簡易檢索 / 詳目顯示

研究生: 郭子寧
Tzu-Ning Kuo
論文名稱: 藉由折射率不匹配矽線波導之二維光學相位陣列
Two-dimensional Optical Phased Array Through Index-mismatched Siliconwires
指導教授: 徐世祥
Shih-Hsiang Hsu
口試委員: 葉秉慧
Ping-hui Yeh
莊敏宏
Miin-Horng Juang
何文章
Wen-Jeng Ho
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 94
中文關鍵詞: 光學相位陣列光學雷達光達
外文關鍵詞: LiDAR, OPA, optical phase array
相關次數: 點閱:229下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,光學感測器和光學掃描器的發展受到高度重視,在這些領域中光學探測與測距技術 (Light Detection and Ranging, LiDAR) 是其中的一個重要研究方向,特別是快速掃描和積體化的 LiDAR 技術成為未來的研究重點, " LiDAR on Chip " 是目前積體化 LiDAR 的一個關鍵概念,光學相位陣列 (Optical Phased Array, OPA) 是實現此概念的一種技術,為了實現較大的光束轉向角度,需要減小陣列天線之間的間距,然而過於緊密的波導間距容易引起串擾現象 (Crosstalk),因此本論文將深入探討不同線寬的波導如何降低耦合和相位串擾對波束成形遠場的影響。
    為了解決光學相位陣列之間的耦合和串擾問題,並有效提升光學相位陣列的可視場角 (Field of View, FoV),本論文同時將探討 FoV 與間距 (pitch)、通道數等之間的關係進行深入研究。由折射率不匹配矽線波導,加入至 16 channel 之光學相位陣列,促使波導天線間的 Crosstalk 降低,此不匹配波導的寬度為 0.5 μm 與 0.4 μm,為了要讓量測解析度提高,使用兩個週期變化,可降低Full Width at Half Maximum (FWHM) 的增加量。因此光柵週期設計分別為 0.66 μm 與 0.78 μm,在 1550-nm 波長時,可使其垂直 θ 出光角重疊於 0 度,同時藉由商業軟體 Photon Design 使用時域有限差分 (Finite-Difference Time-Domain, FDTD) 模擬,針對此結構進行深入探討,模擬顯示其 FWHM 增加約 10.53 %。其中透過不匹配的線寬,使得光柵天線間的間距,可以更為緊密達 0.75 μm 來有效地提升 OPA 在 φ 方向的 FoV 達到約 110 度,相較於傳統的同線寬波導天線陣列,可將 Side lobe 明顯降低約 10 dB,其 Side Mode Suppression Ratio (SMSR) 為 16.56 dB,並將雜訊有效抑制並集束使FWHM降低約 2 度。為了適用於二維結構,分別將波長設定在 1530 nm 及 1570 nm,垂直 θ 出光角分別在 2.98 度及 -3.03 度,其波長1530 nm時,水平 φ 方向的FoV可以達到約103度,SMSR 為 14.56 dB,FWHM 約為 3.3 度,而波長1570 nm時,水平 φ 方向的FoV可以達到約100度,SMSR 為 14.87 dB,FWHM 約為 3.7 度,其可以有效實現真正的二維掃描。
    本研究在量測上,利用不匹配線寬波導之 16 channel 的 OPA 晶片,透過加入 SMSR 之基因演算法適應度,使電壓調變來修正製程誤差所帶來的相位差。在水平結果 FoV 約為 80 度,垂直掃描調變角度達約每奈米 0.101 度,在FWHM部分達到 〖2.79〗^°×〖3.8〗^°,SMSR 達到約 12.67 dB × 8.18 dB。


    Recently, there has been a high emphasis on developing optical sensors and scanners. Optical detection and ranging technology, known as LiDAR (Light Detection and Ranging), is an important research direction in these fields. In particular, fast scanning and integrated LiDAR technology have become a focus of future research. "LiDAR on Chip" is a crucial concept in integrated LiDAR technology. Optical Phased Array (OPA) can be utilized to realize this concept. It is necessary to reduce the spacing between array antennas to achieve a larger beam steering angle. However, closely spaced waveguides can easily cause crosstalk phenomena. This thesis will delve into the impact of coupling and phase crosstalk on far-field beam shaping through different waveguide widths.
    This thesis will explore the relationship between the field of view (FoV), pitch, and channel number in depth. The refractive index-mismatched silicon wire waveguides composed of a 16-channel optical phase array reduce the crosstalk in OPA. The widths of this mismatched waveguide are 0.5 μm and 0.4 μm, and the increase of Full Width at Half Maximum (FWHM) can be reduced using two grating periods to improve the measurement resolution. Therefore, the grating cycles are designed to be 0.66 μm and 0.78 μm, and the vertical θ angle can be 0 degrees at a 1550-nm wavelength. This structure is explored in depth using Finite-Difference Time-Domain (FDTD) simulation with the commercial Photon Design software. The simulation shows an increase in FWHM of about 10.53%. Utilizing unmatched waveguide widths allows the spacing between the grating antennas to be tightly reduced to approximately 0.75 μm, effectively enhancing the OPA's FoV in the φ direction to about 110 degrees. Compared to traditional waveguide antennas with the same width, the side lobes can be significantly reduced by approximately 10 dB, and noise can be effectively suppressed, resulting in improved beam focusing FWHM of roughly 2 degrees. For two-dimensional beam steering, the vertical angles for the 1530 nm and 1570 nm wavelengths are 2.98 and -3.03 degrees, respectively. At a 1530 nm wavelength, the horizontal φ-direction can reach approximately 103-degree FoV, with a Side-Mode Suppression Ratio (SMSR) of 14.56 dB and an FWHM of 3.3 degrees. At a wavelength of 1570 nm, the horizontal φ-direction can reach roughly 100 degrees in FoV, with an SMSR of 14.87 dB and an FWHM of 3.7 degrees. These index-mismatched silicon wires enable the effective implementation of actual two-dimensional scanning.
    A 16-channel OPA chip with two unmatched width waveguides was characterized for beam steering. A genetic algorithm incorporated the SMSR with fitness matching by adjusting the phase difference caused by process errors through the applied voltages. The horizontal FoV achieved approximately 80 degrees, while the vertical scanning modulation angle reached about 0.101 degrees per nanometer. The FWHM was demonstrated at 〖2.79〗^°×〖3.8〗^°, and the SMSR achieved approximately 12.67 dB×8.18 dB.

    摘要 I Abstract III 致謝 V 目錄 VI 圖目錄 IX 表目錄 XIII 第一章 緒論 1 1.1 前言 1 1.2 研究背景 2 1.3 研究動機 4 1.4 論文架構 5 第二章 LiDAR 繞射與波導理論 6 2.1 司乃耳定律 6 2.2 波導結構 7 2.3 波導單 (Single Mode)、多模 (Multi Mode) 之條件 10 2.4 耦合理論 (Coupling Mode Theory) 12 第三章 光學相位陣列元件及理論介紹 20 3.1 多模干涉耦合器 20 3.2 熱相位偏移器 24 3.3 光柵耦合器操作及理論 25 3.3.1 概述 25 3.3.2 布拉格條件 (Bragg Condition) 27 3.3.3 光柵耦合理論 28 3.4 光學相位理論 31 3.4.1 相位陣列理論 31 3.4.2 自由空間中的成像繞射理論 36 3.4.3 天線間距 37 第四章 相位陣列元件設計及理論介紹 39 4.1 量測熱相移器的元件設計 39 4.2 一維天線陣列設計與模擬 41 4.3 二維天線陣列設計與模擬 44 4.3.1 波導光柵:線寬蝕刻 45 4.3.2 波導光柵:深淺蝕刻 52 4.3.3 光柵天線晶片設計與下線規格 57 第五章 實驗結果與分析 59 5.1 波導耦合實驗平台 59 5.1.1 光柵耦合 59 5.2 光學相位陣列 (OPA) 量測系統架設 60 5.2.1 OPA 遠場的量測步驟 61 5.2.2 量測平台 61 5.3 光學相位陣列 (OPA) 量測結果與分析 62 5.3.1 MMI 量測 62 5.3.2 MZI 結構之 Vπ 量測 63 5.3.3 二維 OPA 的水平掃描與相位調控 64 5.3.4 二維 OPA 的垂直掃描與波長調控 68 第六章 結論與未來展望 70 6.1 結論 70 6.2 未來展望 70 參考文獻 73 Publications 78

    [1] S. A. Miller, C. T. Phare, Y. C. Chang, X. Ji, O. A. J. Gordillo, A. Mohanty, S. P. Roberts, M. C. Shin, B. Stern, and M. Zadka, “512-element actively steered silicon phased array for low-power LIDAR,” Conference on Lasers and Electro-Optics, May, 2018.
    [2] T. Komljenovic, R. Helkey, L. Coldren, and J. E. J. Bowers, “Sparse aperiodic arrays for optical beam forming and LIDAR,” Optics Express, vol.25, isu.3, pp. 2511-2528, 2017.
    [3] D. Kwong, A. Hosseini, J. Covey, X. Xu, Y. Zhang, S. Chakravarty, and R. T. Chen, “Corrugated waveguide-based optical phased array with crosstalk suppression,” IEEE Photonics Technology Letters, vol.26, isu.10, 2014.
    [4] Y. Liu, Z. Hao, L. Wang, J. Wang, J. Yu, B. Xiong, C. Sun, H. Li, Y. Han, and Y. Luo, “On-chip multi-beam emitting optical phased array for wide-angle LIDAR,” Conference on Lasers and Electro-Optics, May, 2020.
    [5] H. Qiu, Y. Liu, X. Meng, X. Guan, Y. Ding and H. Hu, “Energy-efficient silicon optical phased array with ultra-sparse nonuniform spacing,” European Conference on Optical Communication, 2022.
    [6] Y. Chen, M. Ye and D. Zeng, “Performance analysis of silicon optical phased array with nonuniform antenna,” Asia Communications and Photonics Conference, November ,2022.
    [7] Y. Li, B. Chen, Q. Na, X. Luo, G. Lo, Q. Xie and J. Song, “High data rate optical wireless communication over wide range by using nonuniform-space optical phased array,” Optical Fiber Communications Conference and Exhibition, March, 2023.
    [8] T. Komljenovic, R. Helkey, L. Coldren, and J. E. Bowers, “Sparse aperiodic arrays for optical beam forming and LIDAR,” Optics Express, vol.25, isu.3, pp. 2511-2528, 2017.
    [9] D. J. Seo,and H. Y. Ryu, “Accurate simulation of a shallow-etched grating antenna on silicon-on-insulator for optical phased array using finite-difference time-domain methods,” Curr. Current Optics and Photonics, vol.3, isu.6, pp. 522-530, 2019.
    [10] A. Khavasi, L. Chrostowski, Z. Lu, and R. Bojko, “Significant crosstalk reduction using all-dielectric CMOS-compatible metamaterials,” IEEE Photonics Technology Letters, vol.28, isu.24, pp. 2787-2790, 2016.
    [11] Y. Yang, Y. Guo, Y. Huang, M. Pu, Y. Wang, X. Ma, X. Li, and X. Luo, “Crosstalk reduction of integrated optical waveguides with nonuniform subwavelength silicon strips,” Scientific Reports, vol.10, isu.1, pp. 1-8, 2020.
    [12] R. A. Soref, J. Schmidtchen, and K. Petermann, “Large single-mode rib waveguides in GeSi-Si and Si-on-SiO/sub 2,” IEEE Journal of Quantum Electronics, vol.27, isu.8, pp. 1971-1974, 1991.
    [13] H. Morino, T. Maruyama, and K. Iiyama, “Reduction of wavelength dependence of coupling characteristics using Si optical waveguide curved directional coupler,” Journal of Lightwave Technology, vol.32, isu.12, pp. 2188-2192, 2014.
    [14] S. Chen, Y. Shi, S. He, and D. Dai, “Low-loss and broadband 2× 2 silicon thermo-optic Mach–Zehnder switch with bent directional couplers,” Optics Letters, vol.41, isu.4, pp. 836-839, 2016.
    [15] Y. Wang, Z. Lu, M. Ma, H. Yun, F. Zhang, N. A. Jaeger, and L. Chrostowski, “Compact broadband directional couplers using subwavelength gratings,” IEEE Photonics Journal, vol.8, isu.3, pp. 1-8, 2016.
    [16] R. A. Soref, J. Schmidtchen, and K. Petermann, “Large single-mode rib waveguides in GeSi-Si and Si-on-SiO/sub 2,” IEEE Journal of Quantum Electronics, vol.27, isu.8, pp. 1971-1974, 1991.
    [17] S. P. Chan, C. E. Png, S. T. Lim, G. T. Reed, and V. M. Passaro, “Single-mode and polarization-independent silicon-on-insulator waveguides with small cross section,” Journal of Lightwave Technology, vol.23, isu.6, pp. 2103, 2005.
    [18] T. Aalto, “Microphotonic silicon waveguide components,” VTT Technical Research Centre of Finland, 2004.
    [19] A. Yariv, and P. Yeh, “Photonics: optical electronics in modern communications,” Oxford University Press, 2007.
    [20] H. Qiu, G. Jiang, T. Hu, H. Shao, P. Yu, J. Yang, and X. Jiang, “FSR-free add–drop filter based on silicon grating-assisted contra directional couplers,” Optics Letters, vol.38, isu.1, pp. 1-3, 2013.
    [21] Z. Lu, Y. Han, Y. Wang, Z. Chen, F. Zhang, Jaeger N. A. F., and L. Chrostowski. “Broadband silicon photonic directional coupler using asymmetric-waveguide based phase control,” Optics Express, vol.23, isu.3, pp. 3795-3808, 2015.
    [22] C. T. Phare, M. C. Shin, S. A. Miller, B. Stern, and M. Lipson, “Silicon optical phased array with high-efficiency beam formation over 180 degree field of view,” Conference on Lasers and Electro-Optics, 2018.
    [23] L. B. Soldano, and E. C. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” Journal of Lightwave Technology, vol.13, isu.4, pp. 615-627, 1995.
    [24] M. Dakss, L. Kuhn, P. Heidrich, and B. Scott, “Grating coupler for efficient excitation of optical guided waves in thin films,” Applied Physics Letters, vol.16, isu.12, pp. 268-268, 1970.
    [25] R. Waldhäusl, B. Schnabel, P. Dannberg, E.-B. Kley, A. Bräuer, and W. Karthe, “Efficient coupling into polymer waveguides by gratings,” Applied Optics, vol.36, isu.36, pp. 9383-9390, 1997.
    [26] K. V. Acoleyen, W. Bogaerts, J. Jágerská, N. L. Thomas, R. Houdré, and R. Baets, “Off-chip beam steering with a one-dimensional optical phased array on silicon-on-insulator,” Optics Letters, vol.34, isu.9, 2009.
    [27] J. W. Goodman, “Introduction to Fourier Optics, Roberts & Co,” 2005.
    [28] D. Zhuang, L. Zhagn, X. Han, Y. Li, Y. Li, X. Liu, and J. Song, “Omnidirectional beam steering using aperiodic optical phased array with high error margin,” Optics Express, vol.26, isu.15, pp. 19154-19170, 2018.
    [29] C. T. Phare, M. C. Shin, J. Sharma, S. Ahasan, H. Krishnaswamy, and M. Lipson, “Silicon optical phased array with grating lobe-free beam formation over 180 degree field of view,” Conference on Lasers and Electro-Optics, 2018.
    [30] F. Soltankarimi, J. Nourinia, and C. H. Ghobadi, “Side lobe level optimization in phased array antennas using genetic algorithm,” Eighth IEEE International Symposium on Spread Spectrum Techniques and Applications-Programme and Book of Abstracts, IEEE Cat. No. 04TH8738. IEEE, 2004.
    [31] B. Yang, H. Chen, S. Yang, and M. Chen, “An improved aperiodic OPA design based on large antenna spacing,” Optics Communications, vol.475, 125852, 2020.
    [32] T. Komljenovic, R. Helkey, L. Coldren, and J. E. Bowers, “Sparse aperiodic arrays for optical beam forming and LIDAR,” Optics Express, vol.25, isu.3, pp. 2511-2528, 2017.
    [33] J. K. Doylend, M. J. R. Heck, J. T. Bovington, J. D. Peters, L. A. Coldren and J. E. Bowers, “Two-dimensional free-space beam steering with an optical phased array on silicon-on-insulator,” Optics Express, vol.19, isu.22, pp. 21595-21604, 2011.
    [34] D. Kwong, A. Hosseini, J. Covey, X. Xu, Y. Zhang, S. Chakravarty and R. T. Chen, “Corrugated waveguide-based optical phased array with crosstalk suppression, IEEE Photonics Technology Letters,” vol.26, isu.10, pp. 991-994, 2014.
    [35] J. C. Hulme, J. K. Doylend, M. J. R. Heck, J. D. Peters, M. L. Davenport, J. T. Bovington, L. A. Coldren and J. E. Bowers, “Fully integrated hybrid silicon two dimensional beam scanner,” Optics Express, vol. 23, isu.5, pp. 5861-5874, 2015.
    [36] S. Chung, H. Abediasl and H. Hashemi, “A monolithically integrated large-scale optical phased array in silicon-on-insulator CMOS,” IEEE Journal of Solid-State Circuits, vol.53, isu.1, pp. 275-296, 2017.
    [37] C. V. Poulton, A. Yaacobi, D. B. Cole, M J. Byrd, M. Raval, D. Vermeulen and M. R. Watts, “Coherent solid-state LIDAR with silicon photonic optical phased arrays,” Optics Letters, vol.42, isu.20, pp. 4091-4094, 2017.
    [38] C. V. Poulton, M. J. Byrd, M. Ravsl, Z. Su, N. Li, E. Timurdogan, D. Coolbaugh, D. Vermeulen and M. R. Watts, “Large-scale silicon nitride nanophotonic phased arrays at infrared and visible wavelengths,” Optics Letters, vol. 42, isu.1, pp. 21-24, 2017.
    [39] S. A. Miller, C. T. Phare, Y. C. Chang, X. Ji, O. A. J. Gordillo, A. Mohanty, S. P. Roberts, M. C. Shin, B. Stern, M. Zadkav and M. Lipson, “512-element actively steered silicon phased array for low- power lidar,” Conference on Lasers and Electro-Optics, May, 2018.
    [40] C. V. Poulton, M. J. Byrd, E. Timurdogan, P. Russo, D. Vermeulen and M. R. Watts, “Optical phased arrays for integrated beam steering,” IEEE 15th International Conference on Group IV Photonics, August, 2018.
    [41] Z. Wu, W. Jiang, J. Xia, and Q. Huang, “Optical phased array antenna with wide steering range using grating array superlattices,” Proceedings of the SPIE, vol.10827, 2018.
    [42] R. Fatemi, A. Khachaturian and A. Hajimiri, “A nonuniform sparse 2-D large-FOV optical phased array with a low-power PWM drive,” IEEE Journal of Solid-State Circuits, vol.54, isu.5, pp. 1200-1215, 2019.
    [43] Y. Zhang, Y. C. Ling, K. Zhang, C. Gentry, D. Sadighi, G. Whaley, J. Colosimo and P. Suni, “Sub-wavelength-pitch silicon-photonic optical phased array for large field-of-regard coherent optical beam steering,” Optics Express, vol.27, isu3, pp. 1929-1940, 2019.
    [44] S. H. Kim, J. B. You, Y. G. Ha, G. Kang, D. S. Lee, H. Yoon, D. E. Yoo, D. W. Lee, K. Yu and C. H. Youn, “Thermo-optic control of the longitudinal radiation angle in a silicon-based optical phased array,” Optics Letters, vol.44, isu2, pp. 411-414, 2019.
    [45] P. Wang, G. Luo, H. Yu, Y. Li, M. Wang, X. Zhou, W. Chen, Y. Zhang and J. Pan, “Improving the performance of optical antenna for optical phased arrays through high-contrast grating structure on SOI substrate,” Optics Express, vol.27, isu.3, pp. 2703-2712, 2019.
    [46] P. Wang, G. Luo, Y. Li, W. Yang, H. Yu, X. Zhou, Y. Zhang and J. Pan, “Large scanning range optical phased array with a compact and simple optical antenna. Microelectron,” Microelectronic Engineering, vol.224, 111237, 2020.
    [47] S. A. Miller, Y. C. Chang, C. T. Phare, M. C. Shin, M. Zadka, S. P. Roberts, B. Stern, X. Ji, A. Mohanty and O. A. J. Gordillo, “Large-scale optical phased array using a low-power multi-pass silicon photonic platform,” Optica, vol.7, isu.1, pp. 3-6, 2020.
    [48] P. Wang, G. Luo, Y. Xu, Y. Li, Y. Su, J. Ma, R. Wang, Z. Yang, X. Zhou and Y. Zhang, “Design and fabrication of a SiN-Si dual-layer optical phased array chip,” Photonics Research, vol.8, isu.6, pp. 912-919, 2020.
    [49] Y. Li, B. Chen, Q. Na, Q. Xie, M. Tao, L Zhang, Z. Zhi, Y. Li, X. Liu, X. Luo, G. Lo, F. Gao, X. Li and J. Song, “Wide-steering-angle high-resolution optical phased array,” Photonics Research, vol.9, isu.12, pp. 2511-2518, 2021.

    無法下載圖示 全文公開日期 2025/08/02 (校內網路)
    全文公開日期 2025/08/02 (校外網路)
    全文公開日期 2025/08/02 (國家圖書館:臺灣博碩士論文系統)
    QR CODE