簡易檢索 / 詳目顯示

研究生: 劉彥中
Yang-chung Liu
論文名稱: 基於曲折繞接式變壓器利用特定諧波消除之多階層反流器研製
Implementation of a Multi-level Inverter Based on Zig-zag Connected Transformers Using Selective Harmonic Elimination
指導教授: 楊宗銘
Chung-Ming Young
口試委員: 賴炎生
none
羅有綱
Yu-Kang Lo
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 94
中文關鍵詞: 特定諧波消除反流器曲折繞接式變壓器
外文關鍵詞: Selective harmonic elimination, Inverter, Zig-zag transformers
相關次數: 點閱:198下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文應用選擇諧波消除(selective harmonic elimination)技術計算一反流器系統之開關切換角度,此反流器系統配合曲折繞接式(zig-zag)變壓器於輸出端。不同於選擇諧波消除技術常用的四分之一波對稱之波形,本文之脈波寬度調變波形使用半波對稱波形。儘管使用半波對稱波形在計算上較繁雜,但可提供較多的解並有機會得到較好的解。由於選擇諧波消除技術可直接控制特定諧波,因此適用於對特定諧波有抑制能力的設備如曲折繞接式變壓器。本文提出的系統中,兩組變壓器的一次側電壓由兩組六開關之全橋反流器供應,且此兩組反流器之電壓波形有30度之相位差。此變壓器可將12n加減1次以外的諧波抑制在變壓器二次側,因此半波對稱的選擇諧波消除方法設計消除12n加減1次的諧波成份與控制基本波的大小。根據上述規範,本文建立一小型系統來驗證其可行性。
    關鍵詞: 選擇諧波消除、 曲折繞接式變壓器


    Abstract
    This thesis applies the selective harmonic elimination (SHE) technique to determine the switching angles for an inverter system that is cooperated with special connected transformers called zig-zag connected transformers. Unlike quarter-wave symmetry, most employed in SHE strategy, half-wave symmetry is used in this thesis. Although half-wave symmetry needs more calculation burdens than quarter-wave symmetry, it provides wider solution space and better solutions. Attributed to directly controlling harmonics, SHE technique has the adaptability to associate with apparatus which are congenitally immune to specific harmonics, such as the zig-zag connection transformers. In this thesis, two sets primary windings of the transformers are supplied by two 6-switch full-bridge inverters with 30 electrical degrees phase shift. Prohibited by the transformers, harmonics with orders other than 12n add/subtract 1 (n is positive integral number) will not appear in the line-to-line voltage of the secondary side. Then, SHE technique with half-wave symmetry is employed to handle harmonics with orders equal to 12n add/subtract 1, and controls the amplitude of the fundamental. Based on specifications described above, a small-size prototype is built to verify the practical validity of the proposed system.
    Keywords: Selective harmonic elimination, zig-zag connection.

    摘要I AbstractII AcknowledgementsIII Table of ContentsIV List of FiguresVI List of TablesX Chapter1 Introduction1 1.1 Background and motivation1 1.2 Objectives of the thesis3 Chapter 2 Inverters and zig-zag connected transformers6 2.1 Introduction6 2.2 The three-phase inverter7 2.3 Analysis of the zig-zag connected transformers9 Chapter3 Selective harmonic elimination strategy14 3.1 Introduction14 3.2 The Theory of Fourier series expansion14 3.2.1 The theory of selective harmonic elimination with quarter-wave symmetric constraint17 3.2.2 The theory of selective harmonic elimination with half-wave symmetric constraint19 3.3 Numerical solver25 3.3.1 Newton’s method for systems25 3.3.2 Implementation of Newton’s method by Matlab26 3.4 Selection of fundamental phases 33 3.5 On-line calculation of the approximated polynomial derived by curve-fitting method37 3.5.1 The least-squares solution37 3.5.2 Error Analysis of high-level polynomial approximation40 3.5.3 Error Analysis of the piecewise continuous 2-order polynomial approximation45 Chapter4 Hardware configuration and software programming50 4.1 Introduction51 4.2 Hardware description52 4.2.1 Digital signal processor (TMS320LF2812)52 4.2.2 Inverter-related devices and peripheral circuits53 4.3 Software programming56 4.3.1 The I/O port pins and interrupts56 4.3.2 Voltage compensation processing58 4.3.3 Program designing with flow charts58 Chapter 5 Simulation and experimental results65 5.1 Introduction65 5.2 Simulation of zig-zag transformers’ output waveforms65 5.3 The simulation analyses and the experimental results68 Chapter 6 Conclusion80 References82

    [1]N. Mohan, T. M. Undeland, and W. P. Robbins, “Power Electronics:Converters, Applications, and Design,” New York:Wiley, 3rd ed., 1995.
    [2]S. A. Saleh, and M. A. Rahman, ‘‘Development and Experimental Testing of a Single-Phase B-Spline-Based SPWM Inverter,’’ IEEE International Symposium on Industrial Electronics, vol. 2, pp. 815-819, 2006.
    [3]Y. Yuan, G. Yong, and L. Nan, ‘‘Design of three-phase SPWM signal generation system based on soft-switch technology,’’ International Conference on Electronic Measurement and Instruments, pp. 937-941, 2007.
    [4]L. Jian, Z. Zhe, Y. Xianggen, and W. Minghao, ‘‘FPGA Implementation of a Multi-Level SPWM for Three-Level NPC Inverter,’’ Proceedings of International Conference on Power Engineering, vol. 1, pp. 175-179, 2006.
    [5]J. Huang, R. Xiong, Z. Wang, W. Zuo, Y. Zhou, and H. Shi, ‘‘A Novel SPWM Control Strategy to Reduce Common-mode Voltage in Three-phase Four-leg Inverters,’’ Proceedings of International Conference on Electrical Machines and Systems, pp. 1526-1530, 2008.
    [6]P. T. Cheng, and D. M. Divan, ‘‘Control of Quarter-wave Inverters in High-power Hybrid Active Filter Systems,’’ IEEE Transactions on Industry Applications, vol. 34, pp. 458-472, 1998.
    [7]G. Poddar, and M. K. Sahu, ‘‘Natural Harmonic Elimination of Square-Wave Inverter for Medium-Voltage Application,’’ IEEE Transactions on Power Electronics, vol. 24, pp. 1182-1188, 2009.
    [8]J. R. Espinoza, J. I. Guzmn, L. A. Morn, and R. P. Burgos, ‘‘Selective Harmonic Elimination and Current/Voltage Control in Current/Voltage-Source Topologies: A Unified Approach,’’ IEEE Transactions on Industrial Electronics, vol. 48, pp. 71-81, 2001.
    [9]L. Xu, and V. G. Agelidis, ‘‘A VSC Transmission System Using Flying Capacitor Multilevel Converters and Selective Harmonic Elimination PWM Control,’’ Proceedings of International Conference on Power Engineering, vol. 2, pp. 1176-1181, 2005.
    [10]S. A. Dahidah, and V. G. Agelidis, ‘‘Selective Harmonic Elimination PWM Control for Cascaded Multilevel Voltage Source Converters: A Generalized Formula,’’ IEEE Transactions on Power Electronics, vol. 23, pp. 1620-1630, 2008.
    [11]Q. Liang, Z. Hui, L. Kaipei, and Q. Liu, ‘‘An Improved Modulation of the Selective Harmonic Elimination Controlling,’’ Proceedings of International Conference on Power System Technology, pp. 1–5, 2006.
    [12]J. Sun, S. Beineke, and H. Grotstollen, ‘‘Optimal PWM Based on Real-Time Solution of Harmonic Elimination Equations,’’ IEEE Transactions on Power Electronics, vol. 11, pp. 612-62, 1996.
    [13]S. R. Bowes, S. Grewal, and D. Holliday, ‘‘Single-phase Three-level Regular-sampled Selective Harmonic Elimination PWM,’’ IEE Proceedings on Electric Power Applications, vol. 148, pp. 155-161, 2001.
    [14]A. I. Maswood, ‘‘PWM SHE Switching Algorithm for Voltage Source Inverter,’’ Proceedings of International Conference on Power Electronics, Drives and Energy Systems, pp. 1-4, 2006.
    [15]C. Zheng, B. Zhang, and D. Qiu, ‘‘Solving Switching Angles for the Inverter's Selected Harmonic Elimination Technique with Walsh Function,’’ Proceedings of International Conference on Electrical Machines and Systems, vol. 2, pp. 1366-1370, 2005.
    [16]N. A. Azli, and A. H. Yatim, ‘‘Curve Fitting Technique for Optimal Pulse Width Modulation (PWM) Online Control of a Voltage Source Inverter (VSI),’’ TENCON, vol. 1, pp. 419-422, 2000.
    [17]J. R. Wells, B. M. Nee, P. L. Chapman, and P. T. Krein, ‘‘Selective Harmonic Control: A General Problem Formulation and Selected Solutions,’’ IEEE Transactions on Power Electronics, vol. 20, pp. 1337-1345, 2005.
    [18]H. Huang, H. Shiyan, and D. Czarkowski, “Harmonic Elimination for Constrained Optimal PWM,” IEEE on Industrial Electronics Society Conference Record, vol. 3, pp. 2702-2705, 2004.
    [19]J. R. Espinoza, G. Joos, J. I. Guzman, A. L. Moran, and R. P. Burgos, “Selective Harmonic Elimination and Current/Voltage Control in Current/Voltage-source Topologies: a Unified Approach,” IEEE Transactions on Industrial Electronics, vol. 48, no. 1, pp. 71-81, 2001.
    [20]J. N. Chiasson, L. M. Tolbert, J. K. Mckenzie, and D. Zhong, “A Unified Approach to Solving the Harmonic Elimination Equations in Multilevel Converters,” IEEE Transactions on Power Electronics, vol. 19, no. 2, pp. 478-490, 2004.
    [21]A. Bhadkamkar, A. Bendre, R. Schneider, W. Kranz, and D. Divan, ‘‘Application of Zig-zag Transformers in a Three-wire Three-phase Dynamic Sag Corrector System,’’ Power Electronics Specialist Conference, vol. 3, pp. 1260-1265, 2003.
    [22]H. L. Jou, J. C. Wu, K. D. Wu, W. J. Chiang, and Y. H. Chen, ‘‘Analysis of Zig-zag Transformer Applying In the Three-phase Four-wire Distribution Power System,’’ IEEE Transactions on Power Delivery, vol. 20, pp.1168-1173, 2005.
    [23]巫昇峰,“基於曲折繞接線變壓器利用特定諧波消除之三階層反流器研製,” 國立台灣科技大學電機工程系碩士學位論文, 民國九十六年
    [24]C. R. Penney, ‘‘Linear Algebra : Ideas and Applications,’’ Hoboken, N. J. : Wiley-Interscience, c2004.
    [25]張棟樑, “以變壓器曲折繞法及特定諧波消除為基礎之三相變流器諧波消除,” 國立台灣科技大學電機工程系碩士學位論文, 民國九十三年
    [26]W. Zhang, and Y. Sun, ‘‘Optimization of Output Voltage Waveform of Selective Harmonic Elimination Inverter,’’ Proceedings of International Conference on Power System Technology, pp.1-4, 2006.
    [27]V. Laurene, ‘‘Applied Numerical Analysis Using MATLAB,’’ Upper Saddle River, NJ: Pearson Education International, 2008.
    [28]M.A. Marra, B.L.Walcott, “Stability and Optimality in Genetic Algorithm Controllers,” IEEE International Symposium on Intelligent Control, pp. 492-496, 1996.

    QR CODE