簡易檢索 / 詳目顯示

研究生: 劉姿瀞
Tzu-Ching Liu
論文名稱: 合成與鑑定高穩定硫化鋰-聚丙烯腈複合材料 應用於無鋰負極之鋰硫電池
Synthesis and Characterization of Highly-stable Li2S-PAN Composite for Li-free-anode Lithium-sulfur Batteries Application
指導教授: 黃炳照
Bing-Joe Hwang
口試委員: 吳乃立
Nae-Lih Wu
蘇威年
Wei-Nien Su
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 145
中文關鍵詞: 鋰硫電池硫化鋰穿梭效應無鋰負極電化學合成法硫化鋰-聚丙烯腈複合材料電化學反應器
外文關鍵詞: Lithium-Sulfur Batteries, Lithium Sulfide, Shuttle Effect, Li-free-anode, Electrochemical method, Lithium-sulfide-polyacrylonitrile Composite, Electrochemical Cell
相關次數: 點閱:350下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 硫化鋰(理論電容量為1166 mAh/g)被視為非常有開發前景的硫鋰離子電池正極材料,主要其電容量高於傳統鋰離子電池,而傳統鋰硫電池需搭配鋰金屬負極且具有聚硫化物的穿梭效應等問題。文獻中,雖有嘗試合成Li2S 的工作,惟所得材料性能均未達理想。本研究擬開發有效的製備方法,以合成高電化學性能的Li2S 正極材料。

    研究中嘗試以固相混合法、固態/液態反應法以及電化學合成法等方式,製備一新穎硫化鋰-聚丙烯腈複合材料,結果發現,以固相混合法或固態/液態反應法合成之複合材料,過於劇烈或不均勻的反應會造成材料結構崩壞,出現穿梭效應。而電化學合成法保持材料原先結構,並展現出高穩定度電化學特性,於半電池穩定性測試,0.1 C充放電程序下,首圈放電電容量可達1233 mAh/g,並於循環充放電兩百圈後仍87.9%電容量持有率;除此之外,此研究更是首先利用繞曲式硫-聚丙烯腈電極於自設計之電化學反應器,進行大面積硫化鋰-聚丙烯腈複合材料之合成,再進行無鋰負極全電池測試,在0.1 C充放電程序下,首圈放電電容量為600.2 mAh/g,於五十圈充放電循
    環測試後之電容量持有率為59.4%,同時解決傳統鋰硫電池之本質問題,並具有極高穩定性及優異的電化學性能表現。

    使用一系列的同步輻射分析技術(臨場X 射線繞射分析、非臨場X 射線光電子能譜分析與X 射線吸收光譜分析),首先發現在充放電過程中,氟化鋰的形成有助於穩定電化學性能表現,並演示了官能基化學結構以及硫化鋰與聚丙烯腈基材間的交互作用,聚丙烯腈基材於充放電過程中有參與氧化還原之電子轉移反應,放電過程由聚丙烯腈基材經氮硫共價鍵結提供電子給硫化鋰,藉由強力的氮硫共價鍵結避免硫經相轉移產生長鏈聚硫化物,進而抑制正極材料溶出之現象,增加正極材料使用率,因此消除穿梭效應。


    The intrinsic problems associated with the use of Li-metal anode in conventional Li-S batteries and the shuttle effect induced by the dissolution of intermediate polysulfides in the electrolyte are major concerns hindering the application of Li-S batteries. Considering the limited specific capacity of conventional Li-ion batteries (~300 mAh/g),Li2S, with theoretical capacity exceeding 1166 mAh/g, has been found great potential as cathode material in Li-S batteries.

    Herein, the lithium sulfide on polyacrylonitrile (Li2S-PAN) composite has been developed by three routes, namely the solid-state mixing method, solid-liquid state method, and electrochemical method. It shows that the severe or uneven reactivity in the first two routes leads to the structural damage and the shuttle effect. By contrast, Li2S-PAN composite with high structural integrity and stability can be successfully prepared by the electrochemical method. For half-cell stability testing, the first cycle specific discharge capacity reached 1233 mAh/g and the capacity retention was 87.9% after 200 cycles at 0.1 C. In addition, this research is the first one to report large-scale Li2S-PAN composite synthesized through a lithiated winding S-PAN electrode in a self-designed electrochemical cell. For Li-free-anode large-scale full-cell test, the first cycle specific discharge capacity was 600.2 mAh/g and the capacity retention was 59.4% after 50 cycles at 0.1 C. The developed
    electrochemical method solves the both of intrinsic problems and the prepared materials show the high stability and the excellent electrochemical performances.

    From a series of analysis techniques based on synchrotron radiation such as in-situ XRD, ex-situ XPS and XAS, it is found that the formation of lithium fluoride (LiF) can help to stabilize the electrochemical performance during charging/discharging and these analysis techniques demonstrate the fundamental chemical structure and the interaction between Li2S and PAN matrix. The PAN matrix involves in the electrons transfer of oxidation/reduction reaction in charging/discharging process and provides electrons to Li2S by forming the N-S covalent bond during discharge. Taking advantages of the strong N-S covalent bond, sulfur transforms directly into smaller sulfides and avoid the formation of long-chain polysulfides. Consequently, the shuttle effect is prevented and the dissolution of cathode material is effectively suppressed. The utilization of Li2S-PAN cathode material can be thus greatly enhanced.

    摘要 Abstract 致謝 符號索引 第一章 研究背景 1.1 電池演進史 1.2 鋰離子二次電池之發展 1.2.1 正極 1.2.2 負極 1.2.3 電解質 1.2.4 隔離膜 第二章 文獻回顧 2.1 鋰硫電池之機制 2.2 鋰硫電池之發展阻礙 2.3 鋰硫電池之正極材料改質 2.3.1 硫-聚丙烯腈複合物 2.3.2 硫化鋰複合材料 2.3.2.1 硫化鋰/介孔碳複合物 2.3.2.2 硫化鋰/微孔碳複合物 2.3.2.3 硫化鋰@碳核殼結構複合物 2.3.2.4 硫化鋰/氧化石墨烯@碳核殼結構複合物 2.3.2.5 奈米化發展與氣凝膠結構之硫化鋰/氮摻合石墨烯複合材料 2.3.2.6 硫化鋰-石墨烯奈米膠囊結構複合物 2.4 研究動機與預期目標 第三章 研究內容與方法 3.1 實驗藥品 3.2 設備與儀器 3.3 實驗步驟 3.3.1 硫-聚丙烯腈(S-PAN)前驅物之合成 3.3.1.1 研磨法(Grinding method) 3.3.1.2 濕式球磨法(Wet ball milling method) 3.3.2 硫化鋰-聚丙烯腈(Li2S-PAN)複合材料之合成 3.3.2.1 固相混合法(Solid-state mixing method, SS) 3.3.2.2 固態/液態反應法(Solid-liquid state method, SL) 3.3.2.3 電化學合成法(Electrochemical method, EC) 3.3.3 電極製備流程 3.3.4 鈕扣型電池(Coin cell)之組裝 3.3.5 電化學反應器(E.C. cell)之組裝 3.4 材料分析及性能測試 3.4.1 表面形貌觀察 3.4.2 晶格結構鑑定 3.4.3 成份及組成分析 3.4.4 電化學性能測試 3.5 材料結構分析之同步輻射分析技術 3.5.1 臨場X 射線繞射(In-situ XRD)之晶格結構變化分析 3.5.2 非臨場X 射線光電子能譜(Ex-situ XPS)之表面電子變化分析 3.5.3 非臨場X 射線吸收光譜(Ex-situ XAS)之內部電子變化分析 第四章 結果與討論 4.1 材料合成與分析 4.1.1 不同製程之硫-聚丙烯腈前驅物分析 4.1.1.1 表面形貌觀察 4.1.1.2 晶格結構鑑定 4.1.1.3 成份及組成分析 4.1.1.4 電化學性能測試 4.1.2 不同合成方式之硫化鋰-聚丙烯腈複合材料分析 4.1.2.1 固相混合法 4.1.2.1.1 表面形貌觀察 4.1.2.1.2 晶格結構鑑定 4.1.2.1.3 電化學性能測試 4.1.2.2 固態/液態反應法 4.1.2.2.1 表面形貌觀察 4.1.2.2.2 晶格結構鑑定 4.1.2.2.3 電化學性能測試 4.1.2.3 電化學合成法 4.1.2.3.1 表面形貌觀察 4.1.2.3.2 電化學性能及穩定度測試 4.2 硫化鋰-聚丙烯腈複合材料之同步輻射分析 4.2.1 臨場X 射線繞射之晶格結構變化分析 4.2.2 非臨場X 射線光電子能譜之表面電子結構變化分析 4.2.3 非臨場X 射線吸收光譜之內部電子結構變化分析 4.3 大面積繞曲式硫化鋰-聚丙烯腈複合材料之初步測試 第五章 結論 第六章 未來展望 參考文獻

    [1] D. Downs; A. Meyerhoff. Baghdad Battery. Smith College Museum of Ancient Inventions. 2017, 1-2.
    [2] B. Dibner. Luigi Galvani. Encyclopedia Britannica. 1998, 1.
    [3] 洪連輝、楊婕妤. 伏特 Alessandro Volta. 科學Online科技部高瞻自然科學教學資源平台. 2011, 1.
    [4] MIT. Voltaic Pile. MIT Libraries of Special Collections. 2017, 1.
    [5] P. R. Roberge. Georges Leclanché. Corrosion Doctors. 2017, 1.
    [6] 陳鐘誠. 電池的歷史與原理. 泛科學Pan Sci專欄. 2013, 1.
    [7] J. B. Goodenough. Rechargeable batteries: challenges old and new. Journal of Solid State Electrochemistry. 2012, 16(6), 2019-2029.
    [8] 殷媛媛. Sony公司聚合物鋰離子電池專利介紹. 上海情報服務平台/第一情報/信息產業. 2006, 1.
    [9] 西.美緒. 鋰電池的開發史. 日經電子. 2015, 1-7.
    [10] M. S. Whittingham. Lithium batteries and cathode materials. Chemical reviews. 2004, 104(10), 4271-4302.
    [11] M. Jacoby. Safer Lithium-Ion Batteries. Chemical & Engineering News Archive. 2013, 91(6), 33-37.
    [12] C. Johnson; N. Li; J. Vaughey; S. Hackney; M. Thackeray. Lithium-manganese oxide electrodes with layered-spinel composite structures xLi2MnO3(1−x)Li1+yMn2−yO4 (0<x<1, 0⩽y⩽0.33) for lithium batteries. Electrochemistry communications. 2005, 7(5), 528-536.
    [13] M.-K. Song; S. Park; F. M. Alamgir; J. Cho; M. Liu. Nanostructured electrodes for lithium-ion and lithium-air batteries: the latest developments, challenges, and perspectives. Materials Science and Engineering: R: Reports. 2011, 72(11), 203-252.
    [14] C. M. Julien; A. Mauger; K. Zaghib; H. Groult. Comparative issues of cathode materials for Li-ion batteries. Inorganics. 2014, 2(1), 132-154.
    [15] J. Zheng; H. Zheng; R. Wang; L. Ben; W. Lu; L. Chen; L. Chena; H. Li. 3D visualization of inhomogeneous multi-layered structure and Young's modulus of the solid electrolyte interphase (SEI) on silicon anodes for lithium ion batteries. Physical Chemistry Chemical Physics. 2014, 16(26), 13229-13238.
    [16] M.-H. Lin. Investigation on structural deterioration mechanisms and performance enhancement of electrode materials for high energy lithium ion batteries. National Taiwan University of Science and Technology, PhD Thesis. 2017, 1-149.
    [17] J. W. Choi; D. Aurbach. Promise and reality of post-lithium-ion batteries with high energy densities. Nature Reviews Materials. 2016, 1, 1-16.
    [18] S. Wang; C. Zhou; Q. Zhou; G. Ni; J. Wu. Preparation of LiFePO4/C in a reductive atmosphere generated by windward aerobic decomposition of glucose. Journal of Power Sources. 2011, 196(11), 5143-5146.
    [19] S.-M. Oh; S.-W. Oh; C.-S. Yoon; B. Scrosati; K. Amine; Y.-K. Sun. High‐performance carbon‐LiMnPO4 nanocomposite cathode for lithium batteries. Advanced Functional Materials. 2010, 20(19), 3260-3265.
    [20] K. Saravanan; J. J. Vittal; M. Reddy; B. V. Chowdari; P. Balaya. Storage performance of LiFe1−xMnxPO4 nanoplates (x=0, 0.5, 1). Journal of Solid State Electrochemistry. 2010, 14(10), 1755-1760.
    [21] J. Kim; Y.-U. Park; D.-H. Seo; J. Kim; S.-W. Kim; K. Kang. Mg and Fe Co-doped Mn based olivine cathode material for high power capability. Journal of the Electrochemical Society. 2011, 158(3), A250-A254.
    [22] 黃俊誠、陳藹然. 鋰電池(Lithium Battery). 科學Online科技部高瞻自然科學教學資源平台. 2009, 1.
    [23] 吳玉祥、吳俊霖、張晏銘. 鋰離子二次電池負極材料表面改質之發展與改良Development and Improvement of the Lithium Ion Battery Negative Material Surface Modification. Journal of China Institute of Technology. 2004, 31, 247-262.
    [24] J. B. Goodenough; Y. Kim. Challenges for Rechargeable Li Batteries. Chemistry of Materials. 2009, 22(3), 587-603.
    [25] 陳浩銘、林泱蔚、林滄浩. 高分子型鋰離子二次電池介紹. 研究報告. 2017, 1-11.
    [26] P. G. Bruce; S. A. Freunberger; L. J. Hardwick; J.-M. Tarascon. Li-O2 and Li-S batteries with high energy storage. Nature Materials. 2012, 11(1), 19-29.
    [27] A. Manthiram; Y. Fu; S.-H. Chung; C. Zu; Y.-S. Su. Rechargeable Lithium-Sulfur Batteries. Chemical Reviews. 2014, 114(23), 11751-11787.
    [28] H.-J. Peng; J.-Q. Huang; X.-B. Cheng; Q. Zhang. Review on High‐Loading and High‐Energy Lithium-Sulfur Batteries. Advanced Energy Materials. 2017, 1-54.
    [29] J. Wang; J. Yang; J. Xie; N. Xu. A novel conductive polymer-sulfur composite cathode material for rechargeable lithium batteries. Advanced Materials. 2002, 14, 963-965.
    [30] J. Wang; J. Yang; C. Wan; K. Du; J. Xie; N. Xu. Sulfur composite cathode materials for rechargeable lithium batteries. Advanced Functional Materials. 2003, 13(6), 487-492.
    [31] L. Yin; J. Wang; J. Yang; Y. Nuli. A novel pyrolyzed polyacrylonitrile-sulfur@MWCNT composite cathode material for high-rate rechargeable lithium/sulfur batteries. Journal of Materials Chemistry. 2011, 21(19), 6807-6810.
    [32] L. Yin; J. Wang; F. Lin; J. Yang; Y. Nuli. Polyacrylonitrile/graphene composite as a precursor to a sulfur-based cathode material for high-rate rechargeable Li-S batteries. Energy & Environmental Science. 2012, 5, 6966-6972.
    [33] A. Konarov; D. Gosselink; T. N. L. Doan; Y. Zhang; Y. Zhao; P. Chen. Simple, scalable, and economical preparation of sulfur-PAN composite cathodes for Li/S batteries. Journal of Power Sources. 2014, 259, 183-187.
    [34] S. Wei; L. Ma; K. E. Hendrickson; Z. Tu; L. A. Archer. Metal-Sulfur Battery Cathodes Based on PAN-Sulfur Composites. Journal of the American Chemical Society. 2015, 137(37), 12143-12152.
    [35] M. Frey; R. K. Zenn; S. Warneke; K. Müller; A. Hintennach; R. E. Dinnebier; M. R. Buchmeiser. Easily Accessible, Textile Fiber-Based Sulfurized Poly(acrylonitrile) as Li/S Cathode Material: Correlating Electrochemical Performance with Morphology and Structure. ACS Energy Letters. 2017, 2(3), 595-604.
    [36] C.-J. Huang; J.-H. Cheng; W.-N. Su; P. Partovi-Azar; M.-C. Tsai; T. A. Zegeye; M.-H. Lin; S. P. Jand; T.-S. Cha; N.-L. Wu; P. Ka-ghazchi; H. Dai; B.-J. Hwang. Origin of Shuttle-free Sulfur-Polyacrylonitrile in Lithium-sulfur Batteries. Under Submission. 2017, 1-9.
    [37] Y. Yang; M. T. McDowell; A. Jackson; J. J. Cha; S. S. Hong; Y. Cui. New Nanostructured Li2S/Silicon Rechargeable Battery with High Specific Energy. Nano Letters. 2010, 10(4), 1486-1491.
    [38] S. Zheng; Y. Chen; Y. Xu; F. Yi; Y. Zhu; Y. Liu; J. Yang; C. Wang. In Situ Formed Lithium Sulfide/Microporous Carbon Cathodes for Lithium-Ion Batteries. ACS Nano. 2013, 7(12), 10995-11003.
    [39] C. Nan; Z. Lin; H. Liao; M.-K. Song; Y. Li; E. J. Cairns. Durable Carbon-Coated Li2S Core-Shell Spheres for High Performance Lithium/Sulfur Cells. Journal of the American Chemical Society. 2014, 136(12), 4659-4663.
    [40] Y. Hwa; J. Zhao; E. J. Cairns. Lithium Sulfide (Li2S)/Graphene Oxide Nanospheres with Conformal Carbon Coating as a High-Rate, Long-Life Cathode for Li/S Cells. Nano Letters. 2015, 15(5), 3479-3486.
    [41] S.-K. Lee; Y. J. Lee; Y.-K. Sun. Nanostructured lithium sulfide materials for lithium-sulfur batteries. Journal of Power Sources. 2016, 323, 174-188.
    [42] G. Zhou; E. Paek; G. S. Hwang; A. Manthiram. High-Performance Lithium-Sulfur Batteries with a Self-Supported, 3D Li2S-Doped Graphene Aerogel Cathodes. Advanced Energy Materials. 2016, 6(2), 1-9.
    [43] G. Tan; R. Xu; Z. Xing; Y. Yuan; J. Lu; J. Wen; C. Liu; L. Ma; C. Zhan; Q. Liu; T. Wu; Z. Jian; R. Shahbazian-Yassar; Y. Ren; D. J. Miller; L. A. Curtiss; X. Ji; K. Amine. Burning lithium in CS2 for high-performing compact Li2S-graphene nanocapsules for Li-S batteries. Nature Energy. 2017, 2, 1-10.
    [44] G. Xu; B. Ding; J. Pan; P. Nie; L. Shen; X. Zhang. High performance lithium-sulfur batteries: advances and challenges. Journal of Materials Chemistry A. 2014, 2(32), 12662-12676.
    [45] C.-Y. Kuo. Research on Prelithiation Technique for Lithium Ion Batteries. National Taiwan University of Science and Technology, Master Thesis. 2013, 1-81.
    [46] H.-Y. Hung. A Dissolution/Precipitation Method Employed in the Preparation of Highly Conductive Sulfur/Polyacrylonitrile-Carbon Composites for Lithium-Sulfur Battery. National Taiwan University of Science and Technology, Master Thesis. 2016, 1-117.
    [47] S. Urbonaite; T. Poux; P. Novák. Progress Towards Commercially Viable Li-S Battery Cells. Advanced Energy Materials. 2015, 5(16), 1-20.
    [48] 國家同步輻射研究中心. 台灣光源(Taiwan Light Source, TLS)與台灣光子源(Taiwan Photon Source, TPS)之介紹. 2017,
    https://zh.wikipedia.org/wiki/%E5%9C%8B%E5%AE%B6%E5%90%98C%E96%AD%A95%E98%BC%BB%E95%B90%84%E97%A90%94%E97%A99%B96%E94%B98%AD%E95%BF%83.
    [49] 林明泉、周炳榮、張文惠. 同步輻射研究/加速器. 國家同步輻射研究中心專文. 2017, 1.
    [50] 黃玉山、張世汯、黃梅英. 實驗設施/光束線. 國家同步輻射研究中心專文. 2008, 1.
    [51] Y.-S. Huang; S.-H. Chang; M.-Y. Huang. TPS Beamline Map Phase-I~Phase-III. National Synchrotron Radiation Research Center Project. 2017, 1.
    [52] Y.-S. Huang; S.-H. Chang; M.-Y. Huang. TPS Current Beamlines. National Synchrotron Radiation Research Center Project. 2017, 1.
    [53] 許火順. 台灣光子源 TPS 09A 試車成果與設施功能概要. 國家同步輻射研究中心專文. 2017, 8-10.
    [54] 楊耀文. 台灣光源 TLS BL24A 光束線簡介. 國家同步輻射研究中心實驗站講義. 2013, 1-32.
    [55] 王健源、林玄哲、黃界閔. X光吸收近邊緣結構(XANES)與延伸X光吸收近邊緣細微結構(EXAFS)分析法. Journal of Solid State Chemistry. 2000, 1-15.
    [56] H. Yabuta; M. Uesugi; H. Naraoka; M. Ito; A. L. D. Kilcoyne; S. A. Sandford; F. Kitajima; H. Mita; Y. Takano; T. Yada; Y. Karouji; Y. Ishibashi; T. Okada; M. Abe. X-ray absorption near edge structure spectroscopic study of Hayabusa category 3 carbonaceous particles. Earth, Planets and Space. 2014, 66(1), 1-8.
    [57] R. E. Medjo; B. T. Sendja; J. M. Mane; P. O. Ateba. XAS study of the orientation of oriented carbon nanotube films. Physica Scripta. 2009, 80(5), 1-8.
    [58] T. T. Fister; G. T. Seidler; E. L. Shirley; F. D. Vila; J. J. Rehr; K. P. Nagle; J. C. Linehan; J. O. Cross. The local electronic structure of α-Li3N. The Journal of Chemical Physics. 2008, 129(4), 1-8.
    [59] S. Lee; J. Kim; B.-C. Ku; J. Kim; H.-I. Joh. Structural Evolution of Polyacrylonitrile Fibers in Stabilization and Carbonization. Advances in Chemical Engineering and Science. 2012, 2, 275-282.
    [60] T. N. L. Doan; M. Ghaznavi; Y. Zhao; Y. Zhang; A. Konarov; M. Sadhu; R. Tangirala; P. Chen. Binding mechanism of sulfur and dehydrogenated polyacrylonitrile in sulfur/polymer composite cathode. Journal of Power Sources. 2013, 241, 61-69.
    [61] M. Á. Vallejo; M. A. Sosa; M. L. Villalobos; J. C. Azorín; R. Navarrob; E. Encarnación; L. A. Díaz. Thermoluminescent response and kinetic parameters of Eu3+-doped LiF crystals exposed to X-rays. Journal of Luminescence. 2017, 182, 160-165.
    [62] D. Lin; Y. Liu; Y. Cui. Reviving the lithium metal anode for high-energy batteries. Nature Nanotechnology. 2017, 12(3), 194-206.
    [63] M. Gauthier; T. J. Carney; A. Grimaud; L. Giordano; N. Pour; H.-H. Chang; D. P. Fenning; S. F. Lux; O. Paschos; C. Bauer; F. Maglia; S. Lupart; P. Lamp; Y. Shao-Horn. Electrode-Electrolyte Interface in Li-Ion Batteries: Current Understanding and New Insights. The Journal of Physical Chemistry Letters. 2015, 6(22), 4653-4672.

    QR CODE