簡易檢索 / 詳目顯示

研究生: 劉宇哲
Yu-Zhe Liu
論文名稱: 光固化3D 列印柔性與可拉伸奈米銀/石墨烯/高分子奈米複合材料元件及其智慧衣應用
Photocurable 3D Printing Flexible and Stretchable AgNPs/Graphene/ Polymer Nanocomposites Component and its Application in Smart Clothing
指導教授: 邱智瑋
Chih-Wei Chiu
口試委員: 鄭智嘉
Chih-Chia Cheng
邱顯堂
Hsien-Tang Chiu
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 115
中文關鍵詞: 光固化3D列印石墨烯奈米銀肌電圖心電圖
外文關鍵詞: Photocurable 3D printing, Graphene, AgNPs, Electrocardiography, Electromyogram
相關次數: 點閱:274下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來3D列印技術快速發展,相較於傳統的製造方式,其成本低廉、縮短產品的研發週期、客製化、高精度等優勢引起了學術界和業界的關注,隨著3D列印技術越來越成熟,陸續有相關產業開始投入在3D列印這項技術的開發上。
    本研究主要是透過調控寡聚體和丙烯酸酯單體之間的比例,製備出具有良好拉伸性、延展性的彈性光固化樹脂,並添加導電材料石墨烯(rGO)和硝酸銀(AgNO3),使樹脂具備導電性,並藉由光固化3D列印高度客製化的優勢,設計出兩種不同結構的電極,分別為線性結構電極和不同表面結電極,最終應用於生理訊號的測量上。為了改善石墨烯易於團聚的特性,利用雙親性分散劑PIB-POE-PIB,藉由PIB的親油鏈段與石墨烯產生非共價鍵結,及POE的親水鏈段以增加石墨烯在溶液中的穩定性,並通過照光,在光聚合反應的過程中同時還原奈米銀,與自行配置的彈性光固化樹脂結合,混合出柔性奈米銀/石墨烯/奈米複合樹脂。最後,利用光固化3D列印,印製出具有不同線性結構和具有不同表面結構電極,測量不同運動狀態下的心電圖(ECG)和肌電圖(EMG),成功將光固化3D列印的優勢與可穿戴式電子裝置結合,並且應用於量測人體生理訊號的智慧衣上。


    In recent years, the rapid development of 3D printing technology. Compared with traditional manufacturing methods. Its low cost, shortened product development cycle, customization, high precision and other advantages have attracted the attention of academia and industry. As 3D printing technology becomes more and more mature. Related industries have started to invest in the development of 3D printing technology.
    In this study, by selecting and adjusting the ratio of specific acrylate monomers and oligomers, a resin with stretchability and elasticity was configured, and then reduced graphite oxide (rGO) and silver nitrate (AgNO3) were added to give the light-curing resin conductivity. With the advantages of photo-curing 3D printing, Two different structures of electrodes were designed. They are linear electrodes and electrodes with different surface junctions, which are finally applied to the measurement of physiological signals. In order to improve the tendency of graphene which tend to agglomerate. We use the dual affinity dispersant PIB-POE-PIB. The oleophilic chain of PIB produces noncovalent bonding with graphene. The hydrophilic chain of POE is used to increase the stability of graphene in solution. We also use photo-reduction. Nanosilver is simultaneously reduced during the photopolymerization reaction and combined with our configured elastomeric light-curing resins. The nanosilver/graphene/flexible nanocomposite resin was successfully blended. Finally, we use light-curing 3D printing to print electrodes with different linear structures and different surface structures to measure electrocardiograms (ECG) and electromyograms (EMG) under different exercise conditions. We successfully combined the advantages of light-cured 3D printing with wearable electronic devices and applied them to smart clothes for measuring human physiological signals.

    第一章 緒論 1.1 前言 1.2 3D列印介紹 1.2.1 3D列印發展歷程及各項成型機制 1.2.2 3D列印之特色優勢 1.3 光聚合固化技術 1.3.1 光聚合3D列印技術發展 1.3.2 光聚合3D列印技術材料簡介 1.3.3 光聚合3D列印技術優缺點分析 第二章 文獻回顧 2.1 光固化樹脂製備 2.1.1 彈性光固化樹脂 2.1.2 導電彈性光固化樹脂 2.2 導電材料於3D列印之應用 2.2.1 碳材於3D列印之應用 2.2.1 奈米銀於3D列印之應用 2.3 碳材的分散 2.3.1聚異丁烯-b-聚(氧乙烯)-b-聚異丁烯分散石墨烯 2.4 3D列印人體感測元件 2.4.1肌電圖訊號測量 2.4.2心電圖訊號測量 2.4.3 3D列印感測元件於生理訊號測量 第三章 實驗方法 3.1實驗材料與設備儀器 3.1.1實驗材料 3.1.2實驗設備及分析儀器 3.2實驗流程圖 3.3實驗步驟 3.3.1 光固化奈米複合樹脂配置 3.3.2 分散劑PIB–POE–PIB共聚物合成與鑑定 3.3.3 光固化3D列印成型機制 第四章 結果與討論 4.1彈性光固化樹脂配置 4.1.1彈性光固化樹脂機械強度和交連強度測試 4.1.2彈性光固化樹脂循環拉伸測試 4.1.3彈性光固化樹脂傅里葉轉換紅外光譜測試 4.2石墨烯奈米複合樹脂之探討 4.2.1聚異丁烯-b-聚(氧乙烯)-b-聚異丁烯之合成鑑定 4.2.2聚異丁烯-b-聚(氧乙烯)-b-聚異丁烯對石墨烯分散性之影響 4.2.3石墨烯奈米複合樹脂黏度測試 4.2.4石墨烯奈米複合樹脂穿透度測試 4.2.5石墨烯奈米複合樹脂機械強度測試 4.2.6石墨烯奈米複合樹脂電阻測試 4.3奈米銀複合樹脂之探討 4.3.1 奈米銀複合樹脂配置 4.3.2 奈米銀複合樹脂照光參數設定 4.3.3奈米銀複合樹脂機械強度測試 4.3.4奈米銀複合樹脂電阻測試 4.4石墨烯/奈米銀複合樹脂之探討 4.4.1 石墨烯/奈米銀複合樹脂配置 4.4.2 石墨烯/奈米銀複合照光參數設定 4.4.3 石墨烯/奈米銀複合樹脂穿透度測試 4.4.4 石墨烯/奈米銀複合樹脂機械強度測試 4.4.5 石墨烯/奈米銀複合樹脂電阻測試 4.4.6 石墨烯/奈米銀複合樹脂熱重分析測試 4.4.7 石墨烯/奈米銀複合樹脂傅里葉轉換紅外光譜測試 4.4.8 石墨烯/奈米銀複合樹脂耐酸鹼測試 4.4.9 石墨烯/奈米銀複合樹脂耐水洗測試 4.5線性電極設計 4.5.1 線性結構設計 4.5.2 線性結構機械強度測試 4.5.3 線性結構循環拉伸測試 4.5.4 線性結構拉伸電阻測試 4.6 電極表面結構設計 4.6.1 表面結構設計 4.6.2 不同環境下之吸附測試 4.7石墨烯/奈米銀複合樹脂應用於生理訊號測量 4.7.1 不同動作下EMG訊號測量 4.7.2 不同運動下ECG訊號測量 第五章 結論 第六章 參考文獻

    1. Zheng, X.; Deotte, J.; Alonso, M. P.; Farquar, G. R.; Weisgraber, T. H.; Gemberling,
    S.G.; Howon, L.; Nicholas, F.; Spadaccini, C.M. Design and Optimization of A
    Light-emitting Diode Projection Micro-stereolithography Three-dimensional
    Manufacturing System. Rev. Sci. 2012, 83, 125001.
    2. Zhao, Z.; Tian, X.; Song, X. Engineering Materials with Light: Recent Progress in
    Digital Light Processing Based 3D Printing. J. Mater. Chem. C. 2020, 8, 13896–
    13917.
    3. Zheng, X.; Lee, H.; Weisgraber, T. H.; Shusteff, M.; DeOtte, J.; Duoss, E. B. Kuntz,
    J.D.; Biener, M.M.; Ge, Q.; Jackson,J.A.; Kucheyev, S.O.; Fang, N.X.; Spadaccini,
    C. M. Ultralight, Ultrastiff Mechanical Metamaterials. Science. 2014, 344, 1373–
    1377.
    4. Zeng, Y.; Yan, Y.; Yan, H.; Liu, C.; Li, P.; Dong, P.; Zhao, Y.; Chen, J. 3D Printing
    of Hydroxyapatite Scaffolds with Good Mechanical and Biocompatible Properties
    by Digital Light Processing. J Mater Sci. 2018, 53, 6291–6301.
    5. Zhang, J.; Hu, Q.; Wang, S.; Tao, J.; Gou, M. Digital Light Processing Based
    Three-dimensional Printing for Medical Applications. Int J Bioprint. 2020, 6, 242.
    6. Du, D.; Zhou, J.; Shi, D.; Dong, W.; Chen, M. Cross-linked, Transient Ionic
    Conductive Elastomer with Extreme Stretchability, Healability, and Degradability
    for Detecting Human Motions. ACS Appl. 2022, 4, 4972–4979.
    7. Lei, Z.; Wu, P. Bioinspired Quasi-solid Ionic Conductors: Materials, Processing,
    and Applications. Acc. Chem. Res. 2021, 2, 1203–1214.
    8. You, I.; Kong, M.; Jeong, U. Block Copolymer Elastomers for Stretchable
    Electronics. Acc. Chem. Res. 2019, 52, 63–72.
    9. Chortos, A.; Hajiesmaili, E.; Morales, J.; Clarke, D. R.; Lewis, J. A. 3D Printing
    of Interdigitated Dielectric Elastomer Actuators. Adv Funct Mater. 2020, 30,
    1907375.
    10. Yoon, I. S.; Oh, Y.; Kim, S. H.; Choi, J.; Hwang, Y.; Park, C. H.; Ju, B. K. 3D
    Printing of Self-wiring Conductive Ink with High Stretchability and Stackability
    for Customized Wearable Devices. Adv Mater Technol. 2019, 4, 1900363.
    11. Chen, Y.; Yu, Z.; Ye, Y.; Zhang, Y.; Li, G.; Jiang, F. Superelastic, Hygroscopic, and
    Ionic Conducting Cellulose Nanofibril Monoliths by 3D Printing. ACS Nano. 2021,
    15, 1869–1879.
    12. Wong, K. V.; Hernandez, A. A review of Additive Manufacturing. ISRN Mech. Eng.
    2012.
    93
    13. Vayre, B.; Vignat, F.; Villeneuve, F. Metallic, Additive Manufacturing: State-ofthe-art Review and Prospects. Mech. Ind. 2012, 13, 89–96.
    14. Quan, H.; Zhang, T.; Xu, H.; Luo, S.; Nie, J.; Zhu, X. Photo-curing 3D Printing
    Technique and Its Challenges. Bioact. Mater. 2021, 5,1789–1790.
    15. Taormina, G.; Sciancalepore, C.; Messori, M.; Bondioli, F. 3D Printing Processes
    for Photocurable Polymeric Materials: Technologies, Materials, and Future Trends.
    J. Appl. Biomater. Funct. Mater., 2018, 16,16151–160.
    16. Al Rashid, A.; Ahmed, W.; Khalid, M.Y.; Koc, M. Vat Photopolymerization of
    Polymers and Polymer Composites: Processes and Applications. Addit Manuf.
    2021, 47, 102279.
    17. Ziaee, M.; Crane, N. B. Binder Jetting: A Review of Process, Materials, and
    Methods. Addit Manuf. 2019, 28, 781–801.
    18. Konda Gokuldoss, P.; Kolla, S.; Eckert, J. Additive Manufacturing Processes:
    Selective Laser Melting, Electron Beam Melting and Binder Jetting-selection
    Guidelines. Materials. 2017, 10, 672.
    19. Miyanaji, H.; Momenzadeh, N.; Yang, L. Effect of Printing Speed on Quality of
    Printed Parts in Binder Jetting Process. Addit Manuf. 2018, 20, 1–10.
    20. Gao, F.; Sonin, A.A. Precise Deposition of Molten Microdrops: The Physics of
    Digital Microfabrication. Proc. R. Soc. 2003, 444, 533–554.
    21. Gülcan, O.; Günaydın, K.; Tamer, A. The State of the Art of Material Jetting-A
    Critical Review. Polymers. 2021, 13, 2829.
    22. Yap, Y. L.; Wang, C.; Sing, S. L.; Dikshit, V.; Yeong, W. Y.; Wei, J. Material
    Jetting Additive Manufacturing: An Experimental Study Using Designed
    Metrological Denchmarks. Int. J. Precis. Eng. Manuf. 2017, 50, 275–285.
    23. Razavykia, A.; Brusa, E.; Delprete, C.; Yavari, R. An Overview of Additive
    Manufacturing Technologies-AReview to Technical Synthesis in Numerical Study
    of Selective Laser Melting. Materials. 2020, 13, 3895.
    24. Calignano, F.; Manfredi, D.; Ambrosio, E. P.; Biamino, S.; Lombardi, M.; Atzeni,
    E.; Salmi, A.; Minetol, P.; Iuliano, L.; Fino, P. Overview on Additive
    Manufacturing Technologies. IEEE. 2017, 105, 593–612.
    25. Sun, S.; Brandt, M.; Easton, M. J. L. A. M. 2 - Powder Bed Fusion Processes: An
    Overview. Addit Manuf. 2017, 55–77.
    26. Vock, S.; Klöden, B.; Kirchner, A.; Weißgärber, T.; Kieback, B. Powders for
    Powder Bed Fusion: A Review. Addit Manuf. 2019, 4, 383–397.
    27. Singh, D.D.; Mahender, T.; Reddy, A.R. Powder Bed Fusion Process: A Brief
    Review. Materials Today, 2021, 46, 350–355.
    28. Yun-Peng Yeh, Jeng-Ywan Jeng, Development of Smart Machinery and Digital
    94
    Manufacturing with 3D Printing. 科儀新知. 2020.
    29. Ahn, S. H.; Montero, M.; Odell, D.; Roundy, S.; Wright, P. K. Anisotropic Material
    Properties of Fused Deposition Modeling ABS. Rapid Prototyp. J. 2002, 8, 248–
    257.
    30. Das, A.; Gilmer, E. L.; Biria, S.; Bortner, M. J. Importance of Polymer Rheology
    on Material Extrusion Additive Manufacturing: Correlating Process Physics to
    Print Properties. ACS Appl. Polym. Mater. 2021, 3, 1218–1249.
    31. Yang, X.; Clénet, J.; Xu, H.; Odelius, K.; Hakkarainen, M. Two Step Extrusion
    Process: From Thermal Recycling of PHB to Plasticized PLA by Reactive
    Extrusion Grafting of PHB Degradation Products onto PLA Chains. Macromol
    Res. 2015, 48, 2509–2518.
    32. Bechtel, S.; Meisberger, M.; Klein, S.; Heib, T.; Quirin, S.; Herrmann, H. G.
    Estimation of the Adhesion Interface Performance in Aluminum-PLA Joints by
    Thermographic Monitoring of the Material Extrusion Process. Materials. 2020,
    13, 3371.
    33. Chen, S.; Lu, J.; Feng, J. 3D-printable ABS Blends with Improved Scratch
    Resistance and Balanced Mechanical Performance. Ind. Eng. Chem. Res. 2018, 57,
    3923–3931.
    34. Torrado, A. R.; Shemelya, C. M.; English, J. D.; Lin, Y.; Wicker, R. B.; Roberson,
    D.A. Characterizing the Effect of Additives to ABS on the Mechanical Property
    Anisotropy of Specimens Fabricated by Material Extrusion 3D Printing. Addit
    Manuf. 2015, 6, 16–2.
    35. Avila, J.D.; Isik, M.; Bandyopadhyay, A. Titanium–Silicon on CoCr Alloy for
    Load-bearing Implants Using Directed Energy Deposition-based Additive
    Manufacturing. ACS Appl. Mater. Interfaces. 2020, 12, 51263–51272.
    36. Ahn, D.G. Directed Energy Deposition (DED) Process: State of the Art. Int. J.
    Precis. Eng. Manuf. 2021, 8, 703–742.
    37. Svetlizky, D.; Zheng, B.; Buta, T.; Zhou, Y.; Golan, O.; Breiman, U.; Haj-Ali, R.;
    Schoenung, J.M.; Lavernia, E.; Eliaz, N. Directed Energy Deposition of Al 5xxx
    Alloy Using Laser Engineered Net Shaping (LENS®). Mater. Des. 2020, 192,
    108763.
    38. Liang, Z.; Chang, B.; Zhang, H.; Li, Z.; Peng, G.; Du, D.; Chang, S.; Wang, L.
    Electric Current Evaluation for Process Monitoring in Electron Beam Directed
    Energy Deposition. Int. J. Mach. Tools Manuf. 2022, 176, 103883.
    39. Dudek, P.; Rapacz-Kmita, A. Rapid Prototyping: Technologies, Materials and
    Advances. Arch. Metall. Mater. 2016, 61, 891–896.
    40. Tolochko, N. K.; Sokol, O. V. Assessing the Economic Effectiveness of Additive
    95
    Sheet Lamination. Russian Engineering Research. 2021, 41, 5–9.
    41. Petrick, I.J.; Simpson, T.W. 3D Printing Disrupts Manufacturing: How Economies
    of One Create New Rules of Competition. Research-technology Management.
    Economics. 2015, 56, 12–16.
    42. Levy, G.N.; Schindel, R.; Kruth, J.P. Rapid Manufacturing and Rapid Tooling with
    Layer Manufacturing (Lm) Technologies, State of the Art and Future Perspectives.
    CIRP Annals. 2003, 52, 589–609.
    43. Sampson, K.L.; Deore, B.; Go, A.; Nayak, M.A.; Orth, A.; Gallerneault, M. Patrick
    R.L.; Paquet, M.C.; Multimaterial Vat Polymerization Additive Manufacturing.
    ACS Appl. Polym. Mater. 2021, 3, 4304–4324.
    44. Fei, G.; Parra-Cabrera, C.; Zhong, K.; Tietze, M.L.; Clays, K.; Ameloot, R.
    Scattering Model for Composite Stereolithography to Enable Resin–filler
    Selection and Cure Depth Control. ACS Appl. Polym. Mater. 2021, 3, 6705–6712.
    45. Huang, J.; Qin, Q.; Wang, J. A Review of Stereolithography: Processes and
    Systems. Processes. 2020, 8, 1138.
    46. Manapat, J.Z.; Chen, Q.; Ye, P.; Advincula, R.C. 3D Printing of Polymer
    Nanocomposites Via Stereolithography. Macromol. Mater. Eng, 2017, 302,
    1600553.
    47. Lin, S.H.; Hsiao, Y.N. Hsu, K.Y. Preparation and Characterization of Irgacure 784
    Doped Photopolymers for Holographic Data Storage at 532 nm. Journal of Optics
    A: Pure and Applied Optics. 2009, 11, 024012.
    48. Nasir, N.; Kumar, S.; Kim, M.; Nguyen, V. H.; Suleman, M.; Park, H. M.; Lee, S.;
    Kang, D.; Seo, Y. Effect of the Photoinitiator Concentration on the Electro-optical
    Properties of Thiol-acrylate-based PDLC Smart Windows. ACS A.E.M. 2022, 5,
    6986–6995.
    49. 鄭正元(主編)(民 106)。3D 列印:積層製造技術與應用。台灣:全華圖書。.
    50. Bagheri, A.; Jin, J. Photopolymerization in 3D Printing. ACS Appl. Polym. Mater.
    2019, 1, 593–611.
    51. Lee, B.J.; Hsiao, K.; Lipkowitz, G.; Samuelsen, T.; Tate, L.; DeSimone, J.M.
    Characterization of a 30 µm Pixel Size CLIP-based 3D Printer and Its
    Enhancement Through Dynamic Printing Optimization. Addit Manuf. 2022, 55,
    102800.
    52. Jeong, G.; Park, C.H.; Kim, B.Y.; Kim, J.; Park, S.D.; Yang, H.; Lee, W.S.
    Photocurable Elastomer Composites with SiO2-mediated Cross-links for
    Mechanically Durable 3D Printing Materials. ACS Appl. Polym.
    Mater. 2020, 2, 5228–5237.
    53. Zhao, H.; Yang, F.; Fu, J.; Gao, Q.; Liu, A.; Sun, M.; He, Y. Printing @ Clinic:
    96
    From Medical Models to Organ Implants. ACS Biomater. Sci. Eng. 2017, 3, 3083–
    3097.
    54. Du, K.; Basuki, J.; Glattauer, V.; Mesnard, C.; Nguyen, A.T.; Alexander, D.L.;
    Hughes, T.C. Digital Light Processing 3D Printing of PDMS-based Soft and
    Elastic Materials with Tunable Mechanical Properties. ACS Appl. Polym. Mater.
    2021, 3, 3049–3059.
    55. Kalkal, A.; Kumar, S.; Kumar, P.; Pradhan, R.; Willander, M.; Packirisamy, G.;
    Kumar, S.; Malhotra, B.D. Recent Advances in 3D Printing Technologies for
    Wearable (bio)Sensors. Addit Manuf. 2021, 46, 102088.
    56. Liu, C.; Huang, N.; Xu, F.; Tong, J.; Chen, Z.; Gui, X.; Fu, Y.; Lao, C.; 3D Printing
    Technologies for Flexible Tactile Sensors Toward Wearable Electronics and
    Electronic Skin. Polymers. 2018, 10, 629.
    57. Yin, X.Y.; Zhang, Y.; Cai, X.; Guo, Q.; Yang, J.; Wang, Z.L. 3D Printing of Ionic
    Conductors for High-sensitivity Wearable Sensors. Mater. Horiz. 2019, 6, 767–
    780.
    58. Peng, S.; Li, Y.; Wu, L.; Zhong, J.; Weng, Z.; Zheng, L.; Yang, Z.; Miao, J.T. 3D
    Printing Mechanically Robust and Transparent Polyurethane Elastomers for
    Stretchable Electronic Sensors. ACS Appl. Mater. Interfaces. 2020, 12, 6479–6488.
    59. Kim, M.; Jeong, J.H.; Lee, J.Y.; Capasso, A.; Bonaccorso, F.; Kang, S.H.; Lee,
    Y.K.; Lee, G.H. Electrically Conducting and Mechanically Strong Graphene–
    polylactic Acid Composites for 3D Printing. ACS Appl. Mater. Interfaces. 2019,
    11, 11841–11848.
    60. Zhang, Z.; Zhang, L.; Wang, S.; Chen, W.; Lei, Y. A Convenient Route to
    Polyacrylonitrile/silver Nanoparticle Composite by Simultaneous
    Polymerization–reduction Approach. Polymer. 2001, 42, 8315–8318.
    61. Toker, R.D.; Kayaman-Apohan, N.İ.L.H.A.N.; Kahraman, M.V. UV-curable
    Nano-silver Containing Polyurethane Based Organic–inorganic Hybrid Coatings.
    Prog. Org. Coat. 2013, 76, 1243–1250.
    62. Kim, J.Y.; Shin, D.H.; Ihn, K.J. Synthesis of Poly(Urethane Acrylate-co -styrene)
    Films Containing Silver Nanoparticles by a Simultaneous Copolymerization/in
    Situ Electron Transfer Reaction. Macromol. Chem. Phys. 2005, 206, 794–801.
    63. Fantino, E.; Chiappone, A.; Roppolo, I.; Manfredi, D.; Bongiovanni, R.; Pirri, C.
    F.; Calignano, F. 3D Printing of Conductive Complex Structures with In Situ
    Generation of Silver Nanoparticles. Adv.Mater. 2016, 28, 3712–3717.
    64. Novoselov, K.S.; Jiang, D.; Schedin, F.; Booth, T.J.; Khotkevich, V.V.; Morozov,
    S.V.; Geim, A.K. Two-dimensional Atomic Crystals. Rapid Prototyp J. 2005, 102,
    10451–10453.
    97
    65. Chiu, C.W.; Li, J.W.; Huang, C.Y.; Yang, S.S.; Soong, Y.C.; Lin, C.L.; Lee, J.C.M.;
    Sanchez, W.A.L.; Cheng, C.C.; Suen, M.C.; Controlling the Structures, Flexibility,
    Conductivity Stability of Three-dimensional Conductive Networks of Silver
    Nanoparticles/Carbon-Based Nanomaterials with Nanodispersion and their
    Application in Wearable Electronic Sensors. Nanomaterials. 2020, 10, 1009.
    66. Soderberg, G.L.; Cook, T.M. Electromyography in Biomechanics. Phys Ther. 1984,
    64, 1813–1820.
    67. Clarys, J.P.; Cabri, J. Electromyography and The Study of Sports Movements: A
    Review. J Sports Sci. 1993, 11, 379–448.
    68. Kim, N.; Lim, T.; Song, K.; Yang, S.; Lee, J. Stretchable Multichannel
    Electromyography Sensor Array Covering Large Area for Controlling Home
    Electronics with Distinguishable Signals from Multiple Muscles. ACS Appl. Mater.
    Interfaces. 2016, 8, 21070–21076.
    69. Sinha, S. K.; Noh, Y.; Reljin, N.; Treich, G. M.; Hajeb-Mohammadalipour, S.; Guo,
    Y.; Chon, K.H.; Sotzing, G.A. Screen-printed PEDOT:PSS Electrodes on
    Commercial Finished Textiles for Electrocardiography. ACS Appl. Mater.
    Interfaces. 2017, 9, 37524–37528.
    70. AlGhatrif, M.; Lindsay, J. A Brief Review: History to Understand Fundamentals
    of Electrocardiography. J. Community Hosp. Intern. Med. Perspect. 2012, 2,
    14383.
    71. Mandal, S.; Seth, A.; Yadav, V.; Kumari, S.; Kumar, M.; Ojha, U. Nanocomposite
    Grafted Stretchable and Conductive Ionic Hydrogels for Use as Soft Electrode in
    a Wearable Electrocardiogram Monitoring Device. ACS Appl. Polym. Mater. 2020,
    2, 618–625.
    72. Kaveh, R.; Tetreault, N.; Gopalan, K.; Maravilla, J.; Lustig, M.; Muller, R.; Arias,
    A.C. Rapid and Scalable Fabrication of Low Impedance, 3D Dry Electrodes for
    Physiological Sensing. Adv. Mater. Technol. 2022, 2200342, 1–10.

    無法下載圖示 全文公開日期 2025/08/10 (校內網路)
    全文公開日期 2120/08/10 (校外網路)
    全文公開日期 2120/08/10 (國家圖書館:臺灣博碩士論文系統)
    QR CODE