簡易檢索 / 詳目顯示

研究生: 王煜程
Yu-Cheng Wang
論文名稱: 創新雷射光斑抑制系統應用於車用LiDAR之分析
Analysis of an Innovative Laser Speckle Suppression System for Vehicle LiDAR Application
指導教授: 陳致曉
Chih-Hsiao Chen
口試委員: 陳致曉
Chih-Hsiao Chen
徐世祥
Shih-Hsiang Hsu
陳鴻興
Hung-Shing Chen
Bohr-Ran Huang
Bohr-Ran Huang
學位類別: 碩士
Master
系所名稱: 電資學院 - 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 90
中文關鍵詞: 光達雷射光斑光斑相干面積光斑抑制
外文關鍵詞: LiDAR, Laser Speckle, speckle Coherence Area, Speckle Reduction
相關次數: 點閱:232下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • LiDAR應用於車輛為近年趨勢,其獲得的影像可輔助駕駛而加強安全性。然而,因雷射光的高度同調性,LiDAR獲得的影像受到雷射光斑雜訊的嚴重影響。雷射光斑為在取得的影像上疊加隨機變化的光強度。光斑雜訊會使影像細節消失並大幅下降影像的清晰度。
    本論文將一創新雷射光斑抑制架構系統,設計於車用LiDAR。並與其它既有雷射光斑抑制系統進行模擬分析比較。模擬顯示該創新雷射光斑抑制系統之光斑相干面積為目前較優異的商用系統之10^(-6)。因此驗證該創新雷射光斑抑制系統的優異性。此系統優異的雷射光斑抑制能力亦諭示雷射照明與其他雷射影像擷取應用的可能性。


    LiDAR for vehicle application is becoming a trend recently. In addition to the range finding feature, LiDAR can provide images to enhance driving safety. However, due to the highly coherence of laser light, images acquired by LiDAR suffer from laser speckle noise severely.
    Laser speckle noise is randomly overlapped to the observed images, and reduces image clarity. In this paper, an innovative laser speckle suppression method is adopted to design a vehicle LiDAR system. The innovative system is compared with other existing laser speckle suppression systems. Simulations show that the speckle coherence area of the innovative laser speckle suppression system is 10^(-6) times smaller than that of the premier commercial system. The excellent speckle suppression ability of the innovative system is thus verified. It implies the possibility of clear images for laser lighting and other laser image acquisition applications.

    摘要 iii Abstract iv 目錄 v 圖目錄 vi 表目錄 vii 第一章 緒論 1 1.1 LiDAR系統簡介 1 1.2 光斑現象 3 1.2.1光斑的成因 3 1.2.2抑制光斑的方法 4 第二章 創新雷射光斑抑制系統架構 9 第三章 雷射光斑模擬理論 11 3.1 雷射光斑評價參數 11 3.2 發射端 12 3.2.1雷射與旋轉掃描器 12 3.2.2 漫射器(Diffuser) 15 3.3 目標觀測物表面(Target) 16 3.3.1 漫射器投射光束至觀測物表面之光程所對應的相位變化 16 3.3.2 觀測物表面的漫射 17 3.4 接收端(檢光器) 18 3.4.1 檢光器獲得的光場 18 3.4.2 對時間平均得到檢光器反應時間內的光強度分佈 19 3.4.3 光斑相干面積 19 第四章 模擬結果與分析 21 4.1 LiDAR系統設計與模擬參數設定 21 4.2 創新雷射光斑抑制系統的模擬結果 22 第五章 與其他雷射光斑抑制系統的比較與分析 25 第六章 總結與未來展望 30 參考文獻 32 附錄A 雷射模組規格表 35 附錄B 準直器規格表 38 附錄C 掃描鏡規格表 40 附錄D Optotune震動漫射器光斑抑制器規格表 43 附錄E 創新雷射光斑抑制系統模擬程式 46 附錄F Optotune一維震動漫射器光斑抑制系統模擬程式 59 附錄G Optotune二維震動漫射器光斑抑制系統模擬程式 72

    [1] U. Wandinger, “Introduction to Lidar,” in: C. Weitkamp(Eds.), “Lidar Range-Resolved Optical Remote Sensing of the Atmosphere,” Springer New York, NY, USA, 2005, pp.1-18.
    [2] M. Hartwig, “Self-driving and Cooperative Cars,” Bayerische Motoren Werke AG, München, Germany, Jan. 2020.
    [3] Velodyne Lidar, “A Guide to Lidar Wavelengths for Autonomous Vehicles and Driver Assistance,” Velodyne Lidar, https://velodynelidar.com/blog/guide-to-lidar-wavelengths/, Mar. 2021 (accessed Jul. 2023).
    [4] E. Jakeman, “Speckle Statistics With a Small Number of Scatterers,” Proc. SPIE 0243, Applications of Speckle Phenomena, Dec. 1980.
    [5] S.W. James, R.P. Tatam, “Principle of Shearography and ESPI,” OpenOptics, Engineering Photonics, England, UK (accessed Jul. 2023).
    [6] Fan Xu, Jia-xing Wang, Dai-yin Zhu, Qi Tu, “Speckle Noise Reduction Technique for Lidar Echo Signal Based On Self-Adaptive Pulse-Matching Independent Component Analysis,” Optics and Lasers in Engineering, vol. 103, pp. 92-99, Apr. 2018.
    [7] Jin-ni Geng, Zhe-jun Feng, Chang-qing Cao, Song-meng Feng, Xiang-kai Xu, Ya-jie Shang, Zeng-yan Wu, Xu Yan, “Spatial Decoherence Compensation Algorithm for a Target Speckle Field in Heterodyne Detection Based on Frequency Analysis and Time Translation,” Optics Express, vol. 29, issue 24, pp. 39016-39026, Aug. 2021.
    [8] Tao Ma, Xi-hua Liu, Yun-fei Liu, Lin-lin Du, Chun Wang, Shuang-quan Ge, “Denoising Method for LiDAR Intensity Image via Combining Adaptive Non-local Means and Exponential Soft Thresholding,” in: 2021 China Automation Congress (CAC), Beijing, China, Oct. 2021.
    [9] M.W. Bowers, J. Cooke, J. Benterou, “Speckle Reduction for LIDAR Using Optical Phase Conjugation,” in: Proceedings of IEEE conference on lasers and electro-optics (CLEO), San Francisco, CA, USA, May 2000.
    [10] M.W. Bowers and R.W. Boyd, “Phase Locking via Brillouin-Enhanced Four-Wave-Mixing Phase Conjugation,” IEEE Journal of Quantum Electronics, vol. 34, issue 4, pp. 634-644, Apr. 1998.
    [11] C.S. Sambridge, J.T. Spollard, A.J. Sutton, K. Mckenzie, L.E. Roberts, “Detection Statistics for Coherent RMCW LiDAR,” Optics Express, vol. 29, issue 16, pp. 25945-25959, 2021.
    [12] I. Florescu, “Probability and Stochastic Processes,” John Wiley & Sons, Inc., Hoboken, New Jersey, USA, 2015.
    [13] O. Lux, C. Lemmerz, F. Weiler, U. Marksteiner, B. Witschas, E. Nagel, O. Reitebuch, “Speckle Noise Reduction by Fiber Scrambling for Improving the Measurement Precision of an Airborne Wind Lidar System,” in: 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC), Munich, Germany, Jun. 2019.
    [14] J.W. Goodman, “Speckle Phenomena in Optics: Theory and Applications,” Roberts & Company, Englewood, Colorado, USA, Apr. 2006.
    [15] Optotune, “Laser Speckle Reducers (LSR-4C-L),” 銓州光電股份有限公司, https://www.onset-eo.com/product-category/optics/opto-electric-instrument/laser-speckle-reducers/, 2019 (accessed Jul. 2023).
    [16] Chih-Hsiao Chen, “Laser Illumination System and Method for Eliminating Laser Speckle Thereof,” United States Patent 010359692B2, Jul. 23, 2019.
    [17] Edmund Optics Inc., “高斯光束計算器,” Gaussian beam calculator, https://www.edmundoptics.com.tw/knowledge-center/tech-tools/gaussian-beams/, 2023 (accessed Jul. 2023).
    [18] Chang-Hyeon Ji, Moongoo Choi, Sang-Cheon Kim, See-Hyung Lee, Jong-Uk Bu, “Performance of a Raster Scanning Laser Display System Using Diamond Shaped Frame Supported Micromirror,” IEEE Photonics Technology Letters, vol. 18, issue 16, pp. 1702-1704, Aug. 2006.
    [19] Motion Solutions, “Raster Scanning Techniques for Photonics Applications,” Motion Solutions, https://www.motionsolutions.com/raster-scanning-techniques-photonics-applications/, 2023 (accessed Jul. 2023).
    [20] L.B. Wolff, “Diffuse Reflection From Smooth Dielectric Surfaces,” Journal of the Optical Society of America A, vol. 11, issue 11, pp. 2956-2968, 1994.
    [21] ITF Technologies, “ITF 1550nm Lidar Sources - Kala 2,” ITF Technologies, http://www.itftechnologies.com/files/13/ITF_DataSheet_KALA2_V1_KALA1_V3_2023-01-26-15-07.pdf, 2023 (accessed Jul. 2023).
    [22] Edmund Optics Inc., “10mm Aperture VIS/NIR Fiber Optic Collimator, SMA,” Edmund Optics Inc., https://www.edmundoptics.com/p/10mm-aperture-visnir-fiber-optic-collimator-sma/30458/, 2023 (accessed Jul. 2023).
    [23] Maradin, “MEMS 2D Laser Scanning Mirror,” Maradin, https://www.maradin.co.il/products/mems-mirrors/mar1110-e-2d-scanning-mirror/, 2023 (accessed Jul. 2023).
    [24] Si-jing Chen, Deng-kuan Liu, Wen-xing Zhang, Li-xing You, Yu-hao He, Wei-jun Zhang, Xiao-yan Yang, Guang Wu, Min Ren, He-ping Zeng, Zhen Wang, Xiao-ming Xie, Mian-heng Jiang, “Time-of-Flight Laser Ranging and Imaging at 1550 nm Using Low-Jitter Superconducting Nanowire Single-Photon Detection System,” Applied Optics vol. 52, issue 14, pp. 3241-3245, 2013.

    無法下載圖示
    全文公開日期 2025/08/01 (校外網路)
    全文公開日期 2025/08/01 (國家圖書館:臺灣博碩士論文系統)
    QR CODE