簡易檢索 / 詳目顯示

研究生: 謝至承
JHIH-CHENG SIE
論文名稱: 水熱合成法製備鋅銦氧硫粉體於可見光產氫之研究
Zinc Indium Oxysulfide Powder Prepared by Hydrothermal Method for Visible-Light Hydrogen Evolution
指導教授: 郭東昊
Dong-Hau Kuo
口試委員: 薛人愷
Ren-Kae Shiue
柯文政
Wen-Cheng Ke
郭東昊
Dong-Hau Kuo
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 141
中文關鍵詞: 水熱三元硫化化合物摻雜P-N junction複合材料
外文關鍵詞: Hydrothermal method, chalcogenide, doping, p-n junction, composite
相關次數: 點閱:190下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究承接過去以紫外光波長為激發光源的光催化劑Zn(O,S)奈米微球粉體研究,透過In元素的添加與比例調整,成功使吸收波長紅移至可見光區域,開發出可見光產氫之ZnInOS催化劑。Ni元素的摻雜則可大幅度改善此新系統光催化水分解產氫速率,並且引發對材料本身而言根本上的改變。接著探討此光觸媒系統複合半導體於多孔載體上的特性改變。以上特殊的物理與化學現象將利用XRD、SEM、EDS、XPS、TEM來分析;光學及電特性則藉DRS、PL、Raman、EIS分析結果,最後光催化水分解產氫量以GC儀器進行量測。
實驗前期係以水熱合成法,於150 °C下持續12小時,製備不同In比例之ZnInOS或ZI-(0, 10, 25, 50, 67, 100)粉體。進度進入中期後,考量Ni摻雜有利氫優異的特性及其與Zn相近的離子半徑,藉此調整Zn與Ni之間的含量,獲得微量Ni摻雜之ZIN-( 0, 5, 10, 20)粉體。研究後期,嘗試在提升產氫速率,以不同尺寸(300 nm、100 nm、20 nm)的SiO2多孔球作為載體,披覆30 wt%的光觸媒與2 wt%的p型半導體Ag2S奈米點 S/ZIN/A-( 300, 100, 20)進行研究。
各階段的研究結果顯示,添加In元素之ZI-( 0, 10, 25, 50, 67, 100)系統中,XRD量測得知隨著In的比例變化,組成相結構會以四個階段進行轉化,分別為Zn(O,S) 、In摻雜Zn(O,S)/In(OH)3、ZnIn2(O,S)4、In2S3。10 wt% In源以上時,發現形成立方晶In(OH)3二次相,而XPS表面分析可得知其粉體存在Zn2+、In-S、In-OH、氧-金屬(O-M) 、吸附氧(O-Abs)、S2-;67 wt% In源時,則形成ZnIn2(O,S)4結構。透過UV-vis光譜計算能隙大小,可觀測到In元素的含量與能隙的縮小成正相關;ZI-50在EIS分析中則具有最低阻抗1150 Ohm;在水分解產氫反應實驗中,ZI-50也為最高產氫效率363 μmolg-1·h-1,此結果說明雙相複合異質結構對產氫效率的影響。
當ZI-50中Ni作為微量元素摻雜時,原本的In摻雜Zn(O,S)/In(OH)3雙相複合異質結構轉變成六方晶ZnIn2S4硫屬化合物的結晶相。XRD分析發現,只需添加5 at% Ni源,相組成就會發生變化;從EDS與XPS表面分析中則發現,雖轉變為六方晶ZnIn2S4結構,但組成中缺少In3+及S2-離子,非以標準化學計量比組合而成的;以UV-vis光譜量測能隙發現Ni摻雜對能隙的影響不明顯,ZIN-( 0, 5, 10, 20)能隙約落在2.82 ~ 2.94 eV;電性部分,同為六方晶ZnIn2S4結構的結晶相,此階段非標準化學計量比組合而成的Ni摻雜ZnIn2-x(O,S)4-z相較於其他章節探討的ZI-67,ZIN-10具低EIS阻抗值且下降至1600 Ohm;產氫實驗,ZIN-10產氫效率可達1658 μmolg-1· h-1。本階段結果顯示,Ni摻雜對此光催化劑系統的相組成與結構以及電性方面有顯著的提升,以至於增強其產氫效率。
最後階段採用披覆30 wt%光催化劑與p型Ag2S於不同尺寸奈米球載體上,發現其尺寸並未因載體的添加而縮小,對光催化劑主要影響是阻擋了花球形狀的形成,僅以分散的片狀結構呈現;p型半導體的添加與原光觸媒能隙電位形成type I的P-N junction,透過微量P型Ag2S披覆,改善光生電子與電洞的遷移能力。因此,S/ZIN/A-300於水分解產氫實驗下,具最高產氫效率2127 μmolg-1· h-1。

關鍵字 : 水熱、三元硫化化合物、摻雜、P-N junction、複合材料


This research was based on the modification of previous work of UV-active Zn(O,S) catalyst to obtain visible-light driven catalyst of ZnInOS. The work had been successfully done by doping In and Ni with various amount during the hydrothermal process of Zn(O,S). At the final part, the work was improved by combining p-type Ag2S with ZnInOS onto SiO2 nanosphere. The as-prepared catalysts were analyzed with XRD, SEM, EDS, XPS, and TEM. Furthermore, the optical and electrical properties were analyzed with DRS, PL, Raman, and EIS measurements. The performance of hydrogen generation was analyzed with GC analysis.
At the first stage of experiment, ZI-(0, 10, 25, 50, 67, 100) powders were prepared by hydrothermal method at 150 °C for 12 h. The second stage was to incorporate Ni to Zn sites to prepare the ZIN-(0, 5, 10, 20) powders with different Ni amounts for considering its beneficity for hydrogen evolution. At the final stage of experiment, SiO2/ZIN/A-(300, 100, 20) catalysts were prepared with different sizes of SiO2 nanospheres as catalyst carrier. The ZInOS/Ag2S core-shell structure was coated with 30 wt% ZIN-10 as inner layer and 2 wt% p-type Ag2S as outer nanoparticle.
Analysis results for the first stage exhibited the changes in catalyst structure with the amount of indium precursor to be addied. XRD data confirmed the catalyst phases were Zn(O,S), In-doped Zn(O,S), In-doped Zn(O,S)/In(OH)3, ZnIn2(O,S)4, and In2S3. When the amount of indium precursor reached to 10 wt%, secondary phase of In(OH)3 formed. By analyzing the XPS results, ZI-25 and ZI-50 contained of Zn2+, In-S, In-OH, and O-M bonding, adsorbed O, and S2-, indicating the formation of In-doped Zn(O,S)/In(OH)3 composite. However, when amount of the indium precursor reached 67 wt%, the phase was closed to ternary chalcogenide structure of ZnIn2(O,S)4. Increasing the amount of indium precursor, the formed catalysts exhibited narrower band gap. Experimental data revealed ZI-50 exhibited the low EIS impedance of 1150 ohm and the hydrogen generation efficiency of 363 μmolg-1· h-1. Those results demonstrated the synergistic effect of In-doped Zn(O,S)/In(OH)3 composite with hetero-junction interface for hydrogen generation.
At the second stage with the addition of Ni into Zi-50, In-doped Zn(O,S)/In(OH)3 composite particles transformed to ternary chalcogenide structure of ZnIn2(O,S)4, however its composition was not in a stoichiometric ratio but in In- and S-deficient states. The Ni doping did not apparently affect the band gap values which were located in the range of 2.82 ~ 2.94 eV. The ZIN-10 had shown lower impeance of 1600 ohm and excellent hydrogen evolution rate at 1658 μmolg-1· h-1. Therefore, it was found that Ni doping could induce single phase formation and good electrical property that boosted the enhanced hydrogen generation.
At the last stage of experiment, 30 wt% ZIN-10 and 2 wt% p-type Ag2S were coated on SiO2 nanospheres with different sizes. The purpose of incorporating SiO2 is to disturb the nucleation of catalyst for having nanoparticles. It was found that the flower-liked structure of ZIN-10 formed as tiny flakes without assembling. The highest hydrogen generation rate of S/ZIN/A-300 encouragingly achieved 2127 μmolg-1· h-1.
p-type Ag2S decorated on n-type ZIN-10 to form p-n heterojunction is to control the transport property of catalyst by lowering the concentrations of excesive electron-hole pairs under light illumination.

Keywords: Hydrothermal method, chalcogenide, doping, p-n junction, composite

中文摘要 I Abstract III 致謝 VI 目錄 VII 圖目錄 XI 表目錄 XVII 第一章、緒論 1 1.1前言 1 1.2研究動機與目的 3 第二章、文獻回顧與原理 5 2.1 Zn(O,S) 5 2.1.1 ZnO–ZnS固溶體 5 2.1.2 Zn(O,S)奈米顆粒 7 2.1.3 ZnNi(O,S) 13 2.1.4 p-type NiO/n-type Zn(O,S) on SiO2 nanoparticles 15 2.2 以ZnIn2S4為主的可見光催化產氫系統 20 2.2.1 ZnIn2S4單相系統 20 2.2.2 承載MoS2之ZnIn2S4 複合光觸媒於產氫研究 22 2.2.3 ZnIn2S4/In(OH)3複合型光觸媒 26 2.2.4 一步水熱製程之ZnIn2S4/In(OH)3多孔微球 28 第三章、實驗方法與步驟 32 3.1實驗材料及規格 32 3.2實驗設備 33 3.2.1 分析電子天平 33 3.2.2 加熱磁石攪拌器 33 3.2.3 高壓釜 33 3.2.4 真空烘箱 33 3.2.5 烘箱 33 3.2.6 桌上型離心機 33 3.2.7 超音波震盪機 33 3.2.8 中空雙耳玻璃反應瓶 34 3.2.9 SIGMA 240 V-300 W氙燈 34 3.2.10 冷卻水循環系統 34 3.2.11 減壓濃縮機 34 3.3實驗步驟 35 3.3.1 混合Zn(AC)2, InCl3, TAA前驅物 35 3.3.2水熱合成粉末 37 3.3.3 300 nm SiO2多孔球合成 37 3.3.4 100 nm SiO2多孔球合成 37 3.3.5 2wt% Ag2S奈米點沉積 38 3.3.6可見光吸收之光催化劑特性量測 38 3.4分析儀器介紹及測量參數 39 3.4.1高功率X光繞射儀 (High Power X-Ray Diffractometer, XRD) 39 3.4.2顯微拉曼光譜儀 (Micro-Raman Spectrometer) 41 3.4.3高解析度場發射掃描式電子顯微鏡 (Field Emission Scanning Electron Microscopy, FESEM) 42 3.4.4 X光光電子能譜儀(X-ray Photoelectron Spectroscopy, XPS) 43 3.4.5紫外光–可見光/近紅外光分析儀 (UV-Vis-NIR Spectrophotometry) 44 3.4.6光致發螢光譜儀(Spectrofluorometer, PL) 46 3.4.7場發射穿透式電子顯微鏡(Field Emission Gun Transmission Electron Microscopy, FEG-TEM+EDS) 47 3.4.8 電化學阻抗頻譜法(Electrochemical impedance spectroscopy, EIS) 48 3.4.9 氣相層析儀(GC) 50 3.4.10 莫特-肖特基(Mott-Schottky)圖譜分析 52 第四章、結果與討論 53 4.1不同陽離子比例對ZnInOS的變化及特性探討 54 4.1.1不同比例ZI-(0, 10, 25, 50, 67, 100) ZnInOS的XRD分析 54 4.1.2不同比例ZI-(0, 10, 25, 50, 67, 100) ZnInOS SEM及EDS分析 58 4.1.3不同比例ZI-(0, 10, 25, 50, 67, 100) ZnInOS的DRS及PL分析 61 4.1.4不同比例ZI-(0, 10, 25, 50, 67, 100) ZnInOS的拉曼光譜分析 64 4.1.5不同比例ZI-(0, 10, 25, 50, 67, 100) ZnInOS的電化學阻抗分析 66 4.1.6不同比例ZI-(0, 10, 25, 50, 67, 100) ZnInOS的HER氫氣產量與產率分析 67 4.1.7 最佳產氫效率ZI-50的XPS表面元素組成分析 68 4.1.8 ZI-0, 10, 50及In(OH)3的Mott-Schottky圖譜分析 71 4.1.9 最佳產氫效率ZI-50的TEM表面形貌與元素組成分析 73 4.2不同鎳源比例添加對ZI-50的影響及特性探討 76 4.2.1不同鎳源比例(0, 5, 10, 20%)摻雜ZI-50的XRD分析 76 4.2.2不同鎳源比例(0, 5, 10, 20%)添加ZI-50其SEM與EDS分析 78 4.2.3不同鎳源比例(0, 5, 10, 20%)摻雜ZI-50其DRS與PL分析 81 4.2.4不同鎳源比例(0, 5, 10, 20%)摻雜ZI-50的拉曼光譜分析 83 4.2.5不同鎳源比例(0, 5, 10, 20%)摻雜ZI-50的電化學阻抗頻譜分析 86 4.2.6不同鎳源比例(0, 5, 10, 20%)摻雜ZI-50的HER氫氣產量與產率分析 87 4.2.7鎳源含量20%的ZIN-20 XPS表面組成元素分析 88 4.2.8 最佳產氫效率ZIN-10的Mott-Schottky圖譜分析 90 4.2.9 ZIN-20的TEM表面形貌與組成元素分析 92 4.3 P-N junction Ag2S/ZIN-10披覆於不同直徑SiO2多孔球對其特性探討 95 4.3.1於不同直徑(300, 100, 20 nm) SiO2多孔球之S/ZIN/A-x其XRD繞射分析 95 4.3.2於不同直徑(300, 100, 20 nm) SiO2多孔球之S/ZIN/A-x其SEM及EDS分析 98 4.3.3於不同直徑(300, 100, 20 nm) SiO2多孔球之S/ZIN/A-x其DRS與PL分析 100 4.3.4於不同直徑(300, 100, 20 nm) SiO2多孔球之S/ZIN/A-x其電化學阻抗頻譜分析 103 4.3.5於不同直徑(300, 100, 20 nm) SiO2多孔球之S/ZIN/A-x的HER氫氣產量與產率分析 104 4.3.6 最佳產氫效率S/ZIN/A-300的Mott-Schottky圖譜分析 105 4.3.7 S/ZIN/A-300的TEM微觀顯微結構與組成元素分析 107 4.4 光催化劑組成、結構與特性其相互關係之探討 109 第一階段 : In元素的添加與比例改變的影響 109 第二階段 : Ni摻雜對ZnInOS結構轉變與產氫效率的提升 112 第三階段 : 載體的添加和結合p型半導體的效果 113 第五章、結論 115 參考文獻 117

[1] 人類面臨的最大能源挑戰是什麼? - BBC 英倫網.
[2] 把太陽光轉成化學能:利用奈米金屬提高水分解產氫效率-科技大觀園.
[3] 把太陽光轉成化學能:擺脫庫倫作用力的光觸媒-科技大觀園.
[4] 淺談「太陽」能-光電化學及光觸媒產氫技術發展.
[5] K.H. A. Fujishima, Electrochemical photolysis of water at a semiconductor electrode, Nature, 238 (1972) 37-38.
[6] Y. Jiang, H. Ning, C. Tian, B. Jiang, Q. Li, H. Yan, X. Zhang, J. Wang, L. Jing, H. Fu, Single-crystal TiO2 nanorods assembly for efficient and stable cocatalyst-free photocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 229 (2018) 1-7.
[7] R. Shi, Z. Li, H. Yu, L. Shang, C. Zhou, G.I.N. Waterhouse, L.Z. Wu, T. Zhang, Effect of Nitrogen doping level on the performance of N-doped carbon quantum dot/TiO2 composites for photocatalytic hydrogen evolution. ChemSusChem, 10 (2017) 4650-4656.
[8] D. Cao, Q. Wang, Y. Wu, S. Zhu, Y. Jia, R. Wang, Solvothermal synthesis and enhanced photocatalytic hydrogen production of Bi/Bi2MoO6 co-sensitized TiO2 nanotube arrays. Separation and Purification Technology, 250 (2020) 117132.
[9] L. Sun, Y. Yuan, F. Wang, Y. Zhao, W. Zhan, X. Han, Selective wet-chemical etching to create TiO2@MOF frame heterostructure for efficient photocatalytic hydrogen evolution. Nano Energy, 74 (2020) 104909.
[10] P. Gomathisankar, K. Hachisuka, H. Katsumata, T. Suzuki, K. Funasaka, S. Kaneco, Photocatalytic hydrogen production with CuS/ZnO from aqueous Na2S + Na2SO3 solution. International Journal of Hydrogen Energy, 38 (2013) 8625-8630.
[11] X. Liu, L. Liu, Z. Yao, Z. Yang, H. Xu, Enhanced Visible-Light-driven photocatalytic hydrogen evolution and NO photo-oxidation capacity of ZnO/g-C3N4 with N dopant. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 599 (2020) 124869.
[12] K.S.a.H. Arakawa*, Photocatalytic decomposition of water and photocatalytic reduction of carbon dioxide over ZrO2 catalyst.National Chemical Laboratory for Industry, 97 (1993) 531-533.
[13] F. Li, Y. Jiao, J. Liu, Q. Li, C. Guo, C. Tian, B. Jiang, Promoting the spatial charge separation by building porous ZrO2@TiO2 heterostructure toward photocatalytic hydrogen evolution. Journal of Colloid and Interface Science, 561 (2020) 568-575.
[14] T. Takata, K. Shinohara, A. Tanaka, M. Hara, J. Kondo, K. Domen, A highly active photocatalyst for overall water splitting with a hydrated layered perovskite structure. Journal of photochemistry and photobiology A: Chemistry, 106 (1997) 45-49.
[15] H.G. Kim, D.W. Hwang, S.W. Bae, J.H. Jung, J.S. Lee, Photocatalytic water splitting over La2Ti2O7 synthesized by the polymerizable complex method. Catalysis letters, 91 (2003) 193-198.
[16] D.W. Hwang, H.G. Kim, J. Kim, K.Y. Cha, Y.G. Kim, J.S. Lee, Photocatalytic water splitting over highly donor-doped (110) layered Perovskites. Journal of Catalysis, 193 (2000) 40-48.
[17] A. Kudo, H. Kato, Effect of lanthanide-doping into NaTaO3 photocatalysts for efficient water splitting. Chemical Physics Letters, 331 (2000) 373-377.
[18] H. Kato, A. Kudo, Water splitting into H2 and O2 on alkali tantalate photocatalysts ATaO3 (A= Li, Na, and K). The Journal of Physical Chemistry B, 105 (2001) 4285-4292.
[19] K. He, M. Li, L. Guo, Preparation and photocatalytic activity of PANI-CdS composites for hydrogen evolution. International Journal of Hydrogen Energy, 37 (2012) 755-759.
[20] C. Li, J. Yuan, B. Han, W. Shangguan, Synthesis and photochemical performance of morphology-controlled CdS photocatalysts for hydrogen evolution under Visible Light. International Journal of Hydrogen Energy, 36 (2011) 4271-4279.
[21] H. Yan, J. Yang, G. Ma, G. Wu, X. Zong, Z. Lei, J. Shi, C. Li, Visible-Light-driven hydrogen production with extremely high quantum efficiency on Pt–PdS/CdS photocatalyst. Journal of Catalysis, 266 (2009) 165-168.
[22] W. Yao, C. Huang, N. Muradov, A. T-Raissi, A novel Pd–Cr2O3/CdS photocatalyst for solar hydrogen production using a regenerable sacrificial donor. International Journal of Hydrogen Energy, 36 (2011) 4710-4715.
[23] G. Li, T. Xu, R. He, C. Li, J. Bai, Hollow cadmium sulfide tubes with novel morphologies for enhanced stability of the photocatalytic hydrogen evolution. Applied Surface Science, 495 (2019) 143642.
[24] Z. Bin, C. Xiaohua, T. Qianxiang, C. Chuansheng, H. Aiping, Ordered mesoporous necklace-like ZnS on graphene for use as a high performance photocatalyst. Applied Surface Science, 308 (2014) 321-327.
[25] H.C. Ong, R.P.H. Chang, Optical constants of wurtzite ZnS thin films determined by spectroscopic ellipsometry. Applied Physics Letters, 79 (2001) 3612-3614.
[26] Z. Lei, W. You, M. Liu, G. Zhou, T. Takata, M. Hara, K. Domen, C. Li, Photocatalytic water reduction under Visible Light on a novel ZnIn2S4 catalyst synthesized by hydrothermal method. Chemical Communication, 17 (2003) 2142-2143.
[27] J.A. Kalomiros, A.N. Anagnostopoulos, J. Spyridelis, Temperature dependence of the energy gap and some electrical properties of Zn2In2S5 single crystals. Semiconductor Science Technology, 4 (1989) 536-542.
[28] H.M. Chen, C.K. Chen, R.-S. Liu, C.-C. Wu, W.-S. Chang, K.-H. Chen, T.-S. Chan, J.-F. Lee, D.P. Tsai, A new approach to Solar hydrogen production: a ZnO-ZnS solid solution nanowire array photoanode. Advanced Energy Materials, 1 (2011) 742-747.
[29] Y.Z. Yoo, Z.-W. Jin, T. Chikyow, T. Fukumura, M. Kawasaki, H. Koinuma, S doping in ZnO film by supplying ZnS species with pulsed-laser-deposition method. Applied Physics Letters, 81 (2002) 3798-3800.
[30] H. Abdullah, D.H. Kuo, X. Chen, High efficient noble metal free Zn(O,S) nanoparticles for hydrogen evolution. International Journal of Hydrogen Energy, 42 (2017) 5638-5648.
[31] R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta crystallographica section A: Crystal Physics, Diffraction, Theoretical and general Crystallography, 32 (1976) 751-767.
[32] Y.M. Chiang, D.P. Birnie, W.D. Kingery, Physical ceramics-principals for ceramic science and engineering. (1997).
[33] N.S. Gultom, H. Abdullah, D.H. Kuo, Enhanced photocatalytic hydrogen production of noble-metal free Ni-doped Zn(O,S) in ethanol solution. International Journal of Hydrogen Energy, 42 (2017) 25891-25902.
[34] P.D. Tran, L. Xi, S.K. Batabyal, L.H. Wong, J. Barber, J.S.C. Loo, Enhancing the photocatalytic efficiency of TiO2 nanopowders for H2 production by using non-noble transition metal co-catalysts. Physical Chemistry Chemical Physics, 14 (2012) 11596-11599.
[35] L. Li, B. Cheng, Y. Wang, J. Yu, Enhanced photocatalytic H2-production activity of bicomponent NiO/TiO2 composite nanofibers. J Colloid Interface Science, 449 (2015) 115-121.
[36] H. Abdullah, N.S. Gultom, D.H. Kuo, Depletion-zone size control of p-type NiO/n-type Zn(O,S) nanodiodes on high-surface-area SiO2 nanoparticles as a strategy to significantly enhance hydrogen evolution rate. Applied Catalysis B: Environmental, 261 (2020) 118223.
[37] H. Abdullah, D.H. Kuo, Facile Synthesis of n-type (AgIn)xZn2(1-x)S2/p-type Ag2S nanocomposite for Visible Light photocatalytic reduction to detoxify Hexavalent Chromium. ACS Applied Materials Interfaces, 7 (2015) 26941-26951.
[38] O. Ahmed Zelekew, D.H. Kuo, A two-oxide nanodiode system made of double-layered p-type Ag2O@n-type TiO2 for rapid reduction of 4-nitrophenol. Physical Chemistry Chemical Physics, 18 (2016) 4405-4414.
[39] G. Chen, N. Ding, F. Li, Y. Fan, Y. Luo, D. Li, Q. Meng, Enhancement of photocatalytic H2 evolution on ZnIn2S4 loaded with in-situ photo-deposited MoS2 under Visible Light irradiation. Applied Catalysis B: Environmental, 160-161 (2014) 614-620.
[40] M. Geng, Y. Peng, Y. Zhang, X. Guo, F. Yu, X. Yang, G. Xie, W. Dong, C. Liu, J. Li, J. Yu, Hierarchical ZnIn2S4: A promising cocatalyst to boost Visible-Light-driven photocatalytic hydrogen evolution of In(OH)3. International Journal of Hydrogen Energy, 44 (2019) 5787-5798.
[41] L.K. Gallos, A.N. Anagnostopoulos, P. Argyrakis, Conduction anisotropy in layered semiconductors. Physical Review B Condens Matter, 50 (1994) 14643-14646.
[42] H. Zhao, T. Zhang, D. Shan, Y. Zhu, G. Gao, Y. Liu, J. Liu, M. Liu, W. You, ZnIn2S4/In(OH)3 hollow microspheres fabricated by one-step l-cysteine-mediated hydrothermal growth for enhanced hydrogen production and MB degradation. International Journal of Hydrogen Energy, 45 (2020) 13975-13984.
[43] X. Wang, Z. Feng, J. Shi, G. Jia, S. Shen, J. Zhou, C. Li, Trap states and carrier dynamics of TiO2 studied by photoluminescence spectroscopy under weak excitation condition. Physical Chemistry Chemical Physics, 12 (2010) 7083-7090.
[44] M. Scocioreanu, M. Baibarac, I. Baltog, I. Pasuk, T. Velula, Photoluminescence and Raman evidence for mechanico-chemical interaction of polyaniline-emeraldine base with ZnS in cubic and hexagonal phase. Journal of Solid State Chemistry, 186 (2012) 217-223.
[45] C. Razzetti, P.P. Lottici, L. Zanotti, Raman spectroscopy in AB2X4 pseudoternary layered compounds. Journal of Molecular Structure, 115(1984) 153-156
[46] S. Shen, L. Zhao, X. Guan, L. Guo, Improving Visible-Light photocatalytic activity for hydrogen evolution over ZnIn2S4: A case study of alkaline-earth metal doping. Journal of Physics and Chemistry of Solids, 73 (2012) 79-83.
[47] E. Kärber, K. Otto, A. Katerski, A. Mere, M. Krunks, Raman spectroscopic study of In2S3 films prepared by spray pyrolysis. Materials Science in Semiconductor Processing, 25 (2014) 137-142.
[48] I. Tateishi, M. Furukawa, H. Katsumata, S. Kaneco, Improvement of Photocatalytic H2-generation under Visible Light irradiation by controlling the band gap of ZnIn2S4 with Cu and In. Catalysts, 9 (2019) 681.
[49] L.B. Hoch, T.E. Wood, P.G. O'Brien, K. Liao, L.M. Reyes, C.A. Mims, G.A. Ozin, The rational design of a single-component photocatalyst for gas-phase CO2 reduction using both UV and Visible Light. Advanced Science (Weinh), 1 (2014) 1400013.
[50] C. Bi, L. Pan, M. Xu, J. Yin, Z. Guo, L. Qin, H. Zhu, J.Q. Xiao, Raman spectroscopy of Co-doped wurtzite ZnS nanocrystals. Chemical Physics Letters, 481 (2009) 220-223.
[51] Y. Gu, Z. Xu, L. Guo, Y. Wan, ZnO nanoplate-induced phase transformation synthesis of the composite ZnS/In(OH)3/In2S3 with enhanced Visible-Light photodegradation activity of pollutants. CrystEngComm, 16 (2014) 10997-11006.
[52] Y. Chen, S. Hu, W. Liu, X. Chen, L. Wu, X. Wang, P. Liu, Z. Li, Controlled syntheses of cubic and hexagonal ZnIn2S4 nanostructures with different Visible-Light photocatalytic performance. Dalton Transactions, 40 (2011) 2607-2613.
[53] W. Zhao, Y. Jin, C.H. Gao, W. Gu, Z.M. Jin, Y.L. Lei, L.S. Liao, A simple method for fabricating p–n junction photocatalyst CuFe2O4/Bi4Ti3O12 and its photocatalytic activity.5 Materials Chemistry and Physics, 143 (2014) 952-962.

QR CODE