簡易檢索 / 詳目顯示

研究生: 邱奕瑤
I-yao chiu
論文名稱: 具可重置延遲線及固定鎖定週期之全數位延遲鎖定迴路
A Constant-Lock-Cycle All-Digital Delay-Locked Loop with a Resettable Delay Line
指導教授: 姚嘉瑜
Chia-Yu Yao
口試委員: 楊湰頡
Rong-jyi Yang
陳筱青
Hsiao-Chin Chen
彭盛裕
Sheng-Yu Peng
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2012
畢業學年度: 101
語文別: 中文
論文頁數: 61
中文關鍵詞: 關鍵字:全數位延遲鎖定迴路固定週期鎖定
外文關鍵詞: keyword:all-digital, delay-locked loop, constant
相關次數: 點閱:360下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

隨著CMOS製程技術的進步,SOC的複雜度越來越高,操作時脈較以往增加許多,因此如何讓系統達到時脈同步是一個重要議題。本論文針對目前文獻上有關全數位延遲鎖定迴路的不足處提出一種新的演算法,設計結果節省許多控制電路,在操作頻率60 MHz到1.2 GHz皆能固定在33 cycles後鎖定。目前文獻上的延遲鎖定迴路大多是不固定的鎖定週期,且高頻與低頻的搜索週期差距甚大,應用在系統中,需要一個等待鎖定的訊號,而若是固定週期鎖定,系統只需要計數固定週期後就可以直接進入工作模式,在SOC整合上更為方便。另本論文以cell-based流程完成,使系統具備可攜性,可在不同的製程實現,比較本論文以cell-base流程設計的延遲線及以full-custom流程設計之延遲線,前者具有較佳的線性度。本論文之電路以台積電0.18 um CMOS製程設計驗證,面積為0.689 mm × 0.76 mm,功耗在1.2 GHz的頻率時為16.2 mW,RMS jitter的量測結果在1.2 GHz的頻率下,經de-embedding J-BERT的jitter後為1.95 ps。


With the progress of CMOS technologies, the complexity of the system on a chip (SOC) and the SOC’s operating frequency are dramatically increasing. To achieve system synchronization in an SOC in such high clock rate is an important task. Thus, a low-power high-performance delay-locked loop (DLL) is required for clock synchronization in an SOC. This thesis proposes a new algorithm for designing an all-digital DLL (ADDLL). It can save many control circuits such that the chip area is smaller than most of the ADDLL chip in the literatures. The lock range of the proposed ADDLL is from 60 MHz to 1.2 GHz. That is, its search capability covers a very wide frequency band. On the other hand, it possesses constant lock cycles. The lock time is always 33 cycles no matter what rate the input clock is. The advantage of a constant-lock-cycle DLL is that there is no need to detect the lock condition of the DLL. The system can enter the normal mode of operation after counting a constant periods of its input. This makes it convenient for the SOC integration.
The main circuits (including the delay line) of the proposed ADDLL are designed using the cell-based designed flow. The delay line of the proposed ADDLL shows better linearity than its full-custom counterpart. The chip is realized in TSMC 0.18 um CMOS technology. The chip area is 0.689 mm × 0.76 mm. The power consumption at 1.2 GHz clock rate is 16.2 mW. After de-embedding the J-BERT’s jitter, the RMS jitter performance of the proposed ADDLL achieves 1.95 ps at 1.2 GHz clock rate.

目錄………………………………………………………………………………………………………………………………………I 圖目………………………………………………………………………………………………………………………………………II 表目錄…………………………………………………………………………………………………………………………………III 第一章簡介…………………………………………………………………………………………………………………………1 1.1動機及目的…………………………………………………………………………………………………………………1 1.2論文概要………………………………………………………………………………………………………………………3 第二章延遲鎖定迴路演進…………………………………………………………………………………………………4 2.1Angalog Delay Locked Loop…………………………………………………4 2.2All Digital Delay Locked Loop …………………………………………………………………………………………………………………………………………………6 2.3All Digital Delay Locked Loop with VSAR Algorithm………………………………………………………………………………………………………………………12 2.4All Digital Delay Locked Loop with LDSAR Algorithm………………………………………………………………………………………………………………………15 第三章A Constant-Lock-Cycle All-Digital Delay-Locked Loop with a Resettable Delay Line ………………………………………………………………………………………………………………………………………………16 3.1A Constant-Lock-Cycle All-Digital Delay-Locked Loop with a Resettable Delay Line……………………………………………………………………………………………………………………………………17 3.2Digital control delay line(DCDL)………………………………………………………………………………………………………………………………………………21 3.3Timing controller & SAR………………………………………………………………………………………………………………………………………29 第四章晶片佈局與量測……………………………………………………………………………………………………32 4.1晶片佈局…………………………………………………………………………………………………33 4.2量測環境與量測……………………………………………………………………………………………………………………………………………38 第五章結論與未來展望……………………………………………………………………………………………………………………………………………46 5.1結論…………………………………………………………………………………………………………46 5.2未來展望…………………………………………………………………………………………………46 Bibliography…………………………………………………………………………………………………………………47

[1] Feng Lin, Roman A. Royer, B. Johnson, and Brent Keeth, “A wide-range mixed-mode DLL for a combination 512Mb 2.0 Gb/s/pin GDDR3 and 2.5 Gb/s/pin GDDR4 SDRAM,” IEEE J. Solid-State Circuits, vol. 43, no. 3, pp. 631-641, Mar. 2008.

[2] K. Nose, A. Shibayama, H. Kodama, M. Mizuno, M. Edahiro, and N. Nishi, “Deterministic inter-core synchronization with periodically all-in-phase clocking for low-power multi-core SoCs,” in IEEE Int. Solid-State Circ. Conf. Dig. Tech. Papers, 2005, pp. 296–297, 599.

[3]D. Shin, J. Song, H. Chae, K. W. Kim, Y. J. Choi, C. Kim, “A 7ps-jitter 0.053mm¬2 fast-lock ADDLL with wide-range and high-resolution all-digital DCC,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, 2007, pp. 184-595.

[4]A. Rossi and G. Fucilli, “Nonredundant successive approximation register for A/D converters,” Electron. Letters, vol. 32, no. 12, pp. 1055–1057, Jun. 1996.

[5]G.-K. Dehng, J.-W. Lin, and S.-I. Liu, “A fast-lock mixed-mode DLL using a 2-b SAR algorithm,” IEEE J. Solid-State Circuits, vol. 36, no. 10, pp. 1464–1471, Oct. 2001.

[6]A. Coban, M. H. Koroglu, and K. A. Ahmed, “A 2.5--3.125 Gb/s quad transceiver with second order analog DLL-based CDRs,” IEEE J. Solid-State Circuits, vol. 40, no. 9, pp. 1940–1947, Sep. 2005.

[7]B. Razavi, Design of Integrated Circuits for Optical Communications. New York: McGraw Hill, 2002, p. 284.

[8]C. N. Chuang and S. I. Liu, “A 0.5–5 GHz wide-range multi-phase DLL with a calibrated charge pump,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 54, no. 11, pp. 939–943, Nov. 2007.

[9]K. Nakamura, M. Fukaishi, Y. Hirota, Y. Nakazawa, and M. Yotsuyanagi, “A CMOS 50% duty cycle repeater using complementary phase blending,” VLSI Circuits, Dig. Tech. Papers, pp. 48–49, Jun. 2000.
[10]H. H. Chang, J. W. Lin, C. Y. Yang, and S. I. Liu, “A wide range delay-locked loop with a fixed latency of one clock cycle,” IEEE J. Solid-State Circuits, vol. 37, no. 11, pp. 1021–1027, Aug. 2002.

[11]R. J. Yang and S. I. Liu, “A 2.5 GHz all-digital delay-locked loop in 0.13um CMOS technology,” IEEE J. Solid-State Circuits, vol. SC-42, pp. 2338–2347, Nov. 2007.

[12]A. Alvandpour, R. K. Krishnamurthy, D. Eckerbert, S. Apperson, B. Bloechel, and S. Borkar, “A 3.5 GHz 32mW 150 nm multiphase clock generator for high-performance microprocessors,” in IEEE Int. Solid- State Circuits Conf. Dig. Tech. Papers, Feb. 2003, pp. 112–113.

[13]R.-J. Yang and S.-I. Liu, “A 40-550 MHz harmonic-free all-digital delay-locked loop using a variable SAR algorithm,” IEEE J. Solid-State Circuits, vol. 42, no. 2, pp. 361–373, Feb. 2007.

[14]鍾登皓,三種快速鎖定演算法適用寬頻操作且具有責任週期校正之全數位延遲鎖定 迴路。碩士論文 NTUST, Jun. 2010.

[15]Lei Wang, Leibo Liu and hongyi Chen, “An Implementation of Fast-Locking and Wide-Range 11-bit Reversible SAR DLL, ” IEEE Trans. Circuits Syst. II EXPRESS BRIEFS, VOL.57, NO6, Jun 2010.

[16] H.-H. Chang and S.-I. Liu, “A wide-range and fast-locking all-digital cycle-controlled delay-locked loop, ” IEEE J. Solid-State Circuits, vol. 40, no. 3, pp. 661–670, Mar. 2005.

[17]Y. Okajima, M. Taguchi, M. Yanagawa, K.Nishimura, and O. Hamada, “Digital delay locked loop and design technique for high-speed synchronous interface,” IEICE Trans. Electron, vol.E79-C, pp. 798-807, June 1996.

[18]J.-U. Wang. “The design and realization of clock synchronizer for high speed digital systems,” MS thesis, National Taiwan University, Department of Electrical engineering, June 1998.

[19] G.K. Dehng, J.M.Hsu, C. Y. Yang, and S. I. Liu,”Clock-deskew buffer using a SAR-controlled delay-locked loop, “IEEE J. Solid-State Circuit, ” vol.35, no. 8, pp 1128-1136, Aug. 2000.

無法下載圖示 全文公開日期 2017/11/19 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE