簡易檢索 / 詳目顯示

研究生: Kefyalew Wagari Guji
Kefyalew Wagari Guji
論文名稱: 以CDA (CDO)(作為陽極液)和 Potassium Ferrocyanide(作為陰極液)配合不同鹼性隔膜之有機氧化還原液流電池性能之研究
Cell Performance of Organic Redox Flow Battery with CDA (CDO) (as Anolyte) and Potassium Ferrocyanide (as Catholyte) Using Different Alkaline Membranes
指導教授: 王復民
Fu-Ming Wang
簡文鎮
Wen-Chen Chien
口試委員: Hung-Ju Yen
Hung-Ju Yen
Zhou Zhaochang
Zhou Zhaochang
Hong Yiming
Hong Yiming
Wang Chenghao
Wang Chenghao
Wen-Chen Chien
Wen-Chen Chien
Fu-Ming Wang
Fu-Ming Wang
學位類別: 博士
Doctor
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 103
中文關鍵詞: 有機氧化還原液流電池(ORFBs)白屈氨酸(CDA白屈菜酸(CDO)鹼性膜儲能
外文關鍵詞: ORFBs, CDA, CDO, alkaline membranes, energy storage
相關次數: 點閱:150下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中文摘要
    有機氧化還原液流電池(Organic redox flow batteries, ORFBs),因其低成本和可長時間提供高能量密度能量,被視為一種很有潛力的能源裝置。本論文將一種具有活性的氧化還原的新型有機電解質(CDA和CDO)搭配不同的鹼性隔膜(E28-GT、G60、GRT、FA、GT和RT等隔膜)應用於有機氧化還原液流電池(ORFBs)。結果顯示在K4Fe(CN)6半電池中CDA與CDO電解質在使用G60、GRT、FA、與RT的隔離膜,分別在2.5mA cm‒2並與第50圈後釋放出 10.0/0.72,12.7/0.32,22.0/0.34和11.0/0.32 Wh L‒1的能量密度。CDA在相較CDO的情況下,與第50圈後擁有更加優越的能量密度。於此判斷由於CDA擁有有效互動的胺族(N‒H)在與G60, GRT, FA和RT可以提高吸水能力與OH‒之導性。儘管如此,首圈的CDA/ K4Fe(CN)6與CDO/K4Fe(CN)6之半電池在使用 E28 GT依然可以提供12.2/37.55 Wh L‒1的能量密度,再於50圈後都降至9.78/4.0 Wh L‒1 。CDA在使用GT時,由於其較差的吸水能力導致OH-導性被降低的情況下, 首圈可以提供17.46 Wh L‒1,但與此同時也於50圈後掉至12.6 Wh L‒1 .首圈的CDA/K4Fe(CN)6 與 CDO/K4Fe(CN)6 半電池在使用E28-GT, G60, GRT, FA GT 與 RT時,能量密度分別為20.46/88.73, 23.72/1.68, 26.31/0.75, 45.83/0.77, 55.74/1.4 與 80/0.76% 都於50圈後分別達24.77/38.68, 68/30.58, 72.9/18.76, 78.69/24.6, 66.15/35.94, 與 70.48/18.76%。在此可以清楚觀察到隔離膜相對電池性能的影響。G60, GRT, FA, 與 RT相較E28-GT 與 GT對於 CDA與CDO擁有更好的動力學可逆性,更低的容量損失,更高的效率。因G60, GRT, FA, 與 RT相對E28-GT 與 GT擁有的低電阻,高離子傳導與吸水能力,優化CDA/K4Fe(CN)6 相較 CDO/K4Fe(CN)6 半電池的兼容性與效率。FA隔離膜是於CDA 與 CDO在50圈後,擁有最佳的性能表現之隔離膜。為了可以更佳的了解FA對於CDA 與 CDO這兩種電解質與K4Fe(CN)6 成半電池的有效性, 實驗在2.5 mA cm‒2持續進行至100圈, 並取得27.08/20.78 Wh L‒1 的能量密度與80.5 與 53.35%的效率。這兩種有機電解質在使用FA的隔離膜,都擁有穩定的圈數表現(100% 庫倫效率) 。然而CDA相較CDO依然擁有更高的能量密度,因其擁有更佳的潤濕效應。CDA因擁有N-H基的存在有效的幫助FA的潤濕並且提升電化學反應。CDA 與 CDO在還原液流電池中,不只是影響著隔離膜,同時也為兩顆原子之間存在的結構差異。此被觀察的效應是與CDA/K4Fe(CN)6 與 CDO/K4Fe(CN)6 全電池在提供2.0/1.07 Wh L‒1(首圈) 改變至 to 5.56/1.18 Wh L‒1 (第100圈), 能量效率也從 37.55/45.1% (首圈) 改變至 66.59/51.53% (第100圈) .這暗示著2.0與0.32離子在100圈後的可逆性。因此,此兩種電解質的性能顯示著其高電阻與低導電性的CDO中的OH‒ ,造成其最終的低能量密度與效率。在此,CDA的仲胺表現出更佳優越的能量密度。此外,CDA(FA)的EIS結果顯示相較CDA來的低,可以被理解為更多的潤濕性,更好的吸水性,還有由於CDA中的 N‒H族的相應,相較CDO也有著更優的OH‒導性。有趣的發現是CDA/K4Fe(CN)6在使用FA的情況下,除了更好的性能表現,也同時在超過100圈有著更低的容量損耗。

    關鍵字:有機氧化還原液流電池(ORFBs)、白屈氨酸(CDA)、白屈菜酸(CDO)、鹼性膜、儲能


    Abstract
    Organic redox flow batteries are a promising energy device due to their low-cost and ability of delivering high energy density for long time. In this thesis, a redox active organic electrolyte CDA and CDO are used for redox flow battery (RFB) using alkaline membranes (like E28 GT, G60, GRT, FA, GT and RT). The assembled CDA and CDO anolytes with K4Fe(CN)6 half cells, using G60, GRT, FA and RT separators deliver energy densities of 10.0/0.72, 12.7/0.32, 22.0/0.34, and 11.0/0.32 Wh L‒1, respectively in 1st cycle and improved to 21.88/16.1, 23.37/13.58, 26.9/16.1, and 36.78/13.6 Wh L‒1, respectively after 50th cycles at 2.5 mA cm‒2. The CDA provided great energy densities storage compared to CDO after 50th cycles. This is due to the fact that, the effective interaction of amine (N‒H) group containing CDA with G60, GRT, FA and RT, rise water uptake ability and OH‒ conductivity. However, in the first cycle the CDA/K4Fe(CN)6 and CDO/K4Fe(CN)6 half-cell could supplied energy densities of 12.2/37.55 Wh L‒1 by E28 GT, respectively and dropped to 9.78/4.0 Wh L‒1 after 50th cycles. Similarly, CDA delivered 17.46 by GT in the first cycle and decrease to 12.6 Wh L‒1, respectively after 50th cycles, because of less water uptake ability HO‒ conductivity reduced in this case. In first cycle, the CDA/ K4Fe(CN)6 and CDO/K4Fe(CN)6 half-cell energy efficiencies (EE) were 20.46/88.73, 23.72/1.68, 26.31/0.75, 45.83/0.77, 55.74/1.4 and 80/0.76% by E28-GT, G60, GRT, FA GT and RT and changed 24.77/38.68, 68/30.58, 72.9/18.76, 78.69/24.6, 66.15/35.94, and 70.48/18.76% after 50th cycles, respectively. Herein, the effect of membranes on battery performance can be observed clearly. In CDA and CDO the G60, GRT, FA, and RT were shown better kinetic reversibility, with less capacity loss and high efficacies compared to E28-GT and GT. The obtained low resistance, high ion conductivity and water uptake ability of G60, GRT, FA, and RT relative to E28-GT and GT confirmed their more compatibility and efficiency with CDA/K4Fe(CN)6 than CDO/K4Fe(CN)6 cells. From all performed membrane the FA exhibited best performance in CDA and CDO cells after 50th cycles. To better understand the effectiveness of FA the CDA and CDO anolytes and K4Fe(CN)6 half cells, conducted for 100 cycles and obtained 27.08/20.78 Wh L‒1 energy density, with 80.5 and 53.35% efficiencies, respectively at 2.5 mA cm‒2. The two organic anolytes using FA also shown stable cycling performances with 100% coulombic efficiency. However, CDA shown a high energy density than CDO, because of wettability effect. The presence of (N‒H) in CDA help to increase FA wettability and improve its electrochemical performance.
    The CDA and CDO redox flow battery not only affected by membranes but also by structural difference existed between the two atoms. The effect was observed in CDA/K4Fe(CN)6 and CDO/K4Fe(CN)6 full cell by providing 2.0/1.07 Wh L‒1 (first cycle) and changed to 5.56/ 1.18 Wh L‒1 (after 100 cycles), with 37.55/45.1% (first cycle) and 66.59/51.53% (after 100 cycles) energy efficiency, respectively. This implies 2.0 and 0.51 electrons were reversibly after 100 cycles. Hence, the performance of two anolytes cell show that the high resistance and less conductivity of OH‒ in CDO possess by FA, causes to lower its final energy density and efficiency. Here what can be understood is the secondary amine in CDA exhibited superior energy density. Furthermore, the EIS result of CDA (FA) determined to be lower than that of CDO, indicating the more wettability, higher water uptake ability, and OH‒ conductivity of CDA than CDO, because of the effect of N‒H group in CDA. Interestingly, CDA/K4Fe(CN)6 by FA exhibited an excellent performance with less capacity loss over 100 cycles.

    Keywords: ORFBs, CDA, CDO, alkaline membranes, energy storage.

    Table of Contents Doctoral Dissertation Recommendation Form ………………………………………………i Qulification Form by Doctoral Degree Exmanation Committe …………………………ii Acknowledgment …………………………………………………………………………iii Chinese Abstract ……………………………………………………………………………iv Abstract .vi Table of Contents .viii List of Figures……………………………………………………………………………….xi List of Table ………………………………………………………………………xvi List of symbols and abbreviations xviii Chapter 1: Introduction 1 1.1. The History of RFB Development 1 1.2. The Advantage and Disadvantage of RFBs 4 1.3. General Understanding about RFBs 5 1.3.1. The Internal Part of Cells Instrument 5 1.4. Working Principle of RFBs 6 1.5. Membrane and Electrode for RFBs 9 1.5.1. Membranes 9 1.5.2. Electrode 11 1.5.3. Electrolyte 11 1.5.3.1. Aqueous Electrolyte 12 1.5.3.2. Non-Aqueous Electrolyte 12 1.6. Cation and Anion Exchange Membrane in Aqueous Electrolyte 12 Chapter 2: Literature Review on Organic RFBs 14 2.1. Organic/Inorganic Redox Active Materials Flow Battery. 14 2.2. Electrolytes of Redox Flow Batteries……………………………………………...15 2.3. Overview of Inorganic/Aqueous Organic Redox Flow Batteries (AORFBs)……..16 2.3.1. The AORFs Main Redox Active Species…………………………………….17 2.3.2. The Redox Potential, Solubility and Stability Window of OrganicAqueous and non-Aqueous Supportive Electrolytes for RFBs…………………………….19 2.4. Major Challenges of AORFBs .20 2.5. Polymer Based Materials for RFBs 20 2.6. Motivation and Aim of Study 21 2.7. Novelity of The Work 22 Chapter 3: Experiemnt 24 3.1. Chemicals and Reagents 24 3.2. Equipments 24 3.3. Materials 24 3.3.1. Membrane Preparation 25 3.3.2. Conductivity 25 3.3.3. Wateruptake........................................................................................................25 3.3.4. The Preparation of CDA/CDO (Anolyte) and K4Fe(CN)6 (Catholyte) Electrolyte 25 3.3.5. Electrode 26 3.4. Battery test 26 3.5. RFB Testing Method 26 3.5.1. RFB Cell Assembly and Testing 26 3.5.2. Cycling 27 3.6. Electrochemical Analysis of RFBs 28 3.6.1. Charging/Discharging 28 3.6.2. Cyclic Voltammetry 28 3.6.3. Electrochemical Impedance (EIS) 32 3.7. Characterization Technique 32 3.7.1. Scanning Electron Microscopy (SEM) 32 3.7.2. Nuclear Magnetic Resonance (NMR) 33 3.7.3. UV‒vis Spectroscopy 35 3.7.4. ATR‑Fourier Transform Infrared Spectroscopy (FTIR) 36 Chapter 4: Result and Discussion on CDA/CDO (Anolytes) with K4Fe(CN)6 (Catholytes) Organic Redox Flow Cells Performance Using Alkaline Membranes 38 4.1. Result and Discussion .38 4.1.1. Material Characterization of CDA and CDO Anolytes .38 4.1.2. The Performance of Organic Anaolyte (CDA) with Ferrocyanide (Catholyte)…46 4.1.2.1. Electrochemical Performance of CDA/K4Fe(CN)6 Half-Cell 46 4.1.2.2. The Electrochemical Impedance Spectroscopy (EIS) CDA/K4Fe(CN)6 Half-cell Analysis of E28-GT, G60, GRT, FA, GT and RT 53 4.1.3. Electrochemical Performance of Full cell CDA Against Ferrocyanide…………56 4.1.3.1. The Electrochemical Impedance Spectroscopy (EIS) of CDA/K4Fe(CN)6 Full cell Analysis of FA 58 4.1.4. Electrochemical Ferformance of Half-cell CDO Against Ferrocyanide………...59 4.1.4.1. The Electrochemical Impedance Spectroscopy (EIS) CDO/K4Fe(CN)6 Half-cell Analysis of E28-GT, G60, GRT, FA, GT and RT……………….65 4.1.5. Electrochemical Performance of Full-cell CDO Against Ferrocyanide………..67 4.1.5.1. The Electrochemical Impedance Spectroscopy (EIS) CDO/K4Fe(CN)6 Full cell Analysis of E28-GT, G60, GRT, FA, GT and RT…………….....69 4.1.6. The Effect of E28-GT, G60, GRT, FA, GT and RT on Half-cell Performance of CDA and CDO Against Ferrocyanide .70 4.1.7. The Relation and Effect of FA on Performance of CDA and CDO Against Ferrocyanide Half and Full cell…………………………………………………72 4.1.8. The SEM Image of Carbon Felt Electrode and Membrane After CDA/K4Fe(CN)6 and CDO/K4Fe(CN)6 Cells Reaction 80 4.1.8.1. The SEM Image of Carbon Felt Electrode After CDA and CDO Cells……80 4.1.9. The SEM Image of Membranes………………………………………………...82 4.1.10. Possible Potassium Storage Mechanism of CDA and CDO anolytes with Ferrocyanide Full Cells ….84 4.2. Summary .86 Chapter 5: General Conclusion and Recommendation……………………………………..88 References 92 Appendix A: Supporting Data for Chapter 4 .102

    References
    [1] Choi, N.H., del Olmo, D., Fischer, P., Pinkwart, K. and Tübke, J., Development of Flow Fields for Zinc Slurry Air Flow Batteries, Batteries 6 (2020) 15.
    [2] Mirle, C., Medabalmi, V., Ramanujam, K., Ramanujam, Crossover-free hydroxy-substituted quinone anolyte and potassium ferrocyanide catholyte for aqueous alkaline organic redox flow battery, Catal. Today 370 (2021) 173-180.
    [3] Zhang, Z., Ding, T., Zhou, Q., Sun, Y., Qu, M., Zeng, Z., Chi, F., A review of technologies and applications on versatile energy storage systems. Renew. and Sustain. Energy Rev. 148 (2021) 111263.
    [4] Nithyanandam, K., Pitchumani, R., Transfer, Analysis and optimization of a latent thermal energy storage system with embedded heat pipes. Int. J. Heat and Mass Transfer 54 (2011) 4596-4610.
    [ 5] Soloveichik, G.L., Flow batteries: current status and trends, Chem. rev. 115 (2015) 11533-11558.
    [6] Wang, Y., He, P., Zhou, H., Li‐Redox Flow Batteries Based on Hybrid Electrolytes: At the Cross Road between Li‐ion and Redox Flow Batteries, Adv. Energy Mater. 2 (2012) 770-779.
    [7] Darling, R.M., Gallagher, K.G., Kowalski, J.A., Ha, S., Brushett, F.R., Pathways to low-cost electrochemical energy storage: a comparison of aqueous and nonaqueous flow batteries, Energy Environ. Sci. 7 (2014) 3459-3477.
    [8] Nguyen, T., Savinell, R. F., Flow batteries, the Electrochem. Soc. Interface 19 (2010) 54.
    [9] Noack, J., Roznyatovskaya, N., Herr, T. and Fischer, P., The chemistry of redox‐flow batteries, Angew. Chem. Int. Ed. 54 (2015) 9776-9809.
    [10] Sevov, C.S., Samaroo, S.K., Sanford, M.S.,. Sanford, Cyclopropenium Salts as Cyclable, High‐Potential Catholytes in Nonaqueous Media, Adv. Energy Mater. 7 (2017) 1602027.
    [11] Kangro, W., Verfahren zur Speicherung von elektrischer Energie, German patent 914264 (1949).
    [12] Thaller, L.H., Electrically rechargeable redox flow cells, in: 9th Intersociety Energy Conversion Engineering Conference, (1974) 924-928.
    [13] Reid, M.A., Gahn, R.F., Factors affecting the open-circuit voltage and electrode kinetics of some iron/titanium redox flow cells, in, NASA Lewis Research Center, Cleveland, OH (United States), (1977).
    [14] Adinberg, R., Zvegilsky, D. and Epstein, M., Epstein, Management, Heat transfer efficient thermal energy storage for steam generation, Energy Convers. Manag. 51 (2010) 9-15.
    [15] Thaller, L.H., D. Space Administration: Washington, Electrically Rechargeable Redox Flow Cells, In 9th Intersociety Energy Conversion Engineering Conferenc (1974) 924-928
    [16] Sun, C., Zhang, H., A review of the development of the first‐generation redox flow battery: iron chromium system, ChemSusChem 15 (2021) e202101798.
    [17] Yang, Z., Zhang, J., Kintner-Meyer, M.C., Lu, X., Choi, D., Lemmon, J.P., Liu, J.J., Electrochemical energy storage for green grid, Chem. rev. 111 (2011) 3577-3613.
    [18] Wang, W., Luo, Q., Li, B., Wei, X., Li, L., Yang, Z., Recent progress in redox flow battery research and development, Adv. Funct.Mater. 23 (2013) 970-986.
    [19] Winsberg, J., Muench, S., Hagemann, T., Morgenstern, S., Janoschka, T., Billing, M., Schacher, F.H., Hauffman, G., Gohy, J.F., Hoeppener, S. and Hager, M.D., Polymer/zinc hybrid-flow battery using block copolymer micelles featuring a TEMPO corona as catholyte, Polym. Chem. 7 (2016) 1711-1718.
    [20] Lu, Y., Goodenough, J.B. and Kim, Y., Aqueous cathode for next-generation alkali-ion batteries, J. Am. Chem. Soc. 133 (2011) 5756-5759.
    [21] Huang, Q., Li, H., Grätzel, M. and Wang, Q., Reversible chemical delithiation/lithiation of LiFePO4: towards a redox flow lithium-ion battery, Chem. Chem. Phys. 15 (2013) 1793-1797.
    [22] Akhil, A.A., Huff, G., Currier, A.B., Kaun, B.C., Rastler, D.M., Chen, S.B., Cotter, A.L., Bradshaw, D.T., Gauntlett, W.D., DOE/EPRI 2013 electricity storage handbook in collaboration with NRECA, Sandia National Laboratories Albuquerque, NM, 2013.
    [23] Vanýsek, P., Novák, V., Redox flow batteries as the means for energy storage, J. Energy Storage 13 (2017) 435-441.
    [24] Alotto, P., Guarnieri, M., Moro, F., reviews, Redox flow batteries for the storage of renewable energy, Renew. Sustain. Energy Rev. 29 (2014) 325-335
    [25] Kear, G., Shah, A.A., Walsh, F.C., Development of the all‐vanadium redox flow battery for energy storage: a review of technological, financial and policy aspects, Int. J. Energy Res. 36 (2012) 1105-1120.
    [26] CLARK, N.H., EIDLER, P., Development of Zinc/Bromine Batteries for Load-Leveling Applications: Phase 2 Final Report, in, Sandia National Labs., Albuquerque, NM (US); Sandia National Labs., (1999).
    [27] Iwakiri, I., Antunes, T., Almeida, H., Sousa, J.P., Figueira, R.B., Mendes, A., Redox flow batteries: Materials, design and prospects, Energies 14 (2021) 5643.
    [28] L. Arenas, C.P. De León, F.J.J.o.E.S. Walsh, Engineering aspects of the design, construction and performance of modular redox flow batteries for energy storage, J. Energy Storage 11 (2017) 119-153.
    [29] Luo, J., Hu, B., Hu, M., Zhao, Y., Liu, T.L., Status and prospects of organic redox flow batteries toward sustainable energy storage, ACS Energy Lett. 4(2019) 2220-2240.
    [30] Prifti, H., Parasuraman, A., Winardi, S., Lim, T.M., Skyllas-Kazacos, M., Skyllas-Kazacos, Membranes for redox flow battery applications, Membranes 2 (2012) 275-306.
    [31] Zhang, H., Zhang, H., Li, X., Mai, Z., Zhang, J., Nanofiltration (NF) membranes: the next generation separators for all vanadium redox flow batteries (VRBs)?, Energy Environ. Sci. 4 (2011) 1676-1679.
    [32] Koros, W.J., Ma, Y.H., Shimidzu, T., Terminology for membranes and membrane processes (Reprinted from Pure and Appl Chem, Vol 68, Pg 1479-1489, 1996), J. Membrane Sci.120 (1996) 149-159.
    [33] Li, X., Zhang, H., Mai, Z., Zhang, H., Vankelecom, I., Ion exchange membranes for vanadium redox flow battery (VRB) applications, Energy Environ. Sci. 4 (2011) 1147-1160
    [34] Su, L., Zhang, D., Peng, S., Wu, X., Luo, Y., He, G., Orientated graphene oxide/Nafion ultra-thin layer coated composite membranes for vanadium redox flow battery, Int. J. Hydrog. Energy 42 (2017) 21806-21816.
    [35] Yang, Z., Tong, L., Tabor, D.P., Beh, E.S., Goulet, M.A., De Porcellinis, D., Aspuru‐Guzik, A., Gordon, R.G. and Aziz, M.J., Alkaline benzoquinone aqueous flow battery for large‐scale storage of electrical energy, Adv. Energy Mater. 8 (2018) 1702056.
    [36] Hren, M., Božič, M., Fakin, D., Kleinschek, K.S., Gorgieva, S., Fuels, Alkaline membrane fuel cells: anion exchange membranes and fuels, Sustain. Energy Fuels 5 (2021) 604-637.
    [37] Di Blasi, A., Di Blasi, O., Briguglio, N., Aricò, A.S., Sebastián, D., Lázaro, M.J., Monforte, G. and Antonucci, V., Investigation of several graphite-based electrodes for vanadium redox flow cell, J. Power Sources 227 (2013) 15-23.
    [38] Fink, H., Friedl, J., Stimming, U., The faster half-cell in a Vanadium Redox Flow Battery is determined by the electrode composition, J. Phys. Chem.120 (2016) 15893-15901.
    [39] Goulet, M.A., Skyllas-Kazacos, M. and Kjeang, E., The importance of wetting in carbon paper electrodes for vanadium redox reactions, Carbon 101 (2016) 390-398.
    [40] Lokhande, P.E., Chavan, U.S., Inorganic electrolytes in supercapacitor, in: Supercapacitor technology: materials, processes and architectures, U Mater. Res. Found 61 (2019) 11-30.
    [41] Wang, G., Lei, Z., Jiujun, Z. The Royal Society of Chemistry 2012. Chem. Soc. Rev 41 (2012) 797-828.
    [42] Blomquist, N., Wells, T., Andres, B., Bäckström, J., Forsberg, S., Olin, H., Metal-free supercapacitor with aqueous electrolyte and low-cost carbon materials, Sci. rep. 7 (2017) 1-7.
    [43] Suwandi, D.A., Taer, E., Farma, R., Syahputra, R.F., Effect of Aqueous Electrolyte to the Supercapacitor Electrode Performance Made from Sugar Palm Fronds Waste, J. Phys. 1951 (2021), 012009.
    [44] Iqbal, M.Z., Zakar, S., Haider, S.S., Role of aqueous electrolytes on the performance of electrochemical energy storage device, J. Electroanal. Chem. 858 (2020) 113793.
    [45] Tripathi, S.L., Alvi, P.A., Subramaniam, U., Electrical and Electronic Devices, Circuits and Materials: Design and Applications, CRC Press (2021).
    [46] Frackowiak, E., Meller, M., Menzel, J., Gastol, D. and Fic, K., Redox-active electrolyte for supercapacitor application, Faraday Discuss. 172 (2014) 179-198.
    [47] Fang, X.,Yao, D., An overview of solid-like electrolytes for supercapacitors, in: ASME International Mechanical Engineering Congress and Exposition, American Society of Mechanical Engineers, (56284) (2013) V06AT07A071.
    [48] Vong, M., Speirs, E., Klomkliang, C., Akinwumi, I., Nuansing, W., Radacsi, N., Controlled three-dimensional polystyrene micro-and nano-structures fabricated by three-dimensional electrospinning, RSC Adv. 8 (2018) 15501-15512.
    [49] Debecker, D.P., Kuok (Mimi) Hii, K., Moores, A., Rossi, L.M., Sels, B., Allen, D.T. and Subramaniam, B., Shaping effective practices for incorporating sustainability assessment in manuscripts submitted to ACS sustainable Chemistry & engineering: Catalysis and catalytic processes, ACS Sustain. Chem. Eng. 9 (2021) 4936-4940.
    [50] Gong, K., Fang, Q., Gu, S., Li, S.F.Y., Yan, Y., Nonaqueous redox-flow batteries: organic solvents, supporting electrolytes, and redox pairs, Energy Environ. Sci. 8 (2015) 3515-3530.
    [51] Winsberg, J., Hagemann, T., Janoschka, T., Hager, M.D., Schubert, U.S., Redox‐flow batteries: from metals to organic redox‐active materials, Angew. Chem. Int. Ed. 56 (2017) 686-711.
    [52] Poizot, P. and Dolhem, F., Clean energy new deal for a sustainable world: from non-CO2 generating energy sources to greener electrochemical storage devices, Energy Environ. Sci. 4 (2011) 2003-2019.
    [53] Pan, F., Wang, Q., Redox species of redox flow batteries: A review. Molecules, 20 (2015) 20499-20517.
    [54] Lai, Q., Zhang, H., Li, X., Zhang, L., Cheng, Y., A novel single flow zinc–bromine battery with improved energy density, J. Power Sources 235 (2013) 1-4.
    [55] Chakrabarti, M.H., Dryfe, R.A.W., Roberts, E.P.L., Evaluation of electrolytes for redox flow battery applications, Electrochim. Acta 52 (2007) 2189-2195.
    [56] Winsberg, J., Janoschka, T., Morgenstern, S., Hagemann, T., Muench, S., Hauffman, G., Gohy, J.F., Hager, M.D., Schubert, U.S., Poly (TEMPO)/zinc hybrid‐flow battery: A novel,“green,” high voltage, and safe energy storage system, Adv. Mater. 28 (2016) 2238-2243.
    [57] Huskinson, B., Marshak, M.P., Suh, C., Er, S., Gerhardt, M.R., Galvin, C.J., Chen, X., Aspuru-Guzik, A., Gordon, R.G., Aziz, M.J., A metal-free organic–inorganic aqueous flow battery, Nature 505 (7482) (2014) 195-198.
    [58] Muench, S., Wild, A., Friebe, C., Häupler, B., Janoschka, T. and Schubert, U.S., Polymer-based organic batteries. Chemical reviews, Chem. Rev. 116 (2016) 9438-9484.
    [59] Luo, J., Hu, B., Debruler, C., Bi, Y., Zhao, Y., Yuan, B., Hu, M., Wu, W., Liu, T.L., Unprecedented capacity and stability of ammonium ferrocyanide catholyte in pH neutral aqueous redox flow batteries, Joule 3 (2019) 149-163.
    [60] Huskinson, B., Marshak, M., Gerhardt, M., Aziz, M.J., Cycling of a quinone-bromide flow battery for large-scale electrochemical energy storage. ECS Trans. (2014).
    [61] Yang, B., Hoober-Burkhardt, L., Wang, F., Prakash, G.S., Narayanan, S.R., Narayanan, An inexpensive aqueous flow battery for large-scale electrical energy storage based on water-soluble organic redox couples, J. Electrochem. Soc.161 (2014) A1371.
    [62] Lin, K., Gómez-Bombarelli, R., Beh, E.S., Tong, L., Chen, Q., Valle, A., Aspuru-Guzik, A., Aziz, M.J., Gordon, R.G., A redox-flow battery with an alloxazine-based organic electrolyte, Nat. Energy 1 (2016) 1-8.
    [63] A. Orita, M.G. Verde, M. Sakai, Y.S.J.N.c. Meng, A biomimetic redox flow battery based on flavin mononucleotide, Nat. Commun. 7 (2016) 1-8.
    [64] Hollas, A., Wei, X., Murugesan, V., Nie, Z., Li, B., Reed, D., Liu, J., Sprenkle, V., Wang, W., A biomimetic high-capacity phenazine-based anolyte for aqueous organic redox flow batteries, Nat. Energy 3 (2018) 508-514.
    [65] Ding, Y., Yu, G., Yu, A bio‐inspired, heavy‐metal‐free, dual‐electrolyte liquid battery towards sustainable energy storage, Angew. Chem. 128 (2016) 4850-4854.
    [66] Wiberg, C., Carney, T.J., Brushett, F., Ahlberg, E., Wang, E., Dimerization of 9, 10-anthraquinone-2, 7-Disulfonic acid (AQDS), Electroch. Acta 317 (2019) 478-485.
    [67] Gerhardt, M.R., Tong, L., Gómez‐Bombarelli, R., Chen, Q., Marshak, M.P., Galvin, C.J., Aspuru‐Guzik, A., Gordon, R.G., Aziz, M.J., Anthraquinone derivatives in aqueous flow batteries, Adv.Energy Mater. 7 (2017) 1601488.
    [68] Kwabi, D.G., Wong, A.A, Aziz, M.J., Rational evaluation and cycle life improvement of quinone-based aqueous flow batteries guided by in-line optical spectrophotometry, J. Electrochem. Soc.165 (2018) A1770.
    [69] Hu, B., DeBruler, C., Rhodes, Z., Liu, T.L., Long-cycling aqueous organic redox flow battery (AORFB) toward sustainable and safe energy storage, 139 J. Am. Chem. Soc. 139 (2017) 1207-1214.
    [70] Janoschka, T., Martin, N., Hager, M.D., Schubert, U.S., An aqueous redox‐flow battery with high capacity and power: the TEMPTMA/MV system, Angew. Chem. Int. Ed. 55 (2016) 14427-14430.
    [71] Zanfirescu, A., Cristea, A. N., Nitulescu, G. M., Velescu, B. S., Gradinaru, D, Chronic monosodium glutamate administration induced hyperalgesia in mice. Nutrients 10 (2017) 1.
    [72] Adams, G.B., Electrically rechargeable battery, in, Google Patents, (1979).
    [73] Sánchez-Díez, E., Ventosa, E., Guarnieri, M., Trovò, A., Flox, C., Marcilla, R., Soavi, F., Mazur, P., Aranzabe, E., Ferret, R., Redox flow batteries: Status and perspective towards sustainable stationary energy storage, J. Power Sources 481 (2021) 228804.
    [74] Lin, K., Chen, Q., Gerhardt, M.R., Tong, L., Kim, S.B., Eisenach, L., Valle, A.W., Hardee, D., Gordon, R.G., Aziz, M.J., Marshak, M.P., Alkaline quinone flow battery, Science 349 (2015) 1529-1532.
    [75] Gauthier, M., Carney, T.J., Grimaud, A., Giordano, L., Pour, N., Chang, H.H., Fenning, D.P., Lux, S.F., Paschos, O., Bauer, C., Maglia, F., Electrode–electrolyte interface in Li-ion batteries: current understanding and new insights, J. Phys. Chem. Lett. 6 (2015) 4653-4672.
    [76] Chen, R., Toward high‐voltage, energy‐dense, and durable aqueous organic redox flow batteries: role of the supporting electrolytes, ChemElectroChem. 6 (2019) 603-612.
    [77] Li, Z., Lu, Y.C., Material design of aqueous redox flow batteries: fundamental challenges and mitigation strategies, Adv. Mater. 32 (2020) 2002132.
    [78] Wedege, K., Dražević, E., Konya, D., Bentien, A., Organic redox species in aqueous flow batteries: redox potentials, chemical stability and solubility, Sci. rep. 6 (2016) 1-13.
    [79] Lallo, E., Khataee, A., Lindström, R.W., Vanadium Redox Flow Battery Using Aemion™ Anion Exchange Membranes, Processes 10 (2022) 270.
    [80] Yuan, J., Pan, Z.Z., Jin, Y., Qiu, Q., Zhang, C., Zhao, Y., Li, Y., Membranes in non-aqueous redox flow battery: A review, J. Power Sources 500 (2021) 229983.
    [81] Janoschka, T., Martin, N., Martin, U., Friebe, C., Morgenstern, S., Hiller, H., Hager, M.D., Schubert, U.S., An aqueous, polymer-based redox-flow battery using non-corrosive, safe, and low-cost materials, Nature 527 (2015) 78-81.
    [82] Zhen, Y.; Li, Y., Redox flow battery. In Studies in Surface Science and Catalysis, Elsevier 179 (2020) 385-413.
    [83] Zhang, C., Zhang, L., Ding, Y., Peng, S., Guo, X., Zhao, Y., Yu, G. Progress and prospects of next-generation redox flow batteries, Energy Storage Mater. 15 (2018) 324-350.
    [84] Gandomi, Y. A., Aaron, D. S., Houser, J. R., Daugherty, M. C., Clement, J. T., Pezeshki, A. M., Mench, M. M. Critical review—Experimental diagnostics and material characterization techniques used on redox flow batteries, J. Electrochem. Soc. 165 (2018) A970.
    [85] Stokes, D., Principles and practice of variable pressure/environmental scanning electron microscopy (VP-ESEM). 2008: John Wiley & Sons.
    [86] Hesse, M., Meier, H., Zeeh, B., Spectroscopic methods in organic chemistry, Springer Nat. (1997).
    [87] Sibilia, J.P., A guide to materials characterization and chemical analysis, John Wiley & Sons, Applied Optics 28 (1989) 1444.
    [88] C.A.M. Society, Journal of the Chinese Advanced Materials Society, Taylor & Francis Group, (2013).
    [89] Fang, X., Li, Z., Zhao, Y., Yue, D., Zhang, L., Wei, X., Multielectron Organic Redoxmers for Energy-Dense Redox Flow Batteries, ACS Mater. Lett. 4 (2022) 277-306.
    [90] Varcoe, J.R., Atanassov, P., Dekel, D.R., Herring, A.M., Hickner, M.A., Kohl, P.A., Kucernak, A.R., Mustain, W.E., Nijmeijer, K., Scott, K., Xu, T., Anion-exchange membranes in electrochemical energy systems, Energy Environ. Sci. 7 (2014) 3135-3191.
    [91] Luo, X., Rojas-Carbonell, S., Yan, Y., Kusoglu, A., Structure-transport relationships of poly (aryl piperidinium) anion-exchange membranes: Eeffect of anions and hydration, J. Membrane Sci. 598 (2020) 117680.
    [92] Radulovic, L.L., Wojcinski, Z.W., PTFE (polytetrafluoroethylene; teflon®). (2014).
    [93] Kaczur, J. J., Yang, H., Liu, Z., Sajjad, S. D., Masel, R. I, Carbon dioxide and water electrolysis using new alkaline stable anion membranes, Frontiers in chemistry 6 (2018) 263.
    [94] Zhang, S., Yin, C., Xing, D., Yang, D., Jian, X., Preparation of chloromethylated/quaternized poly (phthalazinone ether ketone) anion exchange membrane materials for vanadium redox flow battery applications, J. Membrane Sci. 363 (2010) 243-249.
    [95] Hoober-Burkhardt, L., Krishnamoorthy, S., Yang, B., Murali, A., Nirmalchandar, A., Prakash, G.S., Narayanan, S.R., A new Michael-reaction-resistant benzoquinone for aqueous organic redox flow batteries. Journal of The Electrochemical Society, 164 ( 2017) A600.
    [96] Liu, Y., Lu, S., Chen, S., Wang, H., Zhang, J., Xiang, Y. A sustainable redox flow battery with alizarin-based aqueous organic electrolyte. ACS Applied Energy Materials, 2 ( 2019) 2469-2474.
    [97] Wang, C., Yang, Z., Wang, Y., Zhao, P., Yan, W., Zhu, G., Jin, Z. High-performance alkaline organic redox flow batteries based on 2-hydroxy-3-carboxy-1, 4-naphthoquinone. ACS Energy Lett. 3(10) (2018) 2404-2409.
    [98] Wang, F.M., Wagari Guji, K., Ramar, A., Merinda, L., Chien, W.C., Synthesis and Characterization of Chelidonic Acid and Chelidamic Acid as Organic Anode Materials for Energy Storage, ACS Sustain. Chem. Eng. 9 (2021) 12286-12299.
    [99] Kim, D.H., Seo, S.J., Lee, M.J., Park, J.S., Moon, S.H., Kang, Y.S., Choi, Y.W., Kang, M.S., Pore-filled anion-exchange membranes for non-aqueous redox flow batteries with dual-metal-complex redox shuttles, J. Membrane Sci. 454 (2014) 44-50.
    [100] Zhu, Y., Li, Y., Qian, Y., Zhang, L., Ye, J., Zhang, X., Zhao, Y.,Anthraquinone-based anode material for aqueous redox flow batteries operating in nondemanding atmosphere, J. Power Sources 501 (2021) 229984.
    [101] Luo, J., Sam, A., Hu, B., DeBruler, C., Wei, X., Wang, W., & Liu, T. L. Unraveling pH dependent cycling stability of ferricyanide/ferrocyanide in redox flow batteries. Nano Energy, 42 (2017) 215-221.

    無法下載圖示 全文公開日期 2025/01/27 (校內網路)
    全文公開日期 2025/01/27 (校外網路)
    全文公開日期 2025/01/27 (國家圖書館:臺灣博碩士論文系統)
    QR CODE