簡易檢索 / 詳目顯示

研究生: 潘力維
Li-Wei Pan
論文名稱: 具同步整流器之非接觸式全橋式諧振轉換器研製
Development of Contactless Full-Bridge Resonant Converters with Synchronous Rectification
指導教授: 黃仲欽
Jonq-Chin Hwang
口試委員: 林長華
Chang-Hua Lin
陳良瑞
Liang-Rui Chen
劉傳聖
Chuan-Sheng Liu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 130
中文關鍵詞: 諧振轉換器高效率全橋式變流器中心抽頭式同步整流器串聯諧振
外文關鍵詞: resonant converter, high efficiency, full-bridge inverter, center-tapped synchronous rectifier, series capacitance
相關次數: 點閱:185下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本文旨在完成具同步整流功能之非接觸式全橋式諧振轉換器研製,其用途為直流電源供給器,將靜止側的電能轉移至旋轉的或可動的裝置,不僅不需額外機械接觸,亦具有高效率的運轉性能。在諧振轉換器方面,採用全橋式變流器及高頻變壓器架構,其中高頻變壓器的一次側繞組為固定,二次側繞組及鐵心為旋轉。本文配合高頻變壓器的電感耦合模式配合全橋式變流器的切換頻率,以設計串聯電容值,使系統具有諧振以提高輸出功率,變壓器的二次側採用中心抽頭式同步整流器以取代二極體整流電路,減少二極體導通損失,提高提高整體的系統效率。
本系統以德州儀器公司出產的32位元之數位訊號處理器TMS320F280049作為控制核心,控制策略皆以C語言軟體完成;如此,可減少硬體電路,且具軟體因此相當有可塑性。高頻變壓器鐵心採用罐型高頻鐵粉心,以降低鐵心損,兩側的線圈由多股細絞線所組成以防導線集膚效應,降低高頻的導體電阻損失。本文完成輸出功率為500W的雛型,其實測結果在輸入直流電壓為40V,輸出直流電壓為30V~50V範圍,在輸出直流功率為520W時的效率為92.9%,諧振頻率為45kHz,在最高效率為96.5%時的輸出直流功率為256.5W,諧振頻率為29.7kHz。整體運轉的效率約為92.9%~96.5%,本文的轉換器具相當高的效率。


This thesis aims to complete the development of a contactless full-bridge resonant converter with synchronous rectification function, which is used as a DC power supply to transfer the electric energy from the static side to a rotating or movable device, without extra mechanical contact and with high efficiency operation performance. In the aspect of resonant converter, full-bridge inverter and high-frequency transformer architecture are adopted, in which the primary winding and iron core of high-frequency transformer is fixed, and the secondary winding and iron core are rotating. In this thesis, the inductance coupling mode of the high-frequency transformer and the switching frequency of the full-bridge inverter are matched to design the series capacitance value, so that the system has resonance to improve the output power. The secondary side of the transformer uses a center-tapped synchronous rectifier to replace the diode rectifier circuit, thus reducing the diode conduction loss and improving the overall system efficiency.
This system takes the 32-bit digital signal processor TMS320F280049 produced by Texas Instruments Company as the control core, and the control strategies are all completed by C language software. In this way, the hardware circuit can be reduced and the software has considerable plasticity. The iron core of high-frequency transformer adopts can-type high-frequency iron powder core to reduce the iron core loss, and the coils on both sides are composed of Litz wires to prevent the skin effect of wires and reduce the loss of conductor resistance at high frequency. In this thesis, a prototype with an output power of 500W is completed. The actual measurement results show that the efficiency is 92.9% and the resonance frequency is 45kHz when the input DC voltage is 40V and the output DC voltage is 30 V ~ 50 V, and the output DC power is 256.5W and the resonance frequency is 29.7kHz when the highest efficiency is 96.5%. The overall operation efficiency is about 92.9% ~ 96.5%, and the converter in this paper has quite high efficiency.

摘要 I Abstract II 誌謝 III 目錄 IV 圖表索引 VII 符號索引 XIV 第一章 緒論 1 1-1 研究動機與目的 1 1-2 文獻探討 3 1-3 系統架構及本文特色 4 1-4 本文大綱 6 第二章 非接觸式全橋式諧振轉換器的設計 7 2-1 前言 7 2-2 高頻變壓器模式及參數量測 7 2-2-1 高頻變壓器模式 7 2-2-2 高頻變壓器的參數量測 14 2-3 高頻變壓器的交流穩態電路分析 18 2-4 諧振電路分析 20 2-4-1 變壓器的一次側及二次側諧振電路分析 21 2-5 電容補償架構選用 26 2-5-1 諧振線圈電感的設計 28 2-5-2 諧振電容的設計 28 2-5-3 品質因數 42 2-6結語 49 第三章 非接觸式全橋式諧振轉換器效率改善策略 50 3-1 前言 50 3-2 全橋式諧振轉換器的切換頻率控制 50 3-3 同步整流器的電路設計 53 3-3-1 同步整流器的原理 53 3-3-2 同步整流器的控制 53 3-4 結語 61 第四章 實體製作 62 4-1 前言 62 4-2 本文的硬體電路架構 66 4-2-1 數位控制處理器之介面電路 66 4-2-2 功率級開關元件閘極驅動電路 69 4-2-3 輸入及輸出電壓回授電路 70 4-2-4 輸入及輸出電流回授電路 71 4-2-5 藍牙模組通訊電路 73 4-3 軟體規劃 73 4-3-1 藍牙通訊軟體 75 4-4 結語 75 第五章 模擬及實測 76 5-1 前言 76 5-2 模擬結果 76 5-3 實測結果 81 5-4 結語 92 第六章 結論與建議 93 6-1 結論 93 6-2建議 94 參考文獻 94 附錄A 諧振電路相關公式推導 99 A-1 諧振電路分析 99 A-2 品質因數 100 附錄B 藍牙通訊程式碼 110 B-1 固定側藍牙通訊程式碼 110 B-2 旋轉側藍牙通訊程式碼 110

[1] O. H. Stielau and G. A. Covic, “Design of loosely coupled inductive power transfer systems”, PowerCon 2000. 2000 International Conference on Power System Technology. Proceedings (Cat. No.00EX409), Perth, WA, Australia, vol.1, pp. 85-90, 2000.
[2] C.-S. Wang, G. A. Covic and O. H. Stielau, “Power transfer capability and bifurcation phenomena of loosely coupled inductive power transfer systems”, IEEE Transactions on Industrial Electronics, vol. 51, no. 1, pp. 148-157, Feb. 2004.
[3] C.-S. Wang, O. H. Stielau, and G. A. Covic, “Design considerations for a contactless electric vehicle battery charger”, IEEE Transactions on Industrial Electronics., vol. 52, no. 5, pp. 1308–1314, 2005.
[4] X. Liu, W. M. Ng, C. K. Lee, and S. Y. Hui, “Optimal operation of contactless transformers with resonance in secondary circuits”, IEEE Applied Power Electronics Conference and Exposition, pp. 645-650, 2008.
[5] R. Trevisan, A. Costanzo, “A 1-kW Contactless Energy Transfer System Based on a Rotary Transformer for Sealing Rollers”, IEEE Transactions on Industrial Electronics, vol. 61, no. 11, pp. 6337-6345, Nov. 2014.
[6] T. Fujita, Y. Kaneko and S. Abe, “Contactless Power Transfer Systems using Series and Parallel Resonant Capacitors”, IEEJ Transactions on Industry Applications, Japan, vol.127, no.2, pp.174–180, 2007.
[7] H. Takanashi, Y. Sato, Y. Kaneko, S. Abe, and T. Yasuda, “A large air gap 3 kW wireless power transfer system for electric vehicles”, IEEE Energy Conversion Congress and Exposition, pp. 269-274, 2012.
[8] R. Nozawa, R. Kobayashi, H. Tanifuji, Y. Kaneko and S. Abe, “Excitation system by contactless power transfer system with the primary series capacitor method”, International Power Electronics Conference (IPEC-Hiroshima 2014 - ECCE ASIA), Hiroshima, Japan, pp. 1115-1121, 2014.
[9] M. Chigira, Y. Nagatsuka, Y. Kaneko, S. Abe, T. Yasuda and A. Suzuki, “Small-size light-weight transformer with new core structure for contactless electric vehicle power transfer system”, IEEE Energy Conversion Congress and Exposition, Phoenix, AZ, USA, pp. 260-266, 2011.
[10] Yungtaek Jang and M. M. Jovanovic, “A contactless electrical energy transmission system for portable-telephone battery chargers”, IEEE Transactions on Industrial Electronics, vol. 50, no. 3, pp. 520-527, June 2003.
[11] S. Valtchev, B. Borges, K. Brandisky and J. B. Klaassens, “Resonant Contactless Energy Transfer With Improved Efficiency”, IEEE Transactions on Power Electronics, vol. 24, no. 3, pp. 685-699, March 2009.
[12] M. Ryu, H. Cha, Y. Park, and J. Baek, “Analysis of the contactless power transfer system using modelling and analysis of the contactless transformer”, 31st Annual Conference of IEEE Industrial Electronics Society, pp. 1036-1042, 2005.
[13] M. Ryu, H. Cha, Y. Park, and J. Baek, “Comparison and analysis of the contactless power transfer systems using the parameters of the contactless transformer”, 37th IEEE Power Electronics Specialists Conference, pp. 1-6, 2006.
[14] W. A. Roshen, “Winding loss from an air-gap”, 35th IEEE Power Electronics Specialists Conference, Aachen, Germany, 2004, pp. 1724-1730 Vol.3.
[15] 張宗文,“陣列鐵芯結構應用於非接觸式手機充電平台之研究”,國立成功大學電機工程學系碩士論文,民國九十六年。
[16] 陳嘉瑋,“非接觸式感應充電杯之研製”,國立成功大學電機工程學系碩士論文,民國九十七年。
[17] 陳世賢,“非接觸式感應饋電技術應用於鉛酸電池充電之研究”,國立成功大學電機工程學系碩士論文,民國九十七年。
[18] 麥綺明,“非接觸式感應充電技術應用於油電混合車充電槳之研究”,國立成功大學電機工程學系碩士論文,民國九十八年。
[19] 張海文,“兼具高功因及高效率之非接觸式直流電源供應器”,國立彰化師範大學電機工程學系碩士論文,民國九十九年。
[20] V. Yousefzadeh and D. Maksimovic, “Sensorless optimization of dead times in dc–dc converters with synchronous rectifiers”, IEEE Transactions on Power Electronics, vol. 21, no. 4, pp. 994-1002, July 2006.
[21] W. Feng, D. Huang, P. Mattavelli, D. Fu and F. C. Lee, “Digital implementation of driving scheme for synchronous rectification in LLC resonant converter”, IEEE Energy Conversion Congress and Exposition, Atlanta, GA, USA, pp. 256-263, 2010.
[22] 黃品翰,“具同步整流之數位交錯主動式箝位返馳式轉換器研製”,國立臺北科技大學電機工程學系碩士論文,民國一百零六年。
[23] 陳勁鳴,“具同步整流主動箝位順向式轉換器之研製”,國立臺灣科技大學電機工程學系碩士論文,民國一百零四年。
[24] 莊子毅,“二次側空滯區間調變對具同步整流之返馳式轉換器效率提升之研究”,國立臺灣科技大學電機工程學系碩士論文,民國一百零九年。
[25] 吳義利,切換式電源轉換器第二版,文笙書局股份有限公司。
[26] Y. Zhang, “Key Technologies of Magnetically Coupled Resonant Wireless Power Transfer”, 2018.
[27] Fang Li, Ruixiang Hao, Haodong Lei, Xinyi Zhang, Xiaojie You, “The Influence of Parasitic Components on LLC”, 2019.
[28] McLyman, Colonel William T. Transformer and inductor design handbook. New York,, USA: Dekker, 1988.
[29] C. Adragna, “AN1326 L6565 quasi-resonant controller 7.3” , November 2002.
[30] S. Abdel-Rahman, “Application_Note_Resonant+LLC+Converter
+Operation+and+Design_Infineon” , September 2012.
[31] 3C91 material specification Data Sheet,Ferroxcube, 2004
[32] P66/56 P cores and accessories Data Sheet,Ferroxcube, 2004
[33] NCP4306 - Secondary Side Synchronous Rectification Driver for High Efficiency SMPS Topologies, 2017
[34] HEF4046B Phase-locked loop - Nexperia, 2016
[35] TMS320F28004x Piccolo Microcontrollers Technical Reference Manual, TEXAS INSTRUMENTS, SPRUI33B, January, 2019.
[36] HC-42藍牙串口模塊規格書,廣州匯承信息科技

無法下載圖示 全文公開日期 2031/07/26 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE