. Furtak, Optics, 2nd ed., John Wiley & Sons, Inc., New York, 1986.

    [56] G. Friedel, “The Mesomorphic States of Matter,” Ann. Phys.-Paris, Vol. 18, pp. 273-474, 1922.
    [57] Q. Li, Liquid Crystals Beyond Displays: Chemistry, Physics, and Applications, 1st ed., John Wiley & Sons, Inc., New York, 2012.
    [58] C. W. Oseen, “The theory of liquid crystals,” Trans. Faraday Soc., Vol. 29, pp. 883-889, 1933.
    [59] E. Hällsting, “Nematic Liquid Crystal Spatial Light Modulators for Laser Beam Steering,” Uppsala University, Doctoral thesis, 2004.
    [60] W. Osten, and N. Reingand, Optical Imaging and Metrology: Advanced Technologism, 1st ed., Chapter 1 pp. 1-29, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2012.
    [61] M. Makowski, M. Sypek, I. Ducin, A. Fajst, A. Siemion, J. Suszek, and A. Kolodziejczyk, “Experimental evaluation of a full-color compact lensless holographic display,” Opt. Express, Vol. 17, No. 23, pp. 20840-20846, 2009.
    [62] S. E. Broomfield, M. A. A. Neil, E. G. S. Paige, and G. G. Yang, “Programmable binary phase-only optical device based on ferroelectric liquid crystal SLM,” Electron. Lett., Vol. 28, No. 1, pp. 26-28, 1992.
    [63] M. H. Schuck, D. J. McKnight, and K. M. Johnson, “Spin-cast planarization of liquid-crystal-on-silicon microdisplays,” Opt. Lett., Vol. 22, No. 19, pp. 1512-1514, 1997.
    [64] M. H. Kalmanash, “Status of development of LCOS projection displays for F-22A, F/A-18E/F, and JSF cockpits,” Proc. SPIE, Vol. 4362, pp. 161-169, 2001.
    [65] R. W. Gerchberg, and W. O. Saxton, “A pratical algorithm for the determination of phase from image and diffraction plane pictures,” Optik, Vol. 35, No. 2, pp. 237-246, 1972.
    [66] H. E. Hwang, H. T. Chang, and W. N. Lie, “Multiple-image encryption and multiplexing using a modified Gerchberg–Saxton algorithm and phase modulation in Fresnel-transform domain”, Opt. Lett., Vol. 34, No. 24, pp. 3917-3919, 2009.
    [67] Y. Ogihara, T. Ichikawa, and Y. Sakamoto, “Fast calculation with point based method to make CGHs of the polygon model.” Proc. of SPIE, Vol. 9006, pp. 90060T-1-90060T-9, 2014.
    [68] Y. Ogihara and Y. Sakamoto, “Fast calculation method of a CGH for a patch model using a point-based method,” Appl. Opt., Vol. 54, No. 1, pp. 76-83, 2015.
    [69] H. Zhang, Y. Zhao, L. Cao, and G. Jin, “Fully computed holographic stereogram based algorithm for computer-generated holograms with accurate depth cues,” Opt. Express, Vol. 22, No. 15, pp. 18473-18482, 2014.
    [70] Y. Sando, D. Barada, and T. Yatagai, “Hidden surface removal of computer-generated holograms for arbitrary diffraction directions,” Appl. Opt., Vol. 52, No. 20, pp. 4871-4876, 2013.
    [71] T. Nishitsuii, T. Shimobaba, T. Kakue, N. Masuda, and T. Ito, “Fast calculation of computer-generated hologram using the circular symmetry of zone plates,” Opt. Express, Vol. 20, No. 25, pp. 27496-27502, 2012.
    [72] H. Niwase, N. Takada, H. Araki, H. Nakayama, A. Sugiyama, T. Kakue, T. Shimobaba, and T. Ito, “Real-time spatiotemporal division multiplexing electroholography with a single graphics processing unit utilizeing movie features,” Opt. Express, Vol. 22, No. 23, pp. 28052-28057, 2014.
    [73] H. Kang, T. Yamaguchi, and H. Yoshikawa, “Accurate phase-added stereogram to improve the coherent stereogram,” Appl. Opt., Vol. 47, No. 19, pp. 44-54, 2008.
    [74] B. P. Hilderbrand and K. A. Haines, “Multiple-Wavelength and Multiple-Source Holography Applied to Contour Genereation,” J.O.S.A., Vol. 47, No. 2, pp. 155-162, 1967.
    [75] Y. Rivenson, A. Stern, and J. Rosen, “Compressive multiple view projection incoherent holography,” Opt. Express, Vol. 19, No. 7, pp. 6109-6118, 2011.
    [76] F. Yang, A. Kaczorowski, and Tim D. Wilkinson, “Fast precalculated triangular mesh algorithm for 3D binary computer-generated holograms,” Appl. Opt., Vol. 53, No. 35, pp. 8261-8267, 2014.
    [77] C. Chang, J. Xia, J. Wu, W. Lei, Y. Xie, M. Kang, and Q. Zhang, “Scaled diffraction calculation between tilted planes using nonuniform fast Fourier transform,” Opt. Express, Vol. 22, No. 14, pp. 17331-17340, 2014.
    [78] K. Yamamoto, Y. Ichihashi, T. Senoh, R. Oi, and T. Kurita, “Calculating the Fresnel diffraction of light from a shifted and tilted plane,” Opt. Express, Vol. 20, No. 12, pp. 12949-12958, 2012.
    [79] T. Shimobaba, N. Masuda, and T. Ito, “Simple and fast calculation algorithm for computer-generated hologram with wavefront recording plane,” Opt. Lett., Vol. 34, No. 20, pp. 3133-3135, 2009.
    [80] T. Shimobaba, H. Nakayama, N. Masuda, and T. Ito, “Rapid calculation algorithm of Fresnel computer-generated-hologram using look-up table and wavefront-recording plane methods for three-dimensional display,” Opt. Express, Vol. 18, No. 19, pp. 19504-19509, 2010.
    [81] J. Weng, T. Shimobaba, N. Okada, H. Nakayama, M. Oikawa, N. Masuda, and T. Ito, “Generation of real-time large computer generated hologram using wavefront recording method,” Opt. Express, Vol. 20, No. 4, pp. 4018-4023, 2012.

    [82] D. Arai, T. Shimobaba, K. Murano, Y. Endo, R. Hirayama, D. Hiyama, T. Kakue, and T. Ito, “Acceleration of computer-generated holograms using tilted wavefront recording plane method,” Opt. Express, Vol. 23, No. 2, pp. 1740-1747, 2015.
    [83] G. Xue, J. Liu, X. Li, J. Jia, Z. Zhang, B. Hu, and Y. Wang, “Multiplexing encoding method for full-color dynamic 3D holographic display,” Opt. Express, Vol. 22, No. 15, pp. 18473-18482, 2014.
    [84] J. Jia, J. Liu, G. Jin, and Y. Wang, “Fast and effective occlusion culling for 3D holographic displays by inverse orthographic projection with low angular sampling,” Appl. Opt., Vol. 53, No. 27, pp. 6287-6293, 2014.
    [85] G. Hutton, “Fast-Fourier-transform holography: recent results,” Opt. Letters, vol. 3, pp. 30-32, 1978.
    [86] D. Leseberg and C. Frere, “Computer-generated holograms of 3-D objects composed of tilted planar segments,” Appl. Opt., Vol. 54, No. 1, pp. 76-83, 2015.
    [87] K. Matsushima, H. Schimmel, F. Wyrowski, “Fast calculation method for optical diffraction on tilted planes by use of the angular spectrum of plane waves,” J.O.S.A. A, Vol. 20, No. 9, 1744-1762, 2003.
    [88] K. Matsushima, “Computer-generated holograms for three-dimensional surface objcets with shade and texture,” Appl. Opt., Vol. 44, No. 22, pp. 4607-4614, 2005.
    [89] K. Matsushim and S. Nakahara, “Extremely high-definition full-parallax computer-generated hologram created by the polygon-based method,” Appl. Opt., Vol. 48, No. 34, pp. 54-63, 2009.
    [90] L. P. Yaroslavskii and N. S. Merzlyakov, Methods of Digital Holgraphy, Springer, New York, 2013.
    [91] E. O. Brigham, The Fast Fourier Transform: An Introduction to Its Theory and Application, 1st ed., Prentice-Hall, Inc., New Jersey, 1974.
    [92] A. Benoit, P. L. Callet, P. Campisi, and R. Cousseau, “Quality Assessment of Stereoscopic Images,” EURASIP Journal on Image and Video Proc., Vol. 2008, No. 659024, 2008.
    [93] X. Wang, M. Yu, Y. Yang, and G. Jiang, “Research on subjective stereoscopic image quality assessment,” Proc. of SPIE Electronic Imaging, Vol. 7255, No. 725509, 2009.
    [94] Y. F. Peng, X. Dun, Q. L. Sun, W. G. Heidrich, “Mix-and-Match Holography,” ACM Transactions on Graphics, Vol. 36, No. 6, article 191, 2017.
    [95] K. Choi, H. Kim, and B. Lee, “Synthetic phase holograms for auto-stereoscopic image display using a modified IFTA,” Opt. Express, Vol. 12, No. 11, pp. 2454-2462, 2004.
    [96] W. D. Koek, N. Bhattacharya, J. J. M. Braat, T. A. Ooms, and J. Westerweel, “Influence of virtual images on the signal-to-noise ratio in digital in-line particle holography,” Opt. Express, Vol. 13, No. 7, pp. 2578-2589, 2005.
    [97] J. C. Dainty, A. E. Ennos, M. Francon, and J. W. Goodman, T. S. McKechnie, and G. Parry, Laser Speckle and Related Phenomena, Springer, Berlin and Heidelberg, pp. 9-76, 1975.
    [98] F. Riechert, G. Bastian, and U. Lemmer, “Laser speckle reduction via colloidal-dispersion-filled projection screens,” Appl. Opt., Vol. 48, No. 19, pp. 3742-3749, 2009.

    無法下載圖示 全文公開日期 2023/08/22 (校內網路)
    全文公開日期 2028/08/22 (校外網路)
    全文公開日期 2038/08/22 (國家圖書館:臺灣博碩士論文系統)
    QR CODE