簡易檢索 / 詳目顯示

研究生: 陳佩妤
Pei-Yu Chen
論文名稱: 以原位X光繞射技術應用於增強穩定性之雙摻雜硫銀鍺礦硫化物固態電解質
Applying in-situ X-ray diffraction technology for dual-doped Li-argyrodite sulfide solid electrolytes with enhanced stability
指導教授: 黃炳照
Bing Joe Hwang
蘇威年
Wei-Nien Su
吳溪煌
She-Huang Wu
口試委員: 黃炳照
Bing Joe Hwang
蘇威年
Wei-Nien Su
吳溪煌
She-Huang Wu
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 132
中文關鍵詞: 固態電解質硫化物硫銀鍺礦離子電導率矽摻雜富含氯雙摻雜空氣穩定性抑制枝晶
外文關鍵詞: solid-state electrolyte, sulfide, argyrodites, ionic conductivity, silicon-doped, chlorine-rich, dual-doped, air stability, dendrite suppression
相關次數: 點閱:357下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

近年來,全固態電解質因其安全性和能量密度高於應用在鋰離子電池中的傳統液態電解質而得到廣泛的研究。在眾多固態電解質中,硫化物基固態電解質因其具有與液態電解質相當的離子電導率,以及比其他氧化物基石榴石型和 NaSICON 型固態電解質有更好的延展性而受到關注。然而,硫化物基固態電解質的高濕度敏感特性,在接觸水氣時會產生有毒的硫化氫氣體,使其合成具有挑戰性且應用受到了限制。
在此,我們以Cl-取代S2-、Si4+取代P5+,並藉由機械球磨和固態燒結製備而成,利用同步加速器的原位XRD研究燒結溫度對結晶度及雜相的影響,進一步優化燒結條件,開發一系列雙摻雜於硫銀鍺礦之硫化物固態電解質(Li6PS5Cl,LPSC):Li6-xPS5-xCl1+x、Li6+yP1-ySiyS5Cl、Li6.1-xP0.9Si0.1S5-xCl1+x、Li6.2-xP0.8Si0.2S5-xCl1+x (0≦x≦0.8, 0≦y≦0.5),此外,以液態氮快速降溫證明可以保留固態電解質在高溫下的晶相。該系列之晶體結構、離子電導率和物理性質等藉由X射線粉末衍射(XRD)、拉曼光譜、阻抗測量及空氣穩定性測試進行表徵,並藉由鋰對稱電池及循環伏安法分析材料之電化學性能。氯摻雜固態電解質中以Li5.4PS4.4Cl1.6為最佳摻雜比,其離子電導率可以達到7.59 mS cm-1;矽摻雜之固態電解質中以 Li6.2P0.8Si0.2S5Cl為最佳摻雜比,可以達到2.2 mS cm-1,而氯與矽雙摻雜之固態電解質中以Li5.6P0.9Si0.1S4.5Cl1.5為最佳摻雜比,可以達到3.34 mS cm-1,為未摻雜LPSC參考樣品(1.8 mS cm-1)的1.8倍。這項研究表明,藉由陰離子取代增加位點無序性與異價陽離子取代促進鋰離子擴散,達到提升離子電導率之效果。此外,通過矽的取代,使Li5.6P0.9Si0.1S4.5Cl1.5之水氣穩定性大幅提升。在SSEs-VGCF|SSEs|Li-In半電池系統中,表現出良好的化學穩定性,且於鋰對稱電池測試中,在0.1 mA cm-2之電流密度下Li5.6P0.9Si0.1S4.5Cl1.5具有出色的循環穩定性及抑制鋰枝晶能力,且可承受最大電流密度為2.5 mA cm-2,顯示出相對小且穩定的極化現象。以氯及矽摻雜之硫銀鍺礦是一種兼有高穩定性及離子電導率的新型硫化物固態電解質,適合應用於全固態鋰金屬電池中。


All-solid-state electrolytes (SSEs) have been extensively investigated recently due to their superior safety and higher energy density than conventional liquid-based electrolytes for lithium-ion batteries (LIBs). Among various SSEs, sulfide-based all-solid-state lithium batteries (ASSLBs) have gained significant attention because of their comparable ionic conductivity to liquid electrolytes and better ductility than other oxide-based garnet-type and NaSICON-type SSEs. However, sulfide-based SSEs’ high moisture affinity is prone to producing toxic H2S gas when subject to humidity, making it challenging to handle and synthesize.
To develop a stabler Li-argyrodite electrolyte (Li6PS5Cl, LPSC), Cl- anion was selected to substitute S2- and aliovalent Si4+ cation for P5+, prepared by mechanical milling and solid-state sintering. The sintering conditions have been optimized with the synchrotron-based in-situ XRD to investigate the effect of sintering temperature on the crystallinity and impurities. A series of dual-doped solid-state electrolytes have been developed and analyzed, e.g., Li6-xPS5-xCl1+x, Li6+yP1-ySiyS5Cl, Li6.1-xP0.9Si0.1S5-xCl1+x, Li6.2-xP0.8Si0.2S5-xCl1+x (0≦x≦0.8, 0≦y≦0.5), In addition, a quenching method was also employed to retain the crystalline phase of SSE at high temperatures. The crystalline, chemical structure, ionic conductivity, and physical properties of the as-prepared samples were characterized by X-ray powder diffraction (XRD), Raman spectroscopy, impedance measurement, and air stability test. The electrochemical performance was characterized by a lithium symmetric battery and cyclic voltammetry. The optimal doping ratio of Li5.4PS4.4Cl1.6 in chlorine-doped argyrodite exhibited a high ionic conductivity of 7.6 mS cm-1. Among the silicon-doped argyrodite, Li6.2P0.8Si0.2S5Cl showed an ionic conductivity of 2.2 mS cm-1. The optimal doping ratio of Li5.6P0.9Si0.1S4.5Cl1.5 resulted in the highest ionic conductivity of 3.3 mS cm-1 at room temperature, 1.8 times higher than that of the reference, the pristine Li6PS5Cl (1.8 mS/cm). This work provides new insights into developing high ionic conductivity sulfide-based SSEs by highly substituting sulfur with chlorine anion and partially substituting phosphorus with the aliovalent silicon cation. Furthermore, the moisture stability of Li5.6P0.9Si0.1S4.5Cl1.5 was greatly improved by the dual dopants. In a SSEs-VGCF|SSEs|Li-In half-cell system, dual-doped Li6.2P0.8Si0.2S5Cl showed good chemical stability. In a lithium symmetric cell run at 0.1 mA cm-2, Li5.6P0.9Si0.1S4.5Cl1.5 demonstrated excellent compatibility with Li metal and achieved a critical current density as high as 2.5 mA cm-2. The argyrodite doped with chloride and silicon ion reveals itself as a new class of sulfide solid-state electrolyte with high stability and ionic conductivity, and the progress shows substantial promise for practical application in all-solid-state lithium batteries.

目錄 摘要 i ABSTRACT iii 致謝 v 目錄 vii 圖目錄 ix 表目錄 xv 第 1 章 鋰離子電池簡介 1 1.1 鋰離子電池發展 1 1.2 鋰離子電池之機制與組成 4 1.2.1 鋰離子電池反應機制 4 1.2.2 鋰離子電池組成元件 6 1.3 電解質 8 1.3.1 有機液態電解液 9 1.3.2 無機固態電解質 12 1.3.3 傳導機制 17 第 2 章 硫銀鍺礦固態電解質 21 2.1 硫銀鍺礦之介紹 21 2.1.1 發展史 21 2.1.2 晶格結構 22 2.1.3 鋰離子之擴散途徑 22 2.2 硫銀鍺礦之合成方式 24 2.2.1 機械式球磨法 24 2.2.2 濕化學合成法 24 2.2.3 高溫固相反應法 25 2.3 硫銀鍺礦之改質 26 2.3.1 陰離子摻雜-鋰空位 26 2.3.2 陽離子摻雜-錯位 29 2.3.3 雙離子摻雜 34 2.4 全固態電池之未來展望及挑戰 37 2.5 研究動機與目的 39 第 3 章 實驗方法及實驗儀器 43 3.1 實驗藥品 43 3.2 實驗儀器設備及配件 44 3.3 實驗步驟 45 3.3.1 Li6-xPS5-xCl1+x固態電解質合成 45 3.3.2 Li6+yP1-ySiyS5Cl、Li6+y-xP1-ySiyS5-xCl1+x固態電解質合成 46 3.3.3 硫化物固態電解質錠片之製備 48 3.4 KP-cell型電池組裝 49 3.4.1 鋰對稱電池組裝 49 3.4.2 混合正極之製備與半電池組裝 50 3.5 材料結構及特性鑑定分析 51 3.5.1 非臨場X射線繞射(Ex-situ XRD)分析 51 3.5.2 原位X射線繞射(In-situ XRD)分析 52 3.5.3 拉曼散射光譜分析儀 53 3.5.4 空氣穩定性測試 54 3.6 材料電化學特性分析 55 3.6.1 交流阻抗分析 55 3.6.2 充放電測試 55 3.6.3 循環伏安分析 56 第 4 章 結果與討論 57 4.1 由In-situ XRD優化合成條件 57 4.2 氯摻雜於硫銀鍺礦 64 4.2.1 晶格結構之鑑定 64 4.2.2 主體結構之分析 69 4.2.3 摻雜比例與電導率之關係 69 4.3 矽摻雜於硫銀鍺礦 73 4.3.1 晶格結構之鑑定 73 4.3.2 主體結構之分析 75 4.3.3 摻雜比例與電導率之關係 76 4.3.4 離子摻雜對結構影響之探討 79 4.4 雙摻雜於硫銀鍺礦 82 4.4.1 晶格結構之鑑定 82 4.4.2 主體結構之分析 87 4.4.3 摻雜比例與電導率之關係 87 4.5 空氣穩定性測試 91 4.6 固態電解質之電化學分析 95 4.6.1 循環伏安法測試 95 4.6.2 鋰對稱電池循環測試 98 4.6.3 極限電流密度測試 99 第 5 章 結論 103 第 6 章 未來展望 105 參考文獻 107

1. El Kharbachi, A.; Zavorotynska, O.; Latroche, M.; Cuevas, F.; Yartys, V.; Fichtner, M., Exploits, advances and challenges benefiting beyond Li-ion battery technologies. Journal of Alloys and Compounds 2020, 817, 153261.
2. Ding, Y.; Cano, Z. P.; Yu, A.; Lu, J.; Chen, Z., Automotive Li-ion batteries: current status and future perspectives. Electrochemical Energy Reviews 2019, 2 (1), 1-28.
3. Lewis, G. N.; Keyes, F. G., THE POTENTIAL OF THE LITHIUM ELECTRODE. Journal of the American Chemical Society 1913, 35 (4), 340-344.
4. Whittingham, M. S., Electrical energy storage and intercalation chemistry. Science 1976, 192 (4244), 1126-1127.
5. Mizushima, K.; Jones, P.; Wiseman, P.; Goodenough, J. B., LixCoO2 (0< x<-1): A new cathode material for batteries of high energy density. Materials Research Bulletin 1980, 15 (6), 783-789.
6. Thackeray, M.; David, W.; Bruce, P.; Goodenough, J., Lithium insertion into manganese spinels. Materials Research Bulletin 1983, 18 (4), 461-472.
7. Eftekhari, A., Lithium batteries for electric vehicles: from economy to research strategy. ACS Publications: 2019.
8. Liang, Y.; Zhao, C. Z.; Yuan, H.; Chen, Y.; Zhang, W.; Huang, J. Q.; Yu, D.; Liu, Y.; Titirici, M. M.; Chueh, Y. L., A review of rechargeable batteries for portable electronic devices. InfoMat 2019, 1 (1), 6-32.
9. Walter, M.; Kovalenko, M. V.; Kravchyk, K. V., Challenges and benefits of post-lithium-ion batteries. New Journal of Chemistry 2020, 44 (5), 1677-1683.
10. Padhi, A. K.; Nanjundaswamy, K. S.; Goodenough, J. B., Phospho‐olivines as positive‐electrode materials for rechargeable lithium batteries. Journal of the electrochemical society 1997, 144 (4), 1188.
11. Venkatraman, S.; Choi, J.; Manthiram, A., Factors influencing the chemical lithium extraction rate from layered LiNi1− y− zCoyMnzO2 cathodes. Electrochemistry communications 2004, 6 (8), 832-837.
12. Choi, D.; Wang, W.; Yang, Z., Material Challenges and Perspectives. Lithium-Ion Batteries: Advanced Materials and Technologies 2011, 1.
13. Assegie, A. A.; Cheng, J.-H.; Kuo, L.-M.; Su, W.-N.; Hwang, B.-J., Polyethylene oxide film coating enhances lithium cycling efficiency of an anode-free lithium-metal battery. Nanoscale 2018, 10 (13), 6125-6138.
14. Tong, Z.; Bazri, B.; Hu, S.-F.; Liu, R.-S., Interfacial chemistry in anode-free batteries: challenges and strategies. Journal of Materials Chemistry A 2021, 9 (12), 7396-7406.
15. Goodenough, J. B.; Kim, Y., Challenges for rechargeable Li batteries. Chemistry of materials 2010, 22 (3), 587-603.
16. Li, S.; Zhang, S. Q.; Shen, L.; Liu, Q.; Ma, J. B.; Lv, W.; He, Y. B.; Yang, Q. H., Progress and perspective of ceramic/polymer composite solid electrolytes for lithium batteries. Advanced Science 2020, 7 (5), 1903088.
17. Logan, E.; Tonita, E. M.; Gering, K.; Li, J.; Ma, X.; Beaulieu, L.; Dahn, J., A study of the physical properties of Li-ion battery electrolytes containing esters. Journal of The Electrochemical Society 2018, 165 (2), A21.
18. Tong, J.; Xiao, X.; Liang, X.; von Solms, N.; Huo, F.; He, H.; Zhang, S., Insights into the solvation and dynamic behaviors of a lithium salt in organic-and ionic liquid-based electrolytes. Physical Chemistry Chemical Physics 2019, 21 (35), 19216-19225.
19. Zhang, X. Q.; Cheng, X. B.; Chen, X.; Yan, C.; Zhang, Q., Fluoroethylene carbonate additives to render uniform Li deposits in lithium metal batteries. Advanced Functional Materials 2017, 27 (10), 1605989.
20. Tong, J.; Wu, S.; Von Solms, N.; Liang, X.; Huo, F.; Zhou, Q.; He, H.; Zhang, S., The effect of concentration of lithium salt on the structural and transport properties of ionic liquid-based electrolytes. Frontiers in chemistry 2020, 7, 945.
21. Ortner, T. S., A granular look at solid electrolyte interfaces in lithium-ion batteries. Communications Chemistry 2021, 4 (1), 1-2.
22. Zampardi, G.; La Mantia, F., Solid–Electrolyte Interphase at Positive Electrodes in High‐Energy Li‐Ion Batteries: Current Understanding and Analytical Tools. Batteries & Supercaps 2020, 3 (8), 672-697.
23. Wang, Q.; Jiang, L.; Yu, Y.; Sun, J., Progress of enhancing the safety of lithium ion battery from the electrolyte aspect. Nano Energy 2019, 55, 93-114.
24. Thirumalraj, B.; Hagos, T. T.; Huang, C.-J.; Teshager, M. A.; Cheng, J.-H.; Su, W.-N.; Hwang, B.-J., Nucleation and growth mechanism of lithium metal electroplating. Journal of the American Chemical Society 2019, 141 (46), 18612-18623.
25. Huang, C.-J.; Thirumalraj, B.; Tao, H.-C.; Shitaw, K. N.; Sutiono, H.; Hagos, T. T.; Beyene, T. T.; Kuo, L.-M.; Wang, C.-C.; Wu, S.-H., Decoupling the origins of irreversible coulombic efficiency in anode-free lithium metal batteries. Nature communications 2021, 12 (1), 1-10.
26. Takada, K., Progress and prospective of solid-state lithium batteries. Acta Materialia 2013, 61 (3), 759-770.
27. Hatzell, K. B.; Zheng, Y., Prospects on large-scale manufacturing of solid state batteries. MRS Energy & Sustainability 2021, 8 (1), 33-39.
28. Chen, R.; Qu, W.; Guo, X.; Li, L.; Wu, F., The pursuit of solid-state electrolytes for lithium batteries: from comprehensive insight to emerging horizons. Materials Horizons 2016, 3 (6), 487-516.
29. Ngai, K. S.; Ramesh, S.; Ramesh, K.; Juan, J. C., A review of polymer electrolytes: fundamental, approaches and applications. Ionics 2016, 22 (8), 1259-1279.
30. Aziz, S. B.; Woo, T. J.; Kadir, M.; Ahmed, H. M., A conceptual review on polymer electrolytes and ion transport models. Journal of Science: Advanced Materials and Devices 2018, 3 (1), 1-17.
31. Kam, W.; Liew, C.-W.; Lim, J.; Ramesh, S., Electrical, structural, and thermal studies of antimony trioxide-doped poly (acrylic acid)-based composite polymer electrolytes. Ionics 2014, 20 (5), 665-674.
32. Yu, T.; Yang, X.; Yang, R.; Bai, X.; Xu, G.; Zhao, S.; Duan, Y.; Wu, Y.; Wang, J., Progress and perspectives on typical inorganic solid-state electrolytes. Journal of Alloys and Compounds 2021, 885, 161013.
33. Yamane, H.; Kikkawa, S.; Koizumi, M., Lithium aluminum nitride, Li3AlN2 as a lithium solid electrolyte. Solid State Ionics 1985, 15 (1), 51-54.
34. Hosseini, S.; Soltani, S. M.; Li, Y.-Y., Current status and technical challenges of electrolytes in zinc–air batteries: An in-depth review. Chemical Engineering Journal 2021, 408, 127241.
35. Zhao, N.; Khokhar, W.; Bi, Z.; Shi, C.; Guo, X.; Fan, L.-Z.; Nan, C.-W., Solid garnet batteries. Joule 2019, 3 (5), 1190-1199.
36. Mercier, R.; Malugani, J.-P.; Fahys, B.; Robert, G., Superionic conduction in Li2S-P2S5-LiI-glasses. Solid State Ionics 1981, 5, 663-666.
37. Homma, K.; Yonemura, M.; Kobayashi, T.; Nagao, M.; Hirayama, M.; Kanno, R., Crystal structure and phase transitions of the lithium ionic conductor Li3PS4. Solid State Ionics 2011, 182 (1), 53-58.
38. Pan, L.; Zhang, L.; Ye, A.; Chi, S.; Zou, Z.; He, B.; Chen, L.; Zhao, Q.; Wang, D.; Shi, S., Revisiting the ionic diffusion mechanism in Li3PS4 via the joint usage of geometrical analysis and bond valence method. Journal of Materiomics 2019, 5 (4), 688-695.
39. Kanno, R.; Murayama, M., Lithium ionic conductor thio-LISICON: the Li2 S GeS2 P 2 S 5 system. Journal of the electrochemical society 2001, 148 (7), A742.
40. Kamaya, N.; Homma, K.; Yamakawa, Y.; Hirayama, M.; Kanno, R.; Yonemura, M.; Kamiyama, T.; Kato, Y.; Hama, S.; Kawamoto, K., A lithium superionic conductor. Nature materials 2011, 10 (9), 682-686.
41. Kato, Y.; Hori, S.; Saito, T.; Suzuki, K.; Hirayama, M.; Mitsui, A.; Yonemura, M.; Iba, H.; Kanno, R., High-power all-solid-state batteries using sulfide superionic conductors. Nature Energy 2016, 1 (4), 1-7.
42. Iwasaki, R.; Hori, S.; Kanno, R.; Yajima, T.; Hirai, D.; Kato, Y.; Hiroi, Z., Weak anisotropic lithium-ion conductivity in single crystals of Li10GeP2S12. Chemistry of Materials 2019, 31 (10), 3694-3699.
43. Mizuno, F.; Hayashi, A.; Tadanaga, K.; Tatsumisago, M., New, highly ion‐conductive crystals precipitated from Li2S–P2S5 glasses. Advanced Materials 2005, 17 (7), 918-921.
44. Seino, Y.; Ota, T.; Takada, K.; Hayashi, A.; Tatsumisago, M., A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries. Energy & Environmental Science 2014, 7 (2), 627-631.
45. Deiseroth, H. J.; Kong, S. T.; Eckert, H.; Vannahme, J.; Reiner, C.; Zaiß, T.; Schlosser, M., Li6PS5X: a class of crystalline Li‐rich solids with an unusually high Li+ mobility. Angewandte Chemie International Edition 2008, 47 (4), 755-758.
46. Wang, C.; Liang, J.; Zhao, Y.; Zheng, M.; Li, X.; Sun, X., All-solid-state lithium batteries enabled by sulfide electrolytes: from fundamental research to practical engineering design. Energy & Environmental Science 2021, 14 (5), 2577-2619.
47. Bachman, J. C.; Muy, S.; Grimaud, A.; Chang, H.-H.; Pour, N.; Lux, S. F.; Paschos, O.; Maglia, F.; Lupart, S.; Lamp, P., Inorganic solid-state electrolytes for lithium batteries: mechanisms and properties governing ion conduction. Chemical reviews 2016, 116 (1), 140-162.
48. He, X.; Zhu, Y.; Mo, Y., Origin of fast ion diffusion in super-ionic conductors. Nature communications 2017, 8 (1), 1-7.
49. Gao, J.; Zhao, Y.-S.; Shi, S.-Q.; Li, H., Lithium-ion transport in inorganic solid state electrolyte. Chinese Physics B 2015, 25 (1), 018211.
50. Zhang, B.; Tan, R.; Yang, L.; Zheng, J.; Zhang, K.; Mo, S.; Lin, Z.; Pan, F., Mechanisms and properties of ion-transport in inorganic solid electrolytes. Energy Storage Materials 2018, 10, 139-159.
51. Beeken, R.; Garbe, J.; Gillis, J.; Petersen, N.; Podoll, B.; Stoneman, M., Electrical conductivities of the Ag6PS5X and the Cu6PSe5X (X= Br, I) argyrodites. Journal of Physics and Chemistry of Solids 2005, 66 (5), 882-886.
52. Kong, S. T.; Gün, Ö.; Koch, B.; Deiseroth, H. J.; Eckert, H.; Reiner, C., Structural Characterisation of the Li Argyrodites Li7PS6 and Li7PSe6 and their Solid Solutions: Quantification of Site Preferences by MAS‐NMR Spectroscopy. Chemistry–A European Journal 2010, 16 (17), 5138-5147.
53. Kudu, Ö. U.; Famprikis, T.; Fleutot, B.; Braida, M.-D.; Le Mercier, T.; Islam, M. S.; Masquelier, C., A review of structural properties and synthesis methods of solid electrolyte materials in the Li2S− P2S5 binary system. Journal of Power Sources 2018, 407, 31-43.
54. Rao, R. P.; Adams, S., Studies of lithium argyrodite solid electrolytes for all‐solid‐state batteries. physica status solidi (a) 2011, 208 (8), 1804-1807.
55. Hanghofer, I.; Brinek, M.; Eisbacher, S.; Bitschnau, B.; Volck, M.; Hennige, V.; Hanzu, I.; Rettenwander, D.; Wilkening, H., Substitutional disorder: structure and ion dynamics of the argyrodites Li 6 PS 5 Cl, Li 6 PS 5 Br and Li 6 PS 5 I. Physical Chemistry Chemical Physics 2019, 21 (16), 8489-8507.
56. Schlem, R.; Ghidiu, M.; Culver, S. P.; Hansen, A.-L.; Zeier, W. G., Changing the static and dynamic lattice effects for the improvement of the ionic transport properties within the argyrodite Li6PS5–x Se x I. ACS Applied Energy Materials 2019, 3 (1), 9-18.
57. Chen, S.; Xie, D.; Liu, G.; Mwizerwa, J. P.; Zhang, Q.; Zhao, Y.; Xu, X.; Yao, X., Sulfide solid electrolytes for all-solid-state lithium batteries: structure, conductivity, stability and application. Energy Storage Materials 2018, 14, 58-74.
58. Liu, Z.; Fu, W.; Payzant, E. A.; Yu, X.; Wu, Z.; Dudney, N. J.; Kiggans, J.; Hong, K.; Rondinone, A. J.; Liang, C., Anomalous high ionic conductivity of nanoporous β-Li3PS4. Journal of the American Chemical Society 2013, 135 (3), 975-978.
59. Ito, S.; Nakakita, M.; Aihara, Y.; Uehara, T.; Machida, N., A synthesis of crystalline Li7P3S11 solid electrolyte from 1, 2-dimethoxyethane solvent. Journal of Power Sources 2014, 271, 342-345.
60. Zhang, Q.; Cao, D.; Ma, Y.; Natan, A.; Aurora, P.; Zhu, H., Sulfide‐based solid‐state electrolytes: synthesis, stability, and potential for all‐solid‐state batteries. Advanced Materials 2019, 31 (44), 1901131.
61. Minami, K.; Mizuno, F.; Hayashi, A.; Tatsumisago, M., Lithium ion conductivity of the Li2S–P2S5 glass-based electrolytes prepared by the melt quenching method. Solid State Ionics 2007, 178 (11-12), 837-841.
62. Yu, C.; Ganapathy, S.; De Klerk, N. J.; Roslon, I.; van Eck, E. R.; Kentgens, A. P.; Wagemaker, M., Unravelling li-ion transport from picoseconds to seconds: bulk versus interfaces in an argyrodite li6ps5cl–li2s all-solid-state li-ion battery. Journal of the American Chemical Society 2016, 138 (35), 11192-11201.
63. Zhao, F.; Liang, J.; Yu, C.; Sun, Q.; Li, X.; Adair, K.; Wang, C.; Zhao, Y.; Zhang, S.; Li, W., A versatile Sn‐substituted argyrodite sulfide electrolyte for all‐solid‐state Li metal batteries. Advanced Energy Materials 2020, 10 (9), 1903422.
64. Min, S.; Park, C.; Yoon, I.; Kim, G.; Seol, K.; Kim, T.; Shin, D., Enhanced Electrochemical Stability and Moisture Reactivity of Al2S3 Doped Argyrodite Solid Electrolyte. Journal of The Electrochemical Society 2021, 168 (7), 070511.
65. Sun, Z.; Lai, Y.; Lv, N.; Hu, Y.; Li, B.; Jiang, L.; Wang, J.; Yin, S.; Li, K.; Liu, F., Insights on the Properties of the O-Doped Argyrodite Sulfide Solid Electrolytes (Li6PS5–x ClO x, x= 0–1). ACS Applied Materials & Interfaces 2021, 13 (46), 54924-54935.
66. Jung, W. D.; Jeon, M.; Shin, S. S.; Kim, J.-S.; Jung, H.-G.; Kim, B.-K.; Lee, J.-H.; Chung, Y.-C.; Kim, H., Functionalized sulfide solid electrolyte with air-stable and chemical-resistant oxysulfide nanolayer for all-solid-state batteries. ACS omega 2020, 5 (40), 26015-26022.
67. Chen, T.; Zhang, L.; Zhang, Z.; Li, P.; Wang, H.; Yu, C.; Yan, X.; Wang, L.; Xu, B., Argyrodite solid electrolyte with a stable interface and superior dendrite suppression capability realized by ZnO co-doping. ACS applied materials & interfaces 2019, 11 (43), 40808-40816.
68. Liu, Y.; Su, H.; Li, M.; Xiang, J.; Wu, X.; Zhong, Y.; Wang, X.; Xia, X.; Gu, C.; Tu, J., In situ formation of a Li 3 N-rich interface between lithium and argyrodite solid electrolyte enabled by nitrogen doping. Journal of Materials Chemistry A 2021, 9 (23), 13531-13539.
69. Zhao, F.; Sun, Q.; Yu, C.; Zhang, S.; Adair, K.; Wang, S.; Liu, Y.; Zhao, Y.; Liang, J.; Wang, C., Ultrastable anode interface achieved by fluorinating electrolytes for all-solid-state Li metal batteries. ACS Energy Letters 2020, 5 (4), 1035-1043.
70. De Klerk, N. J.; Rosłoń, I.; Wagemaker, M., Diffusion mechanism of Li argyrodite solid electrolytes for Li-ion batteries and prediction of optimized halogen doping: the effect of Li vacancies, halogens, and halogen disorder. Chemistry of Materials 2016, 28 (21), 7955-7963.
71. Adeli, P.; Bazak, J. D.; Park, K. H.; Kochetkov, I.; Huq, A.; Goward, G. R.; Nazar, L. F., Boosting solid‐state diffusivity and conductivity in lithium superionic argyrodites by halide substitution. Angewandte Chemie 2019, 131 (26), 8773-8778.
72. Yu, C.; Li, Y.; Li, W.; Adair, K. R.; Zhao, F.; Willans, M.; Liang, J.; Zhao, Y.; Wang, C.; Deng, S., Enabling ultrafast ionic conductivity in Br-based lithium argyrodite electrolytes for solid-state batteries with different anodes. Energy Storage Materials 2020, 30, 238-249.
73. Yu, C.; Li, Y.; Willans, M.; Zhao, Y.; Adair, K. R.; Zhao, F.; Li, W.; Deng, S.; Liang, J.; Banis, M. N., Superionic conductivity in lithium argyrodite solid-state electrolyte by controlled Cl-doping. Nano Energy 2020, 69, 104396.
74. Zhang, Z.; Wu, L.; Zhou, D.; Weng, W.; Yao, X., Flexible sulfide electrolyte thin membrane with ultrahigh ionic conductivity for all-solid-state lithium batteries. Nano Letters 2021, 21 (12), 5233-5239.
75. Feng, X.; Chien, P.-H.; Wang, Y.; Patel, S.; Wang, P.; Liu, H.; Immediato-Scuotto, M.; Hu, Y.-Y., Enhanced ion conduction by enforcing structural disorder in Li-deficient argyrodites Li6− xPS5− xCl1+ x. Energy Storage Materials 2020, 30, 67-73.
76. Wang, P.; Liu, H.; Patel, S.; Feng, X.; Chien, P.-H.; Wang, Y.; Hu, Y.-Y., Fast Ion Conduction and Its Origin in Li6–x PS5–x Br1+ x. Chemistry of Materials 2020, 32 (9), 3833-3840.
77. Zhang, Z.; Zhang, J.; Jia, H.; Peng, L.; An, T.; Xie, J., Enhancing ionic conductivity of solid electrolyte by lithium substitution in halogenated Li-Argyrodite. Journal of Power Sources 2020, 450, 227601.
78. Minafra, N.; Culver, S. P.; Krauskopf, T.; Senyshyn, A.; Zeier, W. G., Effect of Si substitution on the structural and transport properties of superionic Li-argyrodites. Journal of Materials Chemistry A 2018, 6 (2), 645-651.
79. Kraft, M. A.; Ohno, S.; Zinkevich, T.; Koerver, R.; Culver, S. P.; Fuchs, T.; Senyshyn, A.; Indris, S.; Morgan, B. J.; Zeier, W. G., Inducing high ionic conductivity in the lithium superionic argyrodites Li6+ x P1–x Ge x S5I for all-solid-state batteries. Journal of the American Chemical Society 2018, 140 (47), 16330-16339.
80. Ohno, S.; Helm, B.; Fuchs, T.; Dewald, G.; Kraft, M. A.; Culver, S. P.; Senyshyn, A.; Zeier, W. G., Further evidence for energy landscape flattening in the superionic argyrodites Li6+ x P1–x M x S5I (M= Si, Ge, Sn). Chemistry of Materials 2019, 31 (13), 4936-4944.
81. Zhou, L.; Assoud, A.; Zhang, Q.; Wu, X.; Nazar, L. F., New family of argyrodite thioantimonate lithium superionic conductors. Journal of the American Chemical Society 2019, 141 (48), 19002-19013.
82. Jiang, Z.; Peng, H.; Liu, Y.; Li, Z.; Zhong, Y.; Wang, X.; Xia, X.; Gu, C.; Tu, J., A Versatile Li6. 5In0. 25P0. 75S5I Sulfide Electrolyte Triggered by Ultimate‐Energy Mechanical Alloying for All‐Solid‐State Lithium Metal Batteries. Advanced Energy Materials 2021, 11 (36), 2101521.
83. Adeli, P.; Bazak, J. D.; Huq, A.; Goward, G. R.; Nazar, L. F., Influence of aliovalent cation substitution and mechanical compression on Li-ion conductivity and diffusivity in argyrodite solid electrolytes. Chemistry of Materials 2020, 33 (1), 146-157.
84. Taklu, B. W.; Su, W.-N.; Nikodimos, Y.; Lakshmanan, K.; Temesgen, N. T.; Lin, P.-X.; Jiang, S.-K.; Huang, C.-J.; Wang, D.-Y.; Sheu, H.-S., Dual CuCl doped argyrodite superconductor to boost the interfacial compatibility and air stability for all solid-state lithium metal batteries. Nano Energy 2021, 90, 106542.
85. Subramanian, Y.; Rajagopal, R.; Senthilkumar, B.; Park, Y. J.; Kang, S.; Jung, Y. J.; Ryu, K.-S., Tuning of Li-argyrodites ionic conductivity through silicon substitution (Li6+ xP1-xSixS5Cl0. 5Br0. 5) and their electrochemical performance in lithium solid state batteries. Electrochimica Acta 2021, 400, 139431.
86. Pervez, S. A.; Cambaz, M. A.; Thangadurai, V.; Fichtner, M., Interface in solid-state lithium battery: challenges, progress, and outlook. ACS applied materials & interfaces 2019, 11 (25), 22029-22050.
87. Banerjee, A.; Wang, X.; Fang, C.; Wu, E. A.; Meng, Y. S., Interfaces and interphases in all-solid-state batteries with inorganic solid electrolytes. Chemical reviews 2020, 120 (14), 6878-6933.
88. Tan, D. H.; Banerjee, A.; Chen, Z.; Meng, Y. S., From nanoscale interface characterization to sustainable energy storage using all-solid-state batteries. Nature nanotechnology 2020, 15 (3), 170-180.
89. Chen, R.; Li, Q.; Yu, X.; Chen, L.; Li, H., Approaching practically accessible solid-state batteries: stability issues related to solid electrolytes and interfaces. Chemical reviews 2019, 120 (14), 6820-6877.
90. Ilyushin, A.; Kovalchuk, M., The 100th anniversary of the discovery of X-ray diffraction. Crystallography Reports 2012, 57 (5), 617-627.
91. Sang, L.; Haasch, R. T.; Gewirth, A. A.; Nuzzo, R. G., Evolution at the solid electrolyte/gold electrode interface during lithium deposition and stripping. Chemistry of Materials 2017, 29 (7), 3029-3037.
92. Gautam, A.; Ghidiu, M.; Suard, E.; Kraft, M. A.; Zeier, W. G., On the Lithium Distribution in Halide Superionic Argyrodites by Halide Incorporation in Li7–x PS6–x Cl x. ACS Applied Energy Materials 2021, 4 (7), 7309-7315.
93. Zhang, J.; Li, L.; Zheng, C.; Xia, Y.; Gan, Y.; Huang, H.; Liang, C.; He, X.; Tao, X.; Zhang, W., Silicon-doped argyrodite solid electrolyte Li6PS5I with improved ionic conductivity and interfacial compatibility for high-performance all-solid-state lithium batteries. ACS Applied Materials & Interfaces 2020, 12 (37), 41538-41545.
94. Chen, H. M.; Maohua, C.; Adams, S., Stability and ionic mobility in argyrodite-related lithium-ion solid electrolytes. Physical Chemistry Chemical Physics 2015, 17 (25), 16494-16506.
95. Zhu, Y. G.; Liu, Q.; Rong, Y.; Chen, H.; Yang, J.; Jia, C.; Yu, L.-J.; Karton, A.; Ren, Y.; Xu, X., Proton enhanced dynamic battery chemistry for aprotic lithium–oxygen batteries. Nature communications 2017, 8 (1), 1-8.
96. Dewald, G. F.; Ohno, S.; Kraft, M. A.; Koerver, R.; Till, P.; Vargas-Barbosa, N. M.; Janek, J. r.; Zeier, W. G., Experimental assessment of the practical oxidative stability of lithium thiophosphate solid electrolytes. Chemistry of Materials 2019, 31 (20), 8328-8337.
97. Tan, D. H.; Wu, E. A.; Nguyen, H.; Chen, Z.; Marple, M. A.; Doux, J.-M.; Wang, X.; Yang, H.; Banerjee, A.; Meng, Y. S., Elucidating reversible electrochemical redox of Li6PS5Cl solid electrolyte. ACS Energy Letters 2019, 4 (10), 2418-2427.
98. Swamy, T.; Chen, X.; Chiang, Y.-M., Electrochemical redox behavior of Li ion conducting sulfide solid electrolytes. Chemistry of Materials 2019, 31 (3), 707-713.
99. Lu, Y.; Zhao, C. Z.; Yuan, H.; Cheng, X. B.; Huang, J. Q.; Zhang, Q., Critical Current Density in Solid‐State Lithium Metal Batteries: Mechanism, Influences, and Strategies. Advanced Functional Materials 2021, 31 (18), 2009925.
100. Kazyak, E.; Garcia-Mendez, R.; LePage, W. S.; Sharafi, A.; Davis, A. L.; Sanchez, A. J.; Chen, K.-H.; Haslam, C.; Sakamoto, J.; Dasgupta, N. P., Li penetration in ceramic solid electrolytes: operando microscopy analysis of morphology, propagation, and reversibility. Matter 2020, 2 (4), 1025-1048.
101. Liu, G.; Weng, W.; Zhang, Z.; Wu, L.; Yang, J.; Yao, X., Densified Li6PS5Cl nanorods with high ionic conductivity and improved critical current density for all-solid-state lithium batteries. Nano Letters 2020, 20 (9), 6660-6665.

無法下載圖示 全文公開日期 2027/08/22 (校內網路)
全文公開日期 2027/08/22 (校外網路)
全文公開日期 2027/08/22 (國家圖書館:臺灣博碩士論文系統)
QR CODE