簡易檢索 / 詳目顯示

研究生: vivekanandan kothandan
vivekanandan alangadu kothandan
論文名稱: 聲波應用於合成金氧納米材料多功能感測器之研究
Acoustical influence on the Synthesis of Hybrid Transition Metal Oxide Nanomaterials for Multifunctional Sensing Applications
指導教授: 陳士勛
Shih-Hsun Chen
口試委員: 陳生明
shen-ming chen
鍾添淦
Tien-Kan Chung
陳品銓
Pin-Chuan Chen
蔡協致
Hsieh-Chih Tsai
曾堯宣
Yao-Hsuan Tseng
陳士勛
Shih-Hsun Chen
學位類別: 博士
Doctor
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 115
中文關鍵詞: 聲化學合成電化學感測器氣體感測器過渡金屬氧化物奈米複合材料
外文關鍵詞: Sonochemical synthesis, Electrochemical sensor, Gas sensosr, Transistion metal oxides, Nanocomposities
相關次數: 點閱:292下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來為了呼籲環保以及安全議題,電化學感測器和氣體感測器在生活中變得愈來愈不可或缺;因此,本研究將著重在探討感測器相關的材料化學,包括超音波輔助合成、電極改質和奈米材料的介面技術。由於材料合成技術的突破和對於奈米材料性質更深入了解,使得利用奈米材料製作的電化學或氣體感測器有顯著的進展。奈米材料的物理化學性質主要取決於該材料的合成方式;研究中將探討聲波因素,對於利用聲化學合成的氧化錳鎳 (NiMnO)、鎢酸鎳 (NiWO4)及二硫化鉬 (MoS2)之影響。奈米氧化錳鎳和鎢酸鎳透過高強度超音波輔助處理(頻率:40KHz,功率:150W)合成;由於鎳金屬鹽溶液會在超音波輻射下產生局部的高溫和高壓並形成了穩固的渦凹作用,因此對鎳金屬奈米顆粒的合成具有巨大衝擊。渦凹現象是由聲波能量引起的,而該能量的強度則可透過熱量法測定。上述所製備的氧化錳鎳和鎢酸鎳奈米顆粒,會與氧化石墨稀(graphene oxide, GO)和參雜聚苯乙烯磺酸鹽的聚(3,4-乙烯二氧噻吩) (poly(3,4‐ethylene dioxythiophene)–polystyrene sulfonate (PEDOT:PSS)) ,分別以簡易的聲化學製程,進行複合。
    本研究首先利用顯微分析與光學儀器,確認所合成之NiMnO@pr-GO 與 NiWO4@PEDOT:PSS的物理化學性質。此外,我們也用伏安法檢測(cyclic voltammetry , CV)此用超音波所製備的奈米材料的電催化特性。將以NiMnO@pr-GO奈米複合材料改良過後的電極,透過循環伏安法,測試其應用在甲硝唑(metronidazole, MNZ)的檢測效能。所得到的結果顯示,比單獨使用NiMnO和GO改良後的玻碳電極 (Glassy carbon electrode, GCE)的感測器材料,具有更低的還原電位和更高的催化活性。在微分脈衝伏安法的最佳條件下所製作的NiMnO @ pr-GO電極可以在較寬的線性範圍內檢測MNZ,且檢測靈敏度與偵測極限分別為下限為1.22 µA µM-1cm−2與90 nM;並對於感測MNZ具有良好的耐久性。同樣的,NiWO4@PEDOT:PSS的奈米複合材料也是通過CV和線性掃描伏安法 (linear sweep voltammetry, LSV)對咖啡酸 (caffic acid, CFA)檢測強化過的電催化特性。CV檢測指出,低電位下CFA氧化還原行為的增強歸因於在NiWO4@PEDOT/PSS奈米材料中摻入PEDOT:PSS以及其協同效應。NiWO4@PEDOT:PSS感測器對於LSV中的CFA的檢測限制低,且具有74 nM 與 969.49 μA mM−1 cm−2的高靈敏度。整體而言,本研究的感測器有出色的分析性能和基本感測器功能,包含選擇性,穩定性,可重複性和可重製性。此外,該感測器在實時分析中具有良好的實用相容性,因此證實了超聲波合成材料在電催化應用中的潛力。

    進一步地,利用超聲波探針以20 kHz頻率的超聲波,可將塊狀之二硫化鉬(MoS2)剝離成奈米片。由於衝擊波的產生,高強度的超聲波在塊狀MoS2溶液中引起了水錘作用(water hammer effect)。使用聲波化學法將MoS2與氧化鋅(ZnO)奈米管互相混和,如此將有助於MoS2奈米片在表面上的均勻分散。 MoS2和 ZnO奈米管在超音波的輻射過程中會相互作用,形成壁厚程度不同的ZnO奈米管(HIZNT);接著,利用MoS2-HIZNT對氫的感測行為進行深入的探討。結果顯示其對氫有著51.1%的出色感測能力,明顯高於製備的ZNT和MoS2。總體而言,使用超音波技術合成的奈米材料和奈米複合材料具有巨大的潛力,可以在多功能感測的應用中用作電極材料。


    Electrochemical sensors and gas sensors are becoming more and more indispensable tools concerning environmental, and human safety. This report covers the sensor-related aspects of material chemistry, including ultrasonic-assisted synthesis, electrode modification, and interface techniques of nanomaterials. Recent advancements in the synthesis technique and in-depth understanding of nanomaterial properties have paved the way to the significant progress of nanomaterial-based electrochemical/gas sensors. The nanomaterial physicochemical properties are largely depending on their synthesis approach. Using the sonochemical synthesis approach, the acoustical influence on the nickel manganous oxide (NiMnO), nickel tungstate material (NiWO4), and Molybdenum disulfide (MoS2) was investigated. The high-intensity ultrasonic bath sonication (ultrasonic frequency = 40 kHz and power = 150 W) was employed in the synthesis of the NiMnO and NiWO4 nanoparticles. The ultrasonic irradiation of Ni-metal salt solution has a huge impact on the generation of Ni-metal nanoparticles due to the formation of robust cavitation with localized high temperature and pressure. The cavitation phenomena are greatly induced by the acoustical power and are measured using the calorimetric method. The as-prepared NiMnO and NiWO4 nanoparticles hybridized with graphene oxide (GO) and poly(3,4‐ethylene dioxythiophene)–polystyrene sulfonate (PEDOT:PSS), respectively in the facile sonochemical approach.
    NiMnO@pr-GO and NiWO4@PEDOT:PSS are successfully formed and their physicochemical properties were confirmed through several microscopic and spectroscopic analyses. Besides, the ultrasonically as-prepared nanomaterials intriguing electrocatalytic properties are evaluated through voltammetry methods. The NiMnO@pr-GO nanocomposite modified electrode tested in cyclic voltammetry (CV) towards metronidazole (MNZ), the obtained results demonstrate that the proposed sensor material has a lower reduction potential and higher catalytic activity than do NiMnO and GO modified GCEs. Under optimized conditions in the differential pulse voltammetry, the fabricated NiMnO@pr-GO electrode can detect metronidazole over a wide linear range with a lower limit of detection of 90 nM. The sensitivity of the sensor was 1.22 µA µM-1cm−2 and was found to have excellent durability for the detection of MNZ. Similarly, NiWO4@PEDOT:PSS nanocomposites enhanced electrocatalytic characteristics were determined through CV and linear sweep voltammetry (LSV) towards caffeic acid (CFA). CV examination indicated that the enhanced redox behavior of CFA at a low potential is attributed to the incorporation of PEDOT:PSS into the NiWO4@PEDOT/PSS nanocomposite and their synergistic effects. The NiWO4@PEDOT:PSS sensors exhibited a low detection limit and high sensitivity of 74 nM and 969.49 μA mM−1 cm−2 towards CFA in LSV. Overall, the proposed sensors exhibited excellent analytical performance and uncompromised essential sensor features, such as selectivity, stability, repeatability, and reproducibility. Further, the proposed sensors have good practical compatibility in real-time analysis and thus confirms the potential of the ultrasonic synthesized material in electrocatalytic applications.
    The ultrasonic probe sonication with a frequency of 20 kHz was used in the exfoliation of MoS2 bulk into the nanosheets. The high-intensity ultrasonic irradiation caused a hammer effect in bulk MoS2 solution owing to the generation of a shock wave. This few-layer MoS2 was hybridized with ZnO nanotube using a sonochemical approach which assisted in the homogeneous dispersal of MoS2 nanosheets on the surface. The host ghost complex interaction of MoS2 hybridization on the ¬ultrasonic treatment of ZnO nanotubes which confined the wall thickness to a different degree in the formation of hybrid interlinked ZnO nanotubes (HIZNT). The MoS2-HIZNT was intensively studied toward the Hydrogen sensing behavior and was exhibited an excellent sensing capability of 51.1%, significantly higher than that of the as-prepared ZNTs and MoS2. Overall, the nanomaterials and nanocomposites synthesized using the ultrasonic technique have tremendous potential to be used as electrode materials in multifunction sensing applications.

    Contents Title: Acoustical influence on the Synthesis of Hybrid Transition Metal Oxide Nanomaterials for Multifunctional Sensing Applications Chapter 1 Introduction Page no: 1.0. Nanomaterials 1 1.1. Approach for the synthesis of nanomaterials 2 1.2. Preparation of nanomaterials by top-down method 3 1.3. Preparation of nanomaterials by bottom-up method 3 1.4. Preparation of nanomaterial by ultrasonic approach 4 1.5. Factor influencing Cavitation 5 1.5.1. Ultrasonic Frequency 6 1.5.2. Acoustical Power 6 1.5.3. Temperature 7 1.5.4. Solvent 7 1.5.5. Dissolved gas 8 1.5.6. Type of Reactor 8 1.6. Impact of cavitation on nanomaterials 10 1.6.1. Impact of cavitation on transition metal oxide 11 1.6.2. Impact of cavitation on the exfoliation of bulk materials 14 1.6.3. Ultrasonic impact in the hybridization of nanomaterials 15 1.7. Sensor applications 16 1.7.1. Electrochemical Sensor 16 1.7.2. Gas Sensor 18 1.8 Summary 21 1.9. Reference 23 Chapter 2 Experimental Methods and Instrumentations 2.1. Raw materials 30 2.2. Preparation of metal oxide transition metals 30 2.3. Electrode preparation 30 2.3.1. Electrochemical sensors 30 2.3.2. Gas Sensor 31 2.4. Physicochemical characterizations 31 2.4.1. X-ray diffraction Spectroscopic analysis 31 2.4.2. Raman spectroscopy 33 2.4.3. Fourier transform infrared spectroscopy 33 2.4.4. Morphological characterizations 34 2.5. Electrochemical characterizations 36 2.5.1. Electrochemical cell 36 2.5.2. Cyclic voltammetry 37 2.5.3. Differential pulse voltammetry 39 2.5.4. Electrochemical impedance spectroscopy 40 2.6. Conclusion 40 2.7. Reference 41 Chapter-3 Sonochemical synthesis of nickel-manganous oxide nanocrumbs decorated partially reduced graphene oxide for efficient electrochemical reduction of metronidazole 3.1 Introduction 44 3.2. Experimental Procedure 46 3.2.1. Sonochemical synthesis of NiMnO@pr-GO nanocomposite 46 3.2.2. Characterization 47 3.3 Results and Discussion 47 3.3.1. Microstructural characterization 47 3.3.2. Determination of ultrasonic power using calorimetric method 51 3.3.3. Electrochemical behavior of NiMnO@pr-GO/GCE 52 3.3.4. DPV profile of NiMnO@pr-GO/GCE detection of MNZ 55 3.3.5. Selectivity, repeatability, and reproducibility towards MNZ 57 3.3.6. Analytical application 58 3.4 Conclusion 59 3.5 Reference 60 Chapter-4 Ultrasonic-assisted synthesis of nickel tungstate nanoparticles on poly (3,4-ethylene dioxythiophene):poly (4-styrene sulfonate) for the effective electrochemical detection of caffeic acid 4.1 Introduction 66 4.2 Experimental Procedure 69 4.2.1. Materials 69 4.2.3. Characterisation 70 4.3 Result and discussion 72 4.3.1. Morphological and microstructural analysis 72 4.3.2. Electrochemical behaviour of NiWO4@PEDOT:PSS/SPCE 75 4.3.3. LSV profile of NiWO4@PEDOT:PSS modified electrode 78 4.3.4. Selectivity, Stability, repeatability and reproducibility towards CFA 79 4.3.5. Analytical application 80 4.4 Conclusion 81 4.5 Reference 83 Chapter-5 Effect of MoS2 solution on reducing the wall thickness of ZnO nanotubes to enhance their hydrogen gas sensing properties 5.1 Introduction 89 5.2 Experimental Procedure 92 5.2.1 Synthesis of MoS2 solution 92 5.2.2 Synthesis of MoS2-HIZNT hybrid structures 92 5.2.3 Fabrication and testing of MoS2-HIZNT hydrogen sensor 93 5.2.4 Material characterization of MoS2-HIZNT hybrid structures 93 5.3 Result and discussion 94 5.3.1 MoS2-HIZNT hybrid structural properties 94 5.3.2 MoS2/ZNT hydrogen sensing properties and mechanism 100 5.4 Conclusion 108 5.5 Reference 109 Chapter- 6 6.1 Conclusion and Summary 113 Publication list 115   List of Figures: : Fig no: Caption Page no 1.1 Diagrammatic representation of top-down and bottom-up approach for the synthesis of nanomaterials 2 1.2 Diagrammatic representation of acoustical cavitation behaviour 5 1.3 (a) indirect ultrasonic irradiation, (b) bath type direct ultrasonic irradiation, and (c) horn-type direct ultrasonic irradiation 9 1.4 Schematic diagram representing the cavitation impact on the exfoliation of Nano sheets 15 2.1 Schematic illustration of X-ray spectroscopy. 32 2.2 Schematic illustration of Raman spectroscopy. 33 2.3 Functional block diagram for FTIR spectroscopy. 34 2.4 Diagram of Scanning electron microscopy. 35 2.5 Cyclic voltammogram with forward and reverse scan 38 3.1 Schematic represention Sonochemical synthesis of NiMnO@pr-GO nanocomposite 47 3.2 FE-SEM images of NiMnO nanocrumbs (a,b) and NiMnO@pr-GO composite (c,d) and corresponding elemental mapping of NiMnO@pr-GO (e-h). 48 3.3 Raman (a) and FT-IR spectra (b) of GO, NiMnO nanocrumbs, and NiMnO@pr-GO nanocomposite. 49 3.4 (a) X-ray diffraction pattern of NiMnO nanocrumbs and NiMnO@pr-GO nanocomposite. (b) EIS of bare/GCE, GO/GCE, NiMnO/GCE, and NiMnO@pr-GO/GCE. 51 3.5 Plots of variation of temperature with respect to time at the electric output power of 150 W using the ultrasonic bath sonicator (40 kHz), where the NiMnO@pr-GO nanocomposite (A) and NiMnO nancrumbs (B). 52 3.6 (a) CV response of (a) bare GCE, (b) GO/GCE, (c) NiMnO/GCE, (d) NiMnO@pr-GO/GCE in pH 7.0 at 50 mV s-1 in the presence of 244 µM MNZ. b) CV response of NiMnO@pr-GO composite with different scan rates (10-100 mVs-1) in a pH 7.0 solution containing 244 µM MNZ; inset to (b) shows the calibration plot of peak current vs scan rates. c) CV response of NiMnO@pr-GO/GCE for different pH levels containing 244 µM MNZ from 3 to 9 at a scan rate of 50 mVs-1. d) Linear plot for pH vs reduction peak55 current and potential. 54 3.7 Schematic illustration of possible electrochemical reduction mechanism of metronidazole on the NiMnO@pr-GO composite. 55 3.8 DPV of the NiMnO@pr-GO/GCE upon successive additions of various concentrations of MNZ (100 nM - 234 µM) in pH 7.0. Inset shows the plot of metronidazole vs. current response. 56 3.9 DPV profile of NiMnO@pr-GO/GCE in the presence of different interfering compounds with metronidazole (i.e., folic acid, 4-nitrophenol, glucose, KNO3, dopamine, and 4-acetamidophenol) at pH 7.0. 57 3.10 DPV profile of NiMnO@pr-GO/GCE for three different additions of metronidazole at pH 7.0. 58 4.1 Schematic diagram representing the sonochemical synthesis procedure of NiWO4@PEDOT:PSS nanocomposites 71 4.2 Morphological representation of NiWO4@PEDOT:PSS nanocomposites synthesised ultrasonically: (A) FE-SEM images of NiWO4 nanoparticles (B) NiWO4@PEDOT:PSS0.5 (C) NiWO4@PEDOT:PSS1.0 (D) NiWO4@PEDOT:PSS1.5 nanocomposites and the elemental mapping of NiWO4@PEDOT:PSS1.0 (E–H). 72 4.3 Raman (A) and FTIR spectra (B) of PEDOT:PSS, NiWO4 nanoparticles and NiWO4@PEDOT:PSS nanocomposite. 73 4.4 XRD diffractograms of NiWO4 nanoparticles and NiWO4@PEDOT:PSSx nanocomposite 75 4.5 (A) CV response for the electrochemical oxidation and reduction of CFA (100 µM) on bare/SPCE (a-black trace), NiWO4 (b-orange trace), PEDOT:PSS (c-brown trace), NiWO4@PEDOT:PSS0.5 (d-green trace), NiWO4@PEDOT:PSS1.0 (e-red trace) and NiWO4@PEDOT:PSS1.5 (f - blue trace) modified electrodes at pH 7.2 and 50 mV s−1 scan rate. (B) CV response of NiWO4@PEDOT:PSS1.0 nanocomposite at different scan rates (10–100 mV). (C) The linear calibration plot of oxidation peaks current vs. scan rates. (D) The electron transfer coefficient of the log scan rate vs log current for the NiWO4@PEDOT:PSS1.0 modified electrodes. (E) CV profile for the effect of pH 3–11 on the electrochemical behaviour of NiWO4@PEDOT:PSS1.0 nanocomposite towards CFA (100 µM). (F) the corresponding linear plot for pH vs. reduction peak current and potential 76 4.6 LSV of the NiWO4@PEDOT:PSS1.0-modified electrode upon the successive additions of different concentrations of CFA (0.1 µM–1.304 mM) at pH 7.2. (B) Plot of different concentrations of CFA vs. current response. 78 4.7 (A, B) LSV profile of NiWO4@PEDOT:PSS for five different additions of coffee and red wine real samples in 0.1 M PBS (pH 7.2) at a scan rate of 50 mV s−1. 80 5.1 Schematic representation showing the fabrication of hybrid interlinked ZnO nanotubes (HIZNTs) with the addition of dispersed molybdenum disulfide (MoS2) nanosheets for hydrogen gas sensing 92 5.2 FESEM images of ZNTs self-etched for (a) 5 h, (b) 6 h, (c) 7 h and (d)8 h. 94 5.3 Surface morphology of the as-prepared (a) ZNTs and (b-d) MoS2-HIZNT hybrid materials and (c) EDX spectra of MoS2-HIZNT samples showing the mass-ratio of ZnO and MoS2 elements. 95 5.4 TEM and HRTEM images of the MoS2-HIZNT hybrid material samples (a-c) images of different zones on the MoS2-HIZNT hybrid materials (d-f) HRTEM images representing the interplanar distance between the ZnO and MoS2 and the SAED pattern. 96 5.5 (a-c) TEM and HRTEM images of as-prepared MoS2 nanosheets (d) TEM EDX analysis of as-prepared MoS2 nanosheets. 97 5.6 (a) X-ray diffraction patterns (b) Raman spectra of the ZNTs and MoS2-HIZNT hybrid materials 99 5.7 (a) UV-visible spectra of the ZNTs and MoS2-HIZNT and their corresponding Tauc plots (b) ZNTs and (c) MoS2-HIZNTs 100 5.8 MoS2-HIZNT hybrid materials (a) change in resistance value (b) response-time curve for hydrogen concentrations from 5.810 to 500 ppm and (c) change in relative humidity response curve. 101 5.9 Comparison of the MoS2-HIZNT hybrid material samples with as-prepared ZNTs’ hydrogen response for 500 ppm (a) change in resistance value (b) response-time curve. 104 5.10 Schematic illustration of the hydrogen sensing mechanism of MoS2-HIZNT hybrid materials (a-c) MoS2-HIZNTs with O2 defect formation (d-e) MoS2-HIZNTs in air and gas. 106 5.11 (a) Repeatability curves measured at 100 and 250 ppm (b) reliability curves- 20 cycles measured at 10 ppm (c) variation of MoS2-HIZNT and ZNT sample selectivity for different gases at a concentration of 500 ppm and (d) stability test results for ZNTs and MoS2-HIZNT over 16 days. 107   List of Tables Table. No Captions Page No. 1.1 Acoustic properties of various substance 8 4.1 Comparison of analytical parameters for the determination of CFA by various modified electrodes 79 4.2 LSV profile of NiWO4@PEDOT:PSS1.0/SPCE in the detection of coffee and red wine through the standard addition method analysis 81 5.1 Hydrogen sensing properties of various materials for >500 ppm concentration at room temperature 103

    [1] S.Iijima, Carbon nanotubes: Past, present, and future, in: Phys. B Condens. Matter, North-Holland, 2002: pp. 1–5. https://doi.org/10.1016/S0921-4526(02)00869-4.
    [2] C.Toumey, Plenty of room, plenty of history, Nat. Nanotechnol. 4 (2009) 783–784. https://doi.org/10.1038/nnano.2009.357.
    [3] CHAPTER 4. The Future is Flat—Two-Dimensional Nanomaterials, in: Nanotechnology, Royal Society of Chemistry, 2016: pp. 85–114. https://doi.org/10.1039/9781782628873-00085.
    [4] K.Vivekanandan, B.-R.Huang, D.Kathiravan, A.Saravanan, A.Prasannan, H.-C.Tsai, S.-H.Chen, Effect of MoS2 solution on reducing the wall thickness of ZnO nanotubes to enhance their hydrogen gas sensing properties, J. Alloys Compd. (2020) 157102. https://doi.org/10.1016/j.jallcom.2020.157102.
    [5] H.Hahn, Gas phase synthesis of nanocrystalline materials, Nanostructured Mater. 9 (1997) 3–12. https://doi.org/10.1016/S0965-9773(97)00013-5.
    [6] A.K.Vivekanandan, S.-H.Chen, Size-controllable zinc oxide nanowires fabricated via the combination of die-casting and oxidation process, J. Alloys Compd. (2020) 157964. https://doi.org/10.1016/j.jallcom.2020.157964.
    [7] F.A.Khan, Synthesis of nanomaterials: Methods & technology, in: Appl. Nanomater. Hum. Heal., Springer Singapore, 2020: pp. 15–21. https://doi.org/10.1007/978-981-15-4802-4_2.
    [8] H.Yin, Y.Wada, T.Kitamura, S.Kambe, S.Murasawa, H.Mori, T.Sakata, S.Yanagida, Hydrothermal synthesis of nanosized anatase and ruffle TiO2 using amorphous phase TiO2, J. Mater. Chem. 11 (2001) 1694–1703. https://doi.org/10.1039/b008974p.
    [9] K.Muthoosamy, S.Manickam, Ultrasonics - Sonochemistry State of the art and recent advances in the ultrasound-assisted synthesis , exfoliation and functionalization of graphene derivatives, Ultrason. - Sonochemistry. 39 (2017) 478–493. https://doi.org/10.1016/j.ultsonch.2017.05.019.
    [10] D.Balram, K.Lian, N.Sebastian, Ultrasound-assisted synthesis of 3D fl ower-like zinc oxide decorated fMWCNTs for sensitive detection of toxic environmental pollutant 4- nitrophenol, Ultrason. - Sonochemistry. 60 (2020) 104798. https://doi.org/10.1016/j.ultsonch.2019.104798.
    [11] N.Karikalan, M.Elavarasan, T.C.K.Yang, Ultrasonics - Sonochemistry Effect of cavitation erosion in the sonochemical exfoliation of activated graphite for electrocatalysis of acebutolol, Ultrason. - Sonochemistry. 56 (2019) 297–304. https://doi.org/10.1016/j.ultsonch.2019.04.025.
    [12] H.Islam, M.T.Y.Paul, O.S.Burheim, B.G.Pollet, Ultrasonics - Sonochemistry Recent developments in the sonoelectrochemical synthesis of nanomaterials, Ultrason. - Sonochemistry. 59 (2019) 104711. https://doi.org/10.1016/j.ultsonch.2019.104711.
    [13] S.M.Meybodi, S.A.Hosseini, M.Rezaee, S.K.Sadrnezhaad, D.Mohammadyani, Ultrasonics Sonochemistry Synthesis of wide band gap nanocrystalline NiO powder via a sonochemical method, Ultrason. - Sonochemistry. 19 (2012) 841–845. https://doi.org/10.1016/j.ultsonch.2011.11.017.
    [14] A.Kothandan Vivekanandan, S.Chen, S.-H.Chen, Sonochemical synthesis of nickel-manganous oxide nanocrumbs decorated partially reduced graphene oxide for efficient electrochemical reduction of metronidazole, Ultrason. Sonochem. 68 (2020) 105176. https://doi.org/10.1016/j.ultsonch.2020.105176.
    [15] S.Balu, S.Palanisamy, Sonochemical synthesis of gum guar biopolymer stabilized copper oxide on exfoliated graphite: Application for enhanced electrochemical detection of H2O2 in milk and pharmaceutical samples, Ultrason. Sonochem. 56 (2019) 254–263. https://doi.org/10.1016/j.ultsonch.2019.04.023.
    [16] G.Chatel, Sonochemistry, world scientific (europe), 2017. https://doi.org/10.1142/q0037.
    [17] P.R.Gogate, I.Z.Shirgaonkar, M.Sivakumar, P.Senthilkumar, N.P.Vichare, A.B.Pandit, Cavitation reactors: Efficiency assessment using a model reaction, AIChE J. 47 (2001) 2526–2538. https://doi.org/10.1002/aic.690471115.
    [18] B.G.Pollet, Let’s Not Ignore the Ultrasonic Effects on the Preparation of Fuel Cell Materials, Electrocatalysis. 5 (2014) 330–343. https://doi.org/10.1007/s12678-014-0211-4.
    [19] B.G.Pollet, J.T.E.Goh, The importance of ultrasonic parameters in the preparation of fuel cell catalyst inks, Electrochim. Acta. 128 (2014) 292–303. https://doi.org/10.1016/j.electacta.2013.09.160.
    [20] F.Greieser, P.K.choi, Sonochemistry and the Acoustic Bubble - (2020).
    [21] J.H.Bang, K.S.Suslick, Applications of Ultrasound to the Synthesis of Nanostructured Materials, Adv. Mater. 22 (2010) 1039–1059. https://doi.org/10.1002/adma.200904093.
    [22] K.S.Suslick, T.Hyeon, M.Fang, Nanostructured materials generated by high-intensity ultrasound: Sonochemical synthesis and catalytic studies, Chem. Mater. 8 (1996) 2172–2179. https://doi.org/10.1021/cm960056l.
    [23] T.J.Trentler, R.Suryanarayanan, S.M.L.Sastry, W.E.Buhro, Sonochemical synthesis of nanocrystalline molybdenum disilicide (MoSi2), Mater. Sci. Eng. A. 204 (1995) 193–196. https://doi.org/10.1016/0921-5093(95)09959-X.
    [24] Y.Zhu, H.Li, Y.Koltypin, Y.R.Hacohen, A.Gedanken, Sonochemical synthesis of titania whiskers and nanotubes, Chem. Commun. 24 (2001) 2616–2617. https://doi.org/10.1039/b108968b.
    [25] R.V.Kumar, Y.Koltypin, X.N.Xu, Y.Yeshurun, A.Gedanken, I.Felner, Fabrication of magnetite nanorods by ultrasound irradiation, J. Appl. Phys. 89 (2001) 6324–6328. https://doi.org/10.1063/1.1369408.
    [26] P.Jeevanandam, Y.Koltypin, A.Gedanken, Synthesis of Nanosized α-Nickel Hydroxide by a Sonochemical Method, Nano Lett. 1 (2001) 263–266. https://doi.org/10.1021/nl010003p.
    [27] K.V.P.M.Shafi, I.Felner, Y.Mastai, A.Gedanken, Olympic ring formation from newly prepared barium hexaferrite nanoparticle suspension, J. Phys. Chem. B. 103 (1999) 3358–3360. https://doi.org/10.1021/jp984691l.
    [28] J.C.Yu, J.Yu, W.Ho, L.Zhang, Preparation of highly photocatalytic active nano-sized TiO2 particles via ultrasonic irradiation, Chem. Commun. 1 (2001) 1942–1943. https://doi.org/10.1039/b105471f.
    [29] Y.Wang, X.Tang, L.Yin, W.Huang, Y.R.Hacohen, A.Gedanken, Sonochemical synthesis of mesoporous titanium oxide with wormhole-like framework structures, Adv. Mater. 12 (2000) 1183–1186. https://doi.org/10.1002/1521-4095(200008)12:16<1183::AID-ADMA1183>3.0.CO;2-X.
    [30] S.-H.Jung, E.Oh, K.-H.Lee, W.Park, S.-H.Jeong, A Sonochemical Method for Fabricating Aligned ZnO Nanorods, Adv. Mater. 19 (2007) 749–753. https://doi.org/10.1002/adma.200601859.
    [31] J.Lai, ⊥Kurikka, V.P.M.Shafi, K.Loos, A.Ulman, Y.Lee, T.Vogt, C.Estournè, Doping γ-Fe2O3 Nanoparticles with Mn(III) Suppresses the Transition to the r-Fe2O3 Structure, J. AM. CHEM. SOC. 125 (2003) 11470–11471. https://doi.org/10.1021/ja035409d.
    [32] T.Prozorov, B.Mccarty, Z.Cai, R.Prozorov, K.S.Suslick, Effects of high-intensity ultrasound on Bi2Sr2 CaCu2O8+x superconductor, (2004). https://doi.org/10.1063/1.1808500.
    [33] S.Qiao, N.Huang, Y.Zhang, J.Zhang, Z.Gao, S.Zhou, One-step synthesis of nanoblocks@nanoballs NiMnO3/Ni6MnO8 nanocomposites as electrode material for supercapacitors, Int. J. Hydrogen Energy. 44 (2019) 18351–18359. https://doi.org/10.1016/j.ijhydene.2019.05.108.
    [34] A.K.Vivekanandan, V.Subash, S. mingChen, S.H.Chen, Sonochemical synthesis of nickel-manganous oxide nanocrumbs decorated partially reduced graphene oxide for efficient electrochemical reduction of metronidazole, Ultrason. Sonochem. 68 (2020) 105176. https://doi.org/10.1016/j.ultsonch.2020.105176.
    [35] A.Yamuna, P.Sundaresan, S.M.Chen, Sonochemical preparation of bismuth oxide nanotiles decorated exfoliated graphite for the electrochemical detection of imipramine, Ultrason. Sonochem. 64 (2020) 105014. https://doi.org/10.1016/j.ultsonch.2020.105014.
    [36] B.Mutharani, P.Ranganathan, S.M.Chen, T.W.Chen, M.A.Ali, A.H.Mahmoud, Sonochemical synthesis of novel thermo-responsive polymer and tungsten dioxide composite for the temperature-controlled reversible “on-off” electrochemical detection of β-Blocker metoprolol, Ultrason. Sonochem. 64 (2020) 105008. https://doi.org/10.1016/j.ultsonch.2020.105008.
    [37] T.W.Chen, S.Chinnapaiyan, S.M.Chen, M.A.Ali, M.S.Elshikh, S.Y.Lee, W.H.Chang, A.H.Mahmoud, Sonochemical approach to the synthesis of metal tungstate/nafion composite with electrocatalytic properties and its electrochemical sensing performance, Ultrason. Sonochem. 66 (2020) 104901. https://doi.org/10.1016/j.ultsonch.2019.104901.
    [38] A.A.Ensafi, P.Nasr-Esfahani, B.Rezaei, Synthesis of molecularly imprinted polymer on carbon quantum dots as an optical sensor for selective fluorescent determination of promethazine hydrochloride, Sensors Actuators, B Chem. 257 (2018) 889–896. https://doi.org/10.1016/j.snb.2017.11.050.
    [39] A.Phongphut, C.Sriprachuabwong, A.Wisitsoraat, A.Tuantranont, S.Prichanont, A disposable amperometric biosensor based on inkjet-printed Au/PEDOT-PSS nanocomposite for triglyceride determination, Sensors Actuators, B Chem. 178 (2013) 501–507. https://doi.org/10.1016/j.snb.2013.01.012.
    [40] A.Esmaeeli, A.Ghaffarinejad, A.Zahedi, O.Vahidi, Copper oxide-polyaniline nanofiber modified fluorine doped tin oxide (FTO) electrode as non-enzymatic glucose sensor, Sensors Actuators, B Chem. 266 (2018) 294–301. https://doi.org/10.1016/j.snb.2018.03.132.
    [41] B.Muthukutty, R.Karthik, S.M.Chen, M.Abinaya, Designing novel perovskite-type strontium stannate (SrSnO3) and its potential as an electrode material for the enhanced sensing of anti-inflammatory drug mesalamine in biological samples, New J. Chem. 43 (2019) 12264–12274. https://doi.org/10.1039/c9nj02197c.
    [42] V.Alangadu Kothandan, S.Mani, S.Chen, C.Shih-Hsun, Ultrasonic-assisted synthesis of nickel tungstate nanoparticles on poly (3,4-ethylene dioxythiophene):poly (4-styrene sulfonate) for the effective electrochemical detection of caffeic acid, Mater. Today Commun. (2020) 101833. https://doi.org/10.1016/j.mtcomm.2020.101833.
    [43] M.Sivakumar, V.Veeramani, S.-M.Chen, R.Madhu, S.-B.Liu, Porous carbon-NiO nanocomposites for amperometric detection of hydrazine and hydrogen peroxide, (n.d.). https://doi.org/10.1007/s00604-018-3145-3.
    [44] S.Feng, F.Farha, Q.Li, Y.Wan, Y.Xu, T.Zhang, H.Ning, Review on smart gas sensing technology, Sensors (Switzerland). 19 (2019) 1–22. https://doi.org/10.3390/s19173760.
    [45] C.G.Kuo, H.Chang, L.R.Hwang, S.Hor, J.S.Chen, G. yanLiu, S.C.Cheng, Fabrication of a Pb-Sn nanowire array gas sensor using a novel high vacuum die casting technique, Electron. Mater. Lett. 9 (2013) 481–484. https://doi.org/10.1007/s13391-013-0037-x.
    [46] C.G.Kuo, C.W.Huang, Y.H.Liu, Fabrication of a miniature zinc aluminum oxide nanowire array gas sensor and application for environmental monitoring, Int. J. Photoenergy. 2014 (2014). https://doi.org/10.1155/2014/515268.
    chapter-2
    [1] A.Guinier, X-ray Diffraction in Crystals, Imperfect Crystals, and Amorphous Bodies Nov. 2020.
    [2] D.Reyes-Coronado, G.Rodríguez-Gattorno, M. E.Espinosa-Pesqueira, C.Cab, R.DeCoss, andG.Oskam, “Phase-pure TiO2 nanoparticles: Anatase, brookite and rutile,” Nanotechnology, vol. 19, Apr.2008, doi: 10.1088/0957-4484/19/14/145605.
    [3] K.Ikeda andK.Uosaki, “Nonlinear Raman scattering spectroscopy for carbon nanomaterials,” in Raman Spectroscopy for Nanomaterials Characterization, vol. 9783642206207, Springer-Verlag Berlin Heidelberg, 2011, pp. 99–118.
    [4] C. Y.Chan, J.Li, H. C.Ong, J. B.Xu, andM. M. Y.Waye, “Angle-resolved surface-enhanced Raman scattering,” in Raman Spectroscopy for Nanomaterials Characterization, vol. 9783642206207, Springer-Verlag Berlin Heidelberg, 2012, pp. 1–32.
    [5] H.Dietz, G.Sandmann, A.Anders, andW.Plieth, “Confocal surface-enhanced Raman microscopy at the surface of noble metals,” in Raman Spectroscopy for Nanomaterials Characterization, vol. 9783642206207, Springer-Verlag Berlin Heidelberg, 2012, pp. 167–190.
    [6] T.Petit andL.Puskar, “FTIR spectroscopy of nanodiamonds: Methods and interpretation,” Diamond and Related Materials, vol. 89. Elsevier Ltd, pp. 52–66, Oct.01, 2018, doi: 10.1016/j.diamond.2018.08.005.
    [7] D.Shindo, K.Hiraga, D.Shindo, andK.Hiraga, “Basis of High-Resolution Electron Microscopy,” in High-Resolution Electron Microscopy for Materials Science, Springer Japan, 1998, pp. 1–15.
    [8] J. F.Rusling andS. L.Suib, “Characterizing Materials with Cyclic Voltammetry,” Advanced Materials, vol. 6, no. 12. John Wiley & Sons, Ltd, pp. 922–930, Dec.01, 1994, doi: 10.1002/adma.19940061204.
    [9] A.Lasia, “Electrochemical Impedance Spectroscopy and its Applications,” Modern Aspects of Electrochemistry, Kluwer Academic Publishers, 2005, pp. 143–248.

    QR CODE