簡易檢索 / 詳目顯示

研究生: 蔡承達
Cheng-Ta Tsai
論文名稱: 以合成傳輸線實現連續可調之向量和相移器與向量調變器
Realization of Tunable Vector Sum Phase Shifter and Vector Modulator Using Synthesized Transmission Lines
指導教授: 馬自莊
Tzyh-Ghuang Ma
朱輝南
Huy-Nam Chu
口試委員: 馬自莊
Tzyh-Ghuang Ma
朱輝南
Huy-Nam Chu
廖文照
Wen-Jiao Liao
陳晏笙
Yen-Sheng Chen
陳士元
Shih-Yuan Chen
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 127
中文關鍵詞: 合成傳輸線單刀雙擲開關交叉跨線耦合器相移器功率結合器調變器
外文關鍵詞: synthesize transmission line, SPDT, crossover, coupler, phase shifter, power combiner, modulator
相關次數: 點閱:303下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文提出一款向量和相移器系統,該創新設計為利用可重置合成傳輸線開關與耦合器作為交叉跨線,成為本系統之基礎單元,並結合單刀雙擲開關(SPDT),以及利用由左手傳輸線與右手傳輸線構成之反向器等,整合形成向量和相移器系統。與傳統的Blass矩陣、Nolen矩陣,以及Butler矩陣等波束切換陣列利用離散方式相比,吾人所提出向量和相移器之架構,可實現連續掃描之應用。向量和相移器可經由適當配置,與相位可調合成傳輸線整合,組成向量調變器,實現相位及振幅可調之功能。
為了實現向量和相移器,本論文利用可重置合成傳輸線開關與耦合器作為交叉跨線,藉由調控變容器之偏壓改變電容值,造成交叉跨線輸出相位之改變,此為達成相位連續可調之關鍵因素。該向量和相移器尚須整合威爾金森功率結合器及由左手傳輸線與右手傳輸線構成之180度反向器,以實現其360度相移功能。
再者,為了實現向量調變器,吾人利用左手T型與右手π型集總電路實現相位可調合成傳輸線,並利用耦合器兩輸出埠相位差之特性,可使輸出訊號於電路傳遞時,透過調整相位可調合成傳輸線之變容器偏壓,造成其訊號產生振幅疊加或衰減之功能。吾人所提出之向量和相移器與向量調變器皆具有結構簡單與低成本之優點,可用於取代現有之微波電路系統中的相移器。
本論文詳盡討論此系統架構之設計概念、電路佈局,及模擬與量測比較結果,並進行適當分析討論。


This paper proposes a vector sum phase shifter system. The innovative design uses reconfigurable synthesized transmission lines and couplers as crossovers to form the building block. By combining with single-pole double-throw switches and phase inverter composed of left-handed/right-handed transmission lines, a vector sum phase shifter is integrated and realized. Compared with traditional beam switching arrays such as Blass, Nolen, and Butler matrices with discrete tuning steps, the proposed structure can achieve continuous phase tuning and may find applications in beam scanning arrays. In addition, the vector sum phase shifter can be properly configured and integrated with phase tunable synthesized transmission lines to form a vector modulator with quadrature amplitude modulation (QAM).
To realize the vector sum phase shifter, switches based on reconfigurable synthesized transmission lines and a pair of couplers are integrated together as a crossover. By adjusting the bias of the varactors to change the capacitance value, the output phase delay of the crossover can be manipulated, and becomes a key factor to achieve continuous phase tunability. A Wilkinson power combiner and a 180-degree phase inverter composed of the left-/right-handed transmission line are also used to complete the phase shifter with 360-degree phase tuning range.
Furthermore, in order to fulfill a vector modulator, left-handed T-type and right-handed π-type lumped circuits are used to realize phase tunable synthesized transmission line. By incorporated with the phase difference between the two output ports of the crossover, the amplitude of the output signal can be constructively or destructively interfered, thereby fulfilling quadrature amplitude modulation with simultaneously control of the amplitude and phase. The proposed vector sum phase shifter and vector modulator have the advantages of simple structure and low cost, and can be used to replace the existing phase shifter in the microwave circuit system.
This thesis introduces the design concept, circuit layout, simulation and measurement results of the system architecture, together with analysis and discussion.

摘要 I Abstract III 目錄 V 圖目錄 VII 表目錄 XI 第一章 緒論 1 1.1 研究動機與目的 1 1.2 文獻探討 2 1.3 研究貢獻 4 1.4 論文組織 5 第二章 向量和相移器/向量調變器之原理 6 2.1 前言 6 2.2 系統架構與設計原理 6 2.2.1 向量和相移器 6 2.2.1.1 可重置合成傳輸線開關 7 2.2.1.2 交叉跨線 8 2.2.1.3 360度之向量和相移器 10 2.2.2 向量調變器 11 2.2.2.1 相位可調合成傳輸線 13 2.3 結語 16 第三章 向量和相移器/向量調變器之構成元件 17 3.1 前言 17 3.2 向量和相移器之構成元件 17 3.2.1 可重置合成傳輸線開關 17 3.2.2 單刀雙擲開關 24 3.2.3 相位可調合成傳輸線 36 3.2.4 反向器 44 3.2.5 轉向耦合器 48 3.3 結語 53 第四章 向量和相移器/向量調變器之實驗驗證 54 4.1 前言 54 4.2 向量和相移器 54 4.2.1 360度之方向驗證 54 4.2.1.1 Frequency = 2.3 GHz 56 4.2.1.2 Frequency = 2.4 GHz 58 4.2.1.3 Frequency = 2.5 GHz 60 4.2.2 電路驗證 62 4.3 向量調變器 71 4.3.1 16 QAM與64 QAM之靜態星座圖驗證 71 4.3.2 電路S參數驗證 84 4.3.3 PRBS 量測架構探討 93 4.4 結語 93 第五章 結論 94 5.1 總結 94 5.2 未來發展 95 參考文獻 96 附錄 102

[1] S. J. Chung, S. M. Chen, and Y. C. Lee, “A novel bi-directional amplifier with applications in active Van Atta retrodirective arrays,” IEEE Trans. Microw. Theory Tech., vol. 51, no. 2, pp. 542–547, Feb. 2003.
[2] S. N. Hsieh and T. H. Chu, “Linear retro-directive antenna array using 90° hybrids,” IEEE Trans. Antennas Propagat., vol. 56, no. 6, pp. 1573- 1580, Jun. 2008.
[3] Y. Li and V. Jandhyala, “Design of retrodirective antenna arrays for short-range wireless power transmission,” IEEE Trans. Antennas Propaga., vol. 60, no. 1, pp. 206–211, Jan. 2012.
[4] S. C. Yen and T. H. Chu, “A beam-scanning and polarization-agile antenna array using mutually coupled oscillating doublers,” IEEE Trans. Antennas Propaga., vol. 53, no. 12, pp. 4051–4057, Dec. 2005.
[5] R. Vescovo, “Reconfigurability and Beam Scanning With Phase-Only Control for Antenna Arrays,” IEEE Trans. Antennas Propaga., vol. 56, pp. 1555-1565, Jun. 2008.
[6] C. C. Chang, R. H. Lee, and T. Y. Shih, “Design of a beam switching/steering butler matrix for phased array system,” IEEE Trans. Antennas Propag., vol. 58, no.2, pp. 367-374, Feb. 2010.
[7] A. R. Dion and L. J. Ricardi, “A variable-coverage satellite antenna system,” Proc. IEEE, vol. 59, pp. 252-262, Feb. 1971
[8] H. Ren, H. Zhang, Y. Jin, Y. Gu, and B. Arigong, “A novel 2-D 3×3 Nolen matrix for 2-D beamforming applications,” IEEE Trans. Microw. Theory Techn., vol. 67, no. 11, pp. 4622–4631, Nov. 2019
[9] T. Djerafi and N. J. G. Fonseca, and K. Wu, “Planar Ku-band 4 × 4 Nolen matrix in SIW technology,” IEEE Trans. Microw. Theory Tech., vol. 58, no. 2, pp. 259–266, Feb. 2010.
[10] P. Chen, W. Hong, Z. Kuai, and K. Wu, “A double layer substrate integrated waveguide Blass matrix for beamforming applications,” IEEE Microwave Wireless. Compon. Lett., vol. 19, no. 6, pp. 374–376, Jun. 2009
[11] T.N. Kaifas and J. N. Sahalos, “On the design of a single-layer wideband Butler matrix for switched-beam UMTS system applications”, IEEE Antennas and Propagt. Mag., vol. 48, No. 6, pp. 193-204, Dec. 2006.
[12] K. Ding, F. He, X. Ying, and J. Guan, “A compact 8 × 8 Butler matrix based on double-layer structure,” in IEEE Int. Symp. Microw. Antenna Propag. EMC Techn.,2013, pp. 650-653.
[13] H. N. Chu and T.-G. Ma, “An extended 4×4 butler matrix with enhanced beam controllability and widened spatial coverage,” IEEE Trans. Microw. Theory Techn., vol. 66, no. 3, pp. 1301–1311, Mar. 2018.
[14] F. Ellinger, H. Jäckel, and W. Bächtold, “Varactor-loaded transmission-line phase shifter at C-band using lumped elements,”IEEE Trans. Microw. Theory Tech., vol. 51, no. 4, pp. 1135–1140, Apr. 2003.
[15] D.Kuylenstierna, A. Vorobiev, P. Linnér, and S. Gevorgian, “Composite right/left handed transmission line phase shifter using ferroelectric varactors,”IEEE Microw. Wireless Compon. Lett., vol. 16, no. 4, pp. 167–169, Apr. 2006.
[16] J.-C. Wu, T.-Y.Chin, S.-F. Chang, and C.-C.Chang, “2.45-GHz CMOS reflection-type phase-shifter MMICs with minimal loss variation over quadrants of phase-shift range,”IEEE Trans. Microw. Theory Tech., vol. 56, no. 10, pp. 2180–2189, Oct. 2008.
[17] W. J.Liu, and S. Y. Zheng,Y. M. Pei, Y. X. Li, and Y. L. Long, “A wideband tunable reflection-type phase shifter with wide relative phase shift,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. PP, no. 99, Jan. 2017.
[18] C.-S. Lin, S.-F.Chang, and W.-C.Hsiao, “A Full-360° reflection-type phase shifter with constant insertion loss,”IEEE Trans. Microw. Theory Tech., vol. 18, no. 2, pp. 106–108, Feb. 2008.
[19] S. Gong, H. Shen, and N. S. Barker, “A 60-GHz 2-bit switched-line phaseshifter using SP4T RF-MEMS switches,”IEEE Trans. Microw. Theory Techn., vol. 59, no. 4, pp. 894–900, Apr. 2011.
[20] K. Maruhashi, H. Mizutani, and K. Ohata, “Design and performance of a Ka-band monolithic phase shifter utilizing nonresonant FET switches,”IEEE Trans. Microw. TheoryTech., vol. 48, no. 8, pp. 1313-1317, Aug. 2000.
[21] N. Kingsley and J. Papapolymerou, “Organic ‘wafer-scale’ packaged miniature 4-bit RF MEMS phase shifter,”IEEE Trans. Microw. Theory Techn., vol. 54, no. 3, pp. 1229–1236, Mar. 2006.
[22] B.-W. Min and G. M. Rebeiz, “Single-ended and differential Ka-band BiCMOS phased array front-ends,” IEEE J.Solid-State Circuits, vol. 43, no. 10, pp. 2239–2250, Oct. 2008.
[23] H.-S. Lee and B.-W. Min, “W-band CMOS 4-bit phase shifter for high power and phasecompression points,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 62, no. 1, pp. 1–5, Jan. 2015.
[24] G.-S. Shin et al., “Low insertion loss, compact 4-bit phase shifter in 65 nm CMOS for 5G applications,”IEEE Microw. Wireless Compon. Lett., vol. 26, no. 1, pp. 37–39, Jan. 2016.
[25] S. J. Kim and N. H. Myung, “A new active phase shifter using a vector sum method,” IEEE Microw. Guided Wave Lett., vol. 10, no. 6, pp. 233–235, Jun. 2000.
[26] D. Ehyaie, and A. Mortazawi, “A new approach to design low cost, low complexity phased arrays,” in IEEE MTT-S Int. Microw. Symp. Dig., pp. 1270-1273, Oct. 2010.
[27] H. N. Chu, H. C. Liao, G. Y. Li, and T. G. Ma, “Novel phase reconfigurable synthesized transmission line and its application to reconfigurable hybrid coupler,” presented at 47th Eur. Microw. Conf., Germany, 2017.
[28] H. N. Chu and T. G. Ma, “An extended 4  4 Butler matrix with enhanced beam controllability and widened spatial coverage,” accepted in IEEE Trans. Microw. Theory Techn., 2017.
[29] H. N. Chu and T. G. Ma, “Beamwidth switchable planar microstrip series-fed slot array using reconfigurable synthesized transmission lines,” IEEE Trans. Antennas Propag., vol. 65, no. 7, pp. 3766-3771, Jul. 2017.
[30] 謝廷,「以可重置合成傳輸線實現單頻整合信號回溯/波束切換相位陣列」,碩士論文,國立臺灣科技大學,民國一百零五年
[31] C. I. Shie, J. C. Cheng, S. C. Chou, and Y. C. Chiang, “Transdirectional coupled-line couplers implemented by periodical shunt capacitors,” IEEE Trans. Microw. Theory Techn., vol. 57, no. 12, pp. 2981–2988, Dec. 2009.
[32] Datasheet of Skywork SMV1405 [Online]. Available: http://www.skyworksinc.com/Product/552/SMV1405_Series
[33] Datasheet of Skywork SMV2020 [Online]. Available:
https://www.skyworksinc.com/en/Products/Diodes/SMV2020-079LF
[34] Evgeniy V. Balashov, and Ivan A. Rumyancev, “An unbalanced transformerless vector sum phase shifter architecture,” presented at EIConRusNW. Conf., Russia, 2016.
[35] W. Lim, X. Tang, and K. Mouthaan, “L-band 360º vector sum phase shifter using COTS components,” presented at APMC. Conf., Taiwan, 2012.
[36] J. Zhang, T. Wu, S. Ma, Q. Hong, F. Ye, and J. Ren, “A 8-12 GHz vector sum phase shifter using a Marchand balun and Gilbert cell structure.” presented at ICISICT. Conf., China, 2018.
[37] A. Honda, T. Shimura, and Y. Ohashi, “Study of multi phase vector sum phase shifters for phased array, ” presented at EuMA. Conf., France, 2015.
[38] Huy Nam Chu,「可重置合成傳輸線及其於可重置天線與相位陣列應用之研究」,博士論文,國立臺灣科技大學,民國一百零七年
[39] Y. T. Chang, Z. W. Ou, H. Alsuraisry, A. Sayed, and H. C. Lu, “A 28-GHz low power vector sum phase shifter using biphase modulator and current reused technique, ” IEEE Microw. Wireless Compon. Lett., vol. 28, no. 11, pp. 1014–1016, Jan. 2018.
[40] F. Akbar and A. Mortazawi, “A frequency tunable 360° analog CMOS phase shifter with an adjustable amplitude,” IEEE Trans. Circuits Syst., II, Exp. Briefs, vol. 64, no. 12, pp. 1427–1431, Dec. 2017.
[41] K.-J. Koh and G. M. Rebeiz, “0.13-µm CMOS phase shifters for X-, Ku-, and K-band phased arrays,” IEEE J. Solid-State Circuits, vol. 42, no. 11, pp. 2535–2546, Nov. 2007.
[42] T. Maruyama, K. Tsutsumi, E. Taniguchi, and M. Shimozawa, “1.4 deg.- RMS 6-bit vector-sum phase shifter calibrating I-Q generator error by VGA for high SHF wide-band massive MIMO in 5G,” in Proc. Asia– Pacific Microw. Conf. (APMC), New Delhi, India, Dec. 2016, pp. 1–4.
[43] T. Shimura, T. Ohshima, and Y. Ohashi, “Low power consumption vector-sum phase shifters using zero-pi amplifiers for millimeter-wave beamforming,” in Proc. IEEE Eur. Microw. Conf. (EuMC), Nuremberg, Germany, Oct. 2017, pp. 42–45.
[44] C. W. Wang, H. S. Wu, and C.-K. C. Tzuang, “CMOS passive phase shifter with group-delay deviation of 6.3 ps at K-band,” IEEE Trans. Microw. Theory Techn., vol. 59, no. 7, pp. 1778–1786, Jul. 2011.
[45] B. Cetindogan, E. Ozeren, B. Ustundag, M. Kaynak, and Y. Gurbuz, “A 6 bit vector sum phase shifter with a decoder based control circuit for X-band phased arrays,” IEEE Microw. Wireless Compon. Lett., vol. 26, no. 1, pp. 64–66, Jan. 2016.
[46] T. Yu and G. M. Rebeiz, “A 24 GHz 4-channel phased-array receiver in 0.13 m CMOS,” in IEEE Radio Freq. Integr. Circuits Symp., Jun. 2008, pp. 361–364.
[47] K.-J. Koh and G. M. Rebeiz, “0.13 m CMOS phase shifters for X-, Ku-, and K-band phased arrays,” IEEE J. Solid-State Circuits, vol. 42, no. 11, pp. 2535–2546, Nov. 2007.
[48] H. Erkens, R. Wunderlich, and S. Heinen, “A low-cost, high resolution, 360 phase/gain shifter in SiGe BiCMOS,” in IEEE Silicon Monolithic Integr. Circuits RF Syst. Top. Meeting, Jan. 2009, pp. 1–4.
[49] U. Mayer, M. Wickert, R. Eickhoff, and F. Ellinger, “Multiband mixed-signal vector modulator IC,” in IEEE Radio Freq. Integr. Circuits Symp., Baltimore, MA, Jun. 2011, pp. 1–4.
[50] R. Tseng, H. Li, D. H. Kwon, A. S. Y. Poon, and Y. Chiu, “An inherently linear phase-oversampling vector modulator in 90-nm CMOS,” in IEEE Asian Solid-State Circuits Conf., Nov. 2009, pp. 257–260.
[51] U. Mayer, M. Wickert, R. Eickhoff, and F. Ellinger, “2–6-GHz BiCMOS polar-based vector modulator for S-band and C-band diversity receivers,” in IEEE Trans. Microw. Theory Techn., vol. 60, no. 3, pp567-573, Mar. 2012.

無法下載圖示
全文公開日期 2025/08/25 (校外網路)
全文公開日期 2025/08/25 (國家圖書館:臺灣博碩士論文系統)
QR CODE