簡易檢索 / 詳目顯示

研究生: 黃兆廷
Zhao-Ting Huang
論文名稱: 具四支路電感耦合單相及三相換流器設計
Design of Single-phase and Three-Phase Inverters with Four-Branch Coupled Inductor
指導教授: 黃仲欽
Jonq-Chin Hwang
口試委員: 林法正
Faa-Jeng Lin
劉傳聖
Chuan-Sheng, Liu
林長華
Chang-Hua Lin
黃仲欽
Jonq-Chin Hwang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 125
中文關鍵詞: 單相換流器三相換流器耦合電感電流平衡控制交錯式脈波寬度調變
外文關鍵詞: single-phase inverter, three-phase inverter, coupled inductor, current balance control, interleaved pulse width modulation
相關次數: 點閱:272下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文旨在設計及研製單相及三相的四支路電感耦合換流器,具有並聯多階位準的功能,適用於大電流換流器應用場合。採用耦合電感抑制循環電流,並使電路能工作較高基本頻率並提高動態響應。系統採用電壓及電流閉迴路控制,使輸出電壓接近實際命令值,並回授各支路電流與其平均值完成各支路電流平衡控制,達到電流平衡目的,提升整體電路穩定度。使用四組交錯式脈波寬度調變控制,以降低輸出的諧波含量,提升整體電力品質。本系統採用德州儀器之數位信號處理器TMS320F28075作為控制的核心,內建有PWM模組,其控制系統皆由軟體程式完成,以減少實體硬體電路。
    本文已建立四支路電感耦合換流器的模式,以及單相及三相電壓及電流閉迴路控制策略,並以Matlab/Simulink應用軟體模擬,驗證系統控制策略之可行性。本文已完成單相系統的輸出功率為3kW及三相系統的總輸出功率為6kW,系統頻率範圍60~200Hz的實體製作。單相系統頻率為60Hz輸出功率為3kW的實測結果,輸出電壓總諧波失真率為2.40%;輸出功率為1kW頻率為200Hz時,輸出電壓總諧波失真率為1.40%。三相系統實測方面,頻率為60Hz,總輸出功率為6kW時,輸出電壓總諧波失真率為1.13%;總輸出功率為3kW其頻率為200Hz時,輸出電壓總諧波失真率為1.68%。單相及三相系統的電流平衡指標 均低於3%,每支路電感電流達到均流效果。單相系統在3kW操作其效率為97.8%,三相系統在6kW操作其效率為98.6%。從實測結果驗證本文系統與控制策略之可行性。


    This thesis aims to design and develop single-phase and three-phase inverter with four-branch coupled inductor, which have the function of parallel multi-level levels, and are suitable for high-current inverter applications. Using coupled inductors to suppress circulating currents, and enable the circuit to work at a higher fundamental frequency and improve dynamic response. The system adopts voltage and current closed-loop control to make the output voltage close to the command value, and feedback the current of each branch and its average value to complete the current balance control of each branch to achieve the purpose of current balance and improve the stability of the system. Four sets of interleaved pulse width modulation control are used to reduce the output voltage harmonic content and improve the overall power quality. This system uses the digital signal processor TMS320F28075 of Texas Instruments as the core of the control, with a built-in PWM module, and the control system is completed by software programs to reduce hardware circuits.
    This system has established the four-branch inductively coupled converter mode, as well as single-phase and three-phase voltage and current closed-loop control strategies, and simulated it with Matlab/Simulink application software to verify the feasibility of the system control strategy. This system has completed the single-phase system with the output power of 3kW and a three-phase system with a total output power of 6kW, and the range of system's fundamental frequency is 60~200Hz. When the single-phase system's frequency is 60Hz and the output power is 3kW, the total harmonic distortion of the output voltage is 2.40%; when the output power is 1kW and the frequency is 200Hz, the THDv is 1.40%. For the three-phase system, when the frequency is 60Hz and the total output power is 6kW, the THDv is 1.13%; when the total output power is 3kW and the frequency is 200Hz, the THDv is 1.68%. The current balance indicators of single-phase and three-phase systems are both less than 3%, and the inductor current of each branch achieves a current-sharing effect. The efficiency of single-phase system is 97.8% in 3kW operation, and the efficiency of three-phase system is 98.6% in 6kW operation. The results verify the feasibility of the system and control strategy in this thesis.

    摘 要 I Abstract II 誌 謝 IV 目 錄 V 符號索引 IX 圖表索引 XV 第一章 緒論 1 1.1研究動機及目的 1 1.2文獻探討 2 1.3系統架構及本文特色 3 1.4本文大綱 5 第二章 四支路電感耦合換流器的模式 6 2.1前言 6 2.2單臂四支路電感耦合換流器的電力電路及模式 6 2.3單相系統四支路電感耦合換流器的電力電路及模式 8 2.4三相系統四支路電感耦合換流器的電力電路及模式 11 2.5兩繞組耦合電感的設計及製作 16 2.5.1電感鐵芯型號選擇 16 2.5.2兩繞組耦合電感設計 16 2.5.3耦合電感量測 19 2.6結語 20 第三章 單相及三相系統的電壓及電流控制策略 21 3.1前言 21 3.2單相系統的電壓及電流閉迴路控制策略 21 3.2.1獨立供電時電壓命令設定 21 3.2.2單相系統的電壓及電流閉迴路控制策略 22 3.3三相系統電壓及電流閉迴路控制策略 24 3.4四支路型電感耦合電流平衡控制 27 3.5多臂型交錯式脈波寬度調變控制 30 3.6結語 35 第四章 實體製作 36 4.1前言 36 4.2電路規格 36 4.3系統硬體規劃 37 4.3.1數位信號處理器介面電路 38 4.3.2直流側輸入電壓回授電路 40 4.3.3交流側輸出電壓回授電路 42 4.3.4每支路的電感電流回授電路 43 4.4軟體規劃 45 4.4.1主程式流程規劃 45 4.4.2單相換流器之電壓閉迴路控制程式規劃 47 4.4.3三相換流器之電壓閉迴路控制程式規劃 49 4.5本文換流器的電源供應器及負載規格 51 4.5.1直流電源供給器的規格 51 4.5.2單相系統負載的規格及規劃 52 4.5.3三相系統Δ接負載的規格及規劃 52 4.6結語 53 第五章 模擬與實測 54 5.1前言 54 5.2單相系統及三相系統電感耦合換流器的模擬 54 5.2.1單相系統四支路電感耦合換流器的模擬 54 5.2.2三相系統四支路電感耦合換流器的模擬 62 5.3單相系統及三相系統電感耦合換流器的實測 70 5.3.1單相系統四支路電感耦合換流器的實測 70 5.3.2三相系統四支路電感耦合換流器的實測 79 5.4結語 88 第六章 結論與建議 89 6.1結論 89 6.2建議 90 參考文獻 91 附錄A 三相四支路電感耦合換流器與功率硬體模擬器的系統整合 95 A-1功率硬體模擬器的架構 95 A-2功率硬體模擬器整合的實測 98

    [1]B. Cougo, T. Meynard and G. Gateau, "Parallel Three-Phase Inverters: Optimal PWM Method for Flux Reduction in Intercell Transformers," in IEEE Transactions on Power Electronics, vol. 26, no. 8, pp. 2184-2191, Aug. 2011.
    [2]R. Hausmann and I. Barbi, "Three-phase multilevel bidirectional DC-AC converter using three-phase coupled inductors," 2009 IEEE Energy Conversion Congress and Exposition, 2009.
    [3]J. Rodriguez et al., "Multilevel Converters: An Enabling Technology for High-Power Applications," in Proceedings of the IEEE, vol. 97, no. 11, pp. 1786-1817, 2009.
    [4]S. Singh and J. Salmon, "Multi-Level Voltage Source Parallel Inverters using Coupled Inductors," 2019 20th Workshop on Control and Modeling for Power Electronics (COMPEL), Toronto, ON, Canada, pp. 1-8, 2019.
    [5]C. Garreau and G. Gateau, "Modeling and generalization of parallel multilevel converter for the design of the closed loop's controllers," 2017 IEEE International Conference on Industrial Technology (ICIT), pp. 153-158, 2017.
    [6]A. Schmitt, M. Gommeringer, C. Rollbuhler, P. Pomnitz and M. Braun, "A Novel Modulation Scheme for a Modular Multiphase Multilevel Converter in a Power Hardware-in-the-loop Emulation System," IECON 2015 - 41st Annual Conference of the IEEE Industrial Electronics Society, Yokohama, pp. 001276-001281, 2015.
    [7]Z. Li, P. Wang, Y. Li and F. Gao, "A Novel Single-Phase Five-Level Inverter With Coupled Inductors," IEEE Transactions on Power Electronics, vol. 27, no. 6, pp. 2716-2725, June 2012.
    [8]G. J. Capella, J. Pou, S. Ceballos, J. Zaragoza and V. G. Agelidis, "Current-Balancing Technique for Interleaved Voltage Source Inverters With Magnetically Coupled Legs Connected in Parallel," IEEE Transactions on Industrial Electronics, vol. 62, no. 3, pp. 1335-1344, 2015.
    [9]J. Pou, J. Zaragoza, G. Capella, I. Gabiola, S. Ceballos and E. Robles, "Current Balancing Strategy in Parallel-Connected Legs of Power Inverters," 2009 13th European Conference on Power Electronics and Applications, Barcelona, pp. 1-9, 2009.
    [10]D. P. Jovanović, M. A. H. Broadmeadow, R. R. Taylor, G. R. Walker and G. F. Ledwich, "Decoupling of Current Balancing and Reference Tracking Control in Parallel Interleaved Converters," IEEE Transactions on Power Electronics, vol. 35, no. 4, pp. 4286-4295, 2020.
    [11]D. Jovanović, H. Pezeshki, M. A. H. Broadmeadow, G. R. Walker and G. F. Ledwich, "Current-Balancing Technique for Paralleled Interleaved Inverters With Magnetically Coupled Inductors," 2017 IEEE 12th International Conference on Power Electronics and Drive Systems (PEDS), Honolulu, HI, pp. 789-794, 2017.
    [12]F. Forest et al., "Optimization of the Supply Voltage System in Interleaved Converters Using Intercell Transformers," IEEE Transactions on Power Electronics, vol. 22, no. 3, pp. 934-942, May 2007.
    [13]I. G. Park and S. I. Kim, "Modeling and Analysis of Multi-Interphase Transformers for Connecting Power Converters in Parallel," PESC97. Record 28th Annual IEEE Power Electronics Specialists Conference, Saint Louis, MO, USA, pp. 1164-1170 vol.2, 1997.
    [14]Pit-Leong Wong, Peng Xu, P. Yang and F. C. Lee, "Performance improvements of interleaving VRMs with coupling inductors," IEEE Transactions on Power Electronics, vol. 16, no. 4, pp. 499-507, July 2001.
    [15]I. G. Park and S. I. Kim, "Modeling and Analysis of Multi-Interphase Transformers for Connecting Power Converters in Parallel," PESC97. Record 28th Annual IEEE Power Electronics Specialists Conference, Saint Louis, MO, USA, pp. 1164-1170 vol.2, 1997.
    [16]Jinghai Zhou, Ming Xu and F. C. Lee, "Small Signal Modeling of A High Bandwidth Voltage Regulator Using Coupled Inductors," 2005 IEEE 36th Power Electronics Specialists Conference, 2005.
    [17]B. Cougo, G. Gateau, T. Meynard, M. Bobrowska-Rafal and M. Cousineau, "PD Modulation Scheme for Three-Phase Parallel Multilevel Inverters," IEEE Transactions on Industrial Electronics, vol. 59, no. 2, pp. 690-700, Feb. 2012.
    [18]J. Ewanchuk and J. Salmon, "Three-limb Coupled Inductor Operation for Paralleled Multi-level Three-Phase Voltage Sourced Inverters," IEEE Transactions on Industrial Electronics, vol. 60, no. 5, pp. 1979-1988, May 2013.
    [19]L. Bede, G. Gohil, T. Kerekes and R. Teodorescu, "Optimal Interleaving Angle Determination in Multi Paralleled Converters Considering the DC Current Ripple and Grid Current THD," 2015 9th International Conference on Power Electronics and ECCE Asia (ICPE-ECCE Asia), Seoul, pp. 1195-1202, 2015.
    [20]D. Zhang, F. Wang, R. Burgos, R. Lai and D. Boroyevich, "DC-Link Ripple Current Reduction for Paralleled Three-Phase Voltage-Source Converters With Interleaving," IEEE Transactions on Power Electronics, vol. 26, no. 6, pp. 1741-1753, June 2011.
    [21]D. Zhang, F. Wang, R. Burgos, R. Lai and D. Boroyevich, "Impact of Interleaving on AC Passive Components of Paralleled Three-Phase Voltage-Source Converters," in IEEE Transactions on Industry Applications, vol. 46, no. 3, pp. 1042-1054, May-june 2010.
    [22]陳盈修,”高功率三相三線式雙相換流器研製”,國立清華大學電機工程學系碩士論文,民國一百零四年
    [23]鍾秉學,”單相及三相市電並聯之功率轉換器研製” 國立臺灣科技大學電機工程系碩士論文,民國一百年。
    [24]陳漢庭,”電壓源換流器之多支路電感耦合轉換器設計”,國立臺灣科技大學電機工程學系,民國一百零九年。
    [25]陳昱仁,”單相全橋式換流器並聯運轉之控制策略設計”,國立臺灣科技大學電機工程系碩士論文,民國一百零八年。
    [26]周偉翔,”感應馬達及機械負載功率模擬器研發”,國立臺灣科技大學電機工程系碩士論文,民國一百一十年。

    無法下載圖示 全文公開日期 2031/08/30 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE