簡易檢索 / 詳目顯示

研究生: 舒菲亞
Sylvia - Ayu Pradanawati
論文名稱: 苯並咪唑鋰鹽添加劑用於鋰離子電池相關之研究
Synthesis, characterization and the kinetic study of lithium benzimidazole derivative salt in lithium ion battery
指導教授: 王復民
Fu-Ming Wang
口試委員: 張介威
Jei-Wei Chang
彭裕民
Yu-Min Peng
吳溪煌
She-huang Wu
吳乃立
Nae-Lih Wu
林昇佃
Shawn D. Lin
黃炳照
Bing Joe Hwang
學位類別: 博士
Doctor
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 157
中文關鍵詞: 三氟甲基苯並咪唑鋰鹽甲基苯並咪唑鋰鹽苯並咪唑鋰鹽鈍性膜電化學-表面電漿共振法
外文關鍵詞: lithiun trifluoromethyl benzimidazole, lithium methyl benzimidazole, Lithium benzimidazole, solid electrolyte interface (SEI), EC-SPR.
相關次數: 點閱:306下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

鋰鹽在鋰離子電池構成材料中,於正負極之間的電解液是扮演著讓正負極之間的鋰離子互相傳遞的重要角色。在第一次充放電之後,鋰鹽解離出的鋰離子會與碳酸跟形成固態電解液介面膜(SEI)。而 SEI 的構成與鋰鹽的化學穩定性需受控及減少SEI之不可逆反應,並抑制鋰鹽於高溫度與高電壓下的分解。
首先從研究發現,苯並咪唑鋰鹽與PF5藉由路易士酸反應形成pentafluoro-phosphate benzimidazole 離子。此pentafluoro-phosphate benzimidazole 離子能在高溫下,抑制PF5 的副反應與減少 LiF 和 HF。此外,pentafluoro-phosphate benzimidazole 離子形成新的 SEI 構成,且此新化合物能影響電池表現。
其次,本研究探討苯並咪唑鋰鹽應用於高溫與高電壓下,並藉由搭配正極材料 (Li1.2Ni0.2Mn0.6O2) LNMO 討論其苯並咪唑鋰鹽加入拉電子性後之影響。強拉電子性的加入,能平衡自由電子的高氧化反應,並提升電解液的電化學穩定性。就結果而言,不只是代換成-CF3,–H與–CH3 的加入一樣能藉由路易士酸反應在高電壓下穩定電解液。因此,透過 LNMO 與 MCMB 半電池結果顯示,強拉電子性的加入是適合於鋰離子電池。


Lithium salt plays a critical role in initiating an electrochemical reaction in lithium ion batteries. The Li single ions dissociate from salt and associate with carbonates to form a solid electrolyte interface (SEI) at the first charge-discharge of the battery. The SEI formation and salt chemical stability must be controlled and optimized mutually to minimize the irreversible reaction of the SEI, and to suppress the decomposition of the salt at high temperatures and high voltage application.
The first motivation in this research is the discovery of pentafluorophosphate benzimidazole anion, which is the product between benzimidazole and PF5 through Lewis acid base reaction. This new pentafluorophosphate benzimidazole anion inhibits the side reactions of PF5 that scavenge lone pair from SEI to minimize the LiF and HF production at high temperature. In addition, the new pentafluorophosphate benzimidazole anion also provides a new SEI formation, which fabricates a new chemical composition in affecting the battery performance.
The second motivation in this research is the discovery of lithium benzimidazole-based salt toward high temperature and voltage application. In this study, benzimidazole salts have been discussed electron withdrawing and donating effect on (Li1.2Ni0.2Mn0.6O2) LNMO cathode material. Strong electron withdrawing group subtitution formed to improve the elctrochemical stability of electrolyte, which is used to balanced the free electron escaping bonding at high anodic reaction. In terms of the result, -CF3 subtitution not only stabilize the electrolyte at high voltage operation, but also the Lewis acid base reaction is going to increase in comparison with –H and –CH3 subtitutions. Therefore, both LNMO and MCMB half cell result shows that strong electro withdrawing subtitution is appropiate to lithium ion battery.

摘要 i Abstract iii Acknowledgement vi Table of content viii List of figure xi List of table xv Chapter I Introduction 1 1.1 Background 1 1.2 Lihtium ion battery mechanism 4 Chapter II Literature Review 14 2.1 Lithium ion battery on high temperature and voltage 14 2.2 In-situ observation on lithium ion battery 23 2.3 Research Innovation 25 Chapter III Methodology 27 3.1 Research design 27 3.2 Material 27 3.3 Equipment 28 3.4 Experimental prosedure 28 Chapter IV In-situ formation of pentafluorophosphate benzimidazole anion stabilizes high-temperature performance of lithium-ion batteries 47 4.1 Lithium benzimidazole salt characterization 47 4.2 Analysis of ionic conductivity 49 4.3 Analysis of thermal characteristics 51 4.4 Analysis of cyclic voltammetry 53 4.5 Analysis of battery perfromance 55 4.6 Analysis of EIS characteristics 58 4.7 XPS analysis of solid electrolyte interface 63 4.8 Conclusion 68 Chapter V Lithium benzimidazole and its derivative on high temperature and high voltage battery application 69 5.1 Lithium benzimidazole derivatives characterization 69 5.2 Analysis of the electrolyte 72 5.3 Analysis of the battery performance on MCMB analysis 79 5.4 Battery performance on the LNMO analysis 90 5.5 Conclusion 99 Chapter VI In-situ kinetic investigations of electrochemical surface plasma resonance on solid electrolyte interphase formation in lithium ion battery 101 6.1 In-situ EC-SPR integration 101 6.2 Electrochemical operation and Data analysis 103 6.3 Results and Discussions 103 6.4 Conclusion 109 Chapter VII Electron Donating and Withdrawing Effect on Solid Electrolyte Interphase Identification by In-situ kinetic investigations of electrochemical surface plasma resonance (EC-SPR) 111 7.1 Analysis of the In-situ EC-SPR 111 7.2 Analysis of the contact angle measurement 116 7.3 Analysis of Winspall simulation 117 7.4 Conclusion 118 Chapter VIII Summary 119 References 120

[1] Kim, J. B. Goodenough, and Youngsik, Challenges for rechargeable li batteries, Cemistry of Material 22 (2009) 587.
[2] S. Sabihuddin, A. E. Kiprakis, and M. Mueller, A numerical and graphical review of energy storage technologies, Energies 8 (2015) 172.
[3] Kawatsu, Shoushi, Kamino, and Yoshitake, Battery Association of Japan web site, www.baj.or.jp (2015).
[4] B. J. Landi, M. J.Ganter, C. D. Cress, R. A. DiLeo, and R. P. Raffaelle, Carbon nanotubes for lithium ion batteries, Energy and Environmental Science 2 (2009) 638.
[5] D. Linden and T. B. Reddy, Handbook of batteries, McGraw-Hill, New York 2002.
[6] Migliavacca, Gianluigi. Advanced technologies for future transmission grids, Springer, London 2013.
[7] R. Liu, J. Duay and S. B. Lee, Heterogeneous nanostructured electrode materials for electrochemical energy storage, Chemmical Communication 47 (2011) 1384
[8] Shimotake, Progress in Batteries and Solar Cells, JEC(1990).
[9] Y. W Cheng, C. K. Lin, Y. C. Chu, A. Abouimrane, Z. Chen, Y. Ren, C. P. Liu, Y. Tzeng, O. Auciello, Electrically conductive ultrananocrystalline diamond-coated natural graphite-copper anode for new long life lithium ion battery. Advanced Material 26 (2014) 3724.
[10] Z. S. Wu, W. Ren, L. Xu, F. Li, and H. M. Cheng, Doped graphene sheets as anode materials with superhigh rate and large capacity for lithium ion batteries. ACS Nano 5 (2011) 5463.
[11] N. Liu, H. Wu, M. T. McDowell, Y. Yao, C. Wang, and Y. Cui, A Yolk-Shell design for stabilized and scalable li-ion battery alloy anodes, Nano Letter 12 (2012) 3315.
[12] E. Antolini, LiCoO2: formation, structure, lithium and oxygen nonstoichiometry, electrochemical behaviour and transport properties, Solid State Ionics 170 (2004) 159.
[13] D. Belov and M. H. Yang, Failure mechanism of Li-ion battery at overcharge conditions, Journal of Solid State Electrochemistry 12 (2008) 885.
[14] D. Arumugam and G. P. Kalaignan, Electrochemical Characterizations of Curface codified LiMn2O4 cathode caterials for high temperature lithium battery applications, Thin Solid Films 520 (2011) 338.
[15] Q. Liu, S. Wang, H. Tan, Z. Yang and J. Zeng, Preparation and doping mode of doped LiMn2O4 for Li-Ion Batteries, Energies 6 (2013) 1718.
[16] J. W. Fergus, Recent developments in cathode materials for lithium ion batteries, Journal of Power Sources 195 (2010) 939.
[17] S. Hy, F. Felix, J. Rick, W. N. Su, and B. J. Hwang, Direct in situ observation of Li2O evolution on li-rich high-capacity cathode material, Li[NixLi(1−2x)/3Mn(2−x)/3]O2 (0 ≤ x ≤0.5), Journal of the American Chemical Society 136 (2014) 999.
[18] Manthiram, J. C. Knight, S. T. Myung, S. M. Oh,Y. K. Sun, Nickel-rich and lithium-rich layered oxide cathodes: Progress and Perspectives. Advanced Energy Material 6 (2016) -.
[19] P. Yan, A. Nie, J. Zheng, Y. Zhou, D. Lu, X. Zhang, R. Xu, I. Belharouak, X. Zu, J. Xiao, K. Amine, J. Liu, F. Gao, R. S. Yassar, J. G. Zhang, and C. M. Wang, evolution of lattice structure and chemical composition of the surface reconstruction layer in Li1.2Ni0.2Mn0.6O2 cathode material for lithium ion batteries, nano letters 15 (2015) 514.
[20] M. Jiang, B. Key, Y. S. Meng, and C. P. Grey, Electrochemical and Structural Study of the Layered, “Li-Excess” Lithium-Ion Battery electrode material Li[Li1/9Ni1/3Mn5/9]O2, Chemistry of Materials 21 (2009) 2733.
[21] J. Hong, H. D. Lim, M. Lee, S. W. Kim, H. Kim, S. T. Oh, G. C. Chung, and K. Kang, Critical role of oxygen evolved from layered li–excess metal oxides in lithium rechargeable batteries, Chemistry of Metrial 24 (2012) 2692
[22] K. Tikhonov and V. R. Korch, Lithium-ion battery electrolytes designed for a wide temperature range, Covalent Associates – (2006) -.
[23] S.S. Zhang, A review on electrolyte additives for lithium-ion batteries, Journal of Power Sources 162 (2006) 1379.
[24] Sheidaei, X. Xiao, X. Huang, and J. Hitt, Mechanical behavior of a battery separator in electrolyte solutions, 196 (2011) 8728.
[25] D. Linden,T. B. Reddy, Handbook of batteries, McGraw-Hill, New York 2002
[26] P. Verma, P. Maire, and P. Novák, A review of the features and analyses of the solid electrolyte interphase in li-ion batteries, Electrochimica Acta 55 (2010) 6332.
[27] L. Lu, X. Han, J. Li, J. Hua, and M. Ouyang, A Review on The Key Issues for Lithium-ion battery management in electric vehicles, Journal of Power Sources, 226 (2-13) 272.
[28] K. Smith, and C. Y. Wang, Power and thermal characterization of a lithium-ion battery pack for hybrid-electric vehicles, Journal of Power Sources 160 (2006) 662.
[29] E. Karden, S. Ploumen, B. Fricke, T. Miller, and K. Snyder, Energy storage devices for future hybrid electric vehicles, Journal of Power Sources 168 (2007) 2.
[30] B. Li, R. Guo, K.Li, C. Lu, and L. Ling, electrochemical properties of mcmb as anode for lithium ion battery, fuel chemistry 47 (2002) 187.
[31] S. Mai, M.Xu, Y.Wang, X. Liao, H. Lin, and W. Li, Lithium metal anodes for rechargeable batteries, The Royal Society of Chemistry 7 (2014) 513.,
[32] J. Zheng, H.Zheng, R. Wang, L. Ben,W. Lu,.i Chen, L. Chena and H. Li, Paper 3D visualization of inhomogeneous multi-layered structure and Young's modulus of the solid electrolyte interphase (SEI) on silicon anodes for lithium ion batteries, Physical Chemistry Chemical Physics 16 (2014) 13229.
[33] M. Lu, H. Cheng, Y. Yang, Comparison of Solid Electrolyte Interphase on the Artificia, Electrochimica Acta 53 (2008) 3539.
[34] R. Marom, S. F. Amalraj, N. Leifer, D. Jacoba and D. Aurbach, A review of advanced and practical lithium battery materials, Journal of Materials Chemistry 21 (2011) 9938.
[35] T. Bandhauer, S. Garimella, and T. F. Fuller, Electrochemical thermal modeling to evaluate battery thermal management strategies: ii. edge and internal cooling, Journal of The Electrochemical Society 162 (2015) A137.
[36] M. Nie and Brett L. Lucht, Role of Lithium Salt on Solid Electrolyte Interface (SEI) Formation and Structure in Lithium Ion Batteries, Journal of The Electrochemical Society 161 (2014) A1001.
[37] W. Li, C. Campion, B. L. Lucht, B. Ravdel, J. DiCario, and K. M. Abraham, Additives for stabilizing LiPF6-based electrolytes against thermal decomposition, Journal of The Electrochemical Society 152 (2005) A1361.
[38] E. S. Hong, S. Okada, T. Sonoda, S. Gopukumar, and J. I. Yamaki, Thermal stability of electrolytes with mixtures of LiPF6 and LiBF4 used in lithium-ion cells, Journal of The Electrochemical Society 151 (2004) A1836.
[39] X. Chen, .M Usrey, A. Pena-Hueso, R. West, and R. J. Hamers, Thermal and electrochemical stability of organosilicon electrolytes for lithium-ion batteries, Journal of Power Sources 241 (2013) 311.
[40] F. M. Wang, D. T. Shieh, J. H. Cheng, and C. R. Yang, An investigation of the salt dissociation effects on solid electrolyte interface (SEI) formation using linear carbonate-based electrolytes in lithium ion batteries, Solid State Ionics 180 (2010) 1660.
[41] V. A. Agubra and J. W. Fergus, The formation and stability of the solid electrolyte interface on the graphite anode, Journal of Power Sources 268 (2014) 153.
[42] N. S. Choi, J. T. Yeon, Y. W. Lee, J. G. Han, K. T. Lee, and S. S. Kim, Degradation of spinel lithium manganese oxides by low oxidation durability of LiPF6-based electrolyte at 60 °C, Solid State Ionics 219 (2012) 41.
[43] N. S. Choi, J. G. Han, S. Y. Ha, I. Park and C. K. Back, Recent advances in the electrolytes for interfacial stability of high-voltage cathodes in lithium-ion batteries, RSC Advances 5 (2015) 2732.
[44] H. Q. Pham, K. M. Nam, E. H. Hwang, Y. G. Kwon, H. M. Jung, and S. W. Song, Performance enhancement of 4.8 V Li1.2Mn0.525Ni0.175Co0.1O2 battery cathode using fluorinated linear carbonate as a high-voltage additive, Journal of The Electrochemical Society 14 (2014) A2002.
[45] X. Wang, H. Naito, Y. Sone, G. Segami, and S. Kuwajima, New additives to improve the first-cycle charge–discharge performance of a graphite anode for lithium-ion cells, Journal of The Electrochemical Society 152 (2005) A1996.
[46] W. Li, C. Campion, B. L. Lucht, B. Ravdel, J. D. Carlo, and K. M. Abraham Additives for stabilizing LiPF6 based electrolytes against thermal decomposition, Journal of The Electrochemical Society 152 (2005) A1361.
[47] S. I. Gonzales, W. Li, and B. L. Lucht, Hexamethylphosphoramide as a flame retarding additive for lithium-ion battery electrolytes, Journal of Power Sources 135 (2004) 291.
[48] M. Nie, J. Xia, and J. R. Dahn, Development of pyridine-boron trifluoride electrolyte additives for lithium-ion batteries, Journal of The Electrochemical Society 162 (2015) A1186.
[49] S. S. Zhang, K. Xu and T. R. Jow, A Thermal stabilizer for LiPF6 based electrolytes of li-ion cells, Electrochemical and Solid State Letter 5 (2002) A206.
[50] J. Scheers, P.Johansson, P.Szczeciński, W. Wieczorek, M. Armand, and P. Jacobsson, Benzimidazole and imidazole lithium salts for battery electrolytes, Journal of Power Sources 195 (2010) 6081.
[51] Xiao, L.Yang, and B. L. Lucht, Thermal Reactions of LiPF6 with Added LiBOB: Electrolyte Stabilization and Generation of Formula, Electrochemical and Solid State Letter 10 (2007) A241.
[52] T. J. Barbarich and P. F. Driscoll, A Lithium salt of a lewis acid-base complex of imidazolide for lithium-ion batteries, Electrochemical and Solid-State Letters 6 (2003) 6.
[53] H. B. Han, S. S. Zhou, D. J. Zhang, S. W. Feng, L. F. Li, K. Liu, W. F. Feng, J. Nie, H. Li, X. J. Huang, M. Armand, Z. B. Zhou, Lithium bis(fluorosulfonyl)imide (LiFSI) as conducting salt for nonaqueous liquid electrolytes for lithium-ion batteries: Physicochemical and electrochemical properties, Journal of Power Sources 196 (2011) 3623.
[54] C. Täubert, M. Fleischhammer, M. W. Mehrens, U. Wietelmann, and T. Buhrmester, LiBOB as electrolyte salt or additive for lithium-ion batteries based on LiNi0.8Co0.15Al0.05O2  / Graphite, Journal of The Electrochemical Society 157 (2010) A721.
[55] M. Wachtler, M.W. Mehrens, S. Ströbele, J. C. Panitz, and U. Wietelmann, The behaviour of graphite, carbon black, and Li4Ti5O2 in LiBOB-based electrolytes, Journal of Applied Electrochemistry 36 (2006) 1199.
[56] K. Xu, U. Lee, S.Zhang, M. Wood, and T. Richard, Chemical analysis of graphite/electrolyte interface formed in LiBOB based electrolytes, Electrochemical and Solid State Letter 6 (2004) A144.
[57] Y. Matsuda, M. Morita, and T. Yamashita, Conductivity of the LiBF4 / mixed ether electrolytes for secondary lithium cells, Journal of The Electrochemical Society 131 (1984) 2821.
[58] S. A. Pradanawati, F. M. Wang, and J. Rich, In situ formation of pentafluorophosphate benzimidazole anion stabilizes high-temperature performance of lithium-ion battery, Electrochemical Acta 135 (2014) 388.
[59] X. J. Wang, H. S. Lee, H. Li, X .Q. Yang, and X. J. Huang, The effects of substituting groups in cyclic carbonates for stable SEI formation on graphite anode of lithium batteries, Electrochemistry Communications 12 (2010) 386.
[60] M. Ue, Y. Sasaki, Y. Tanaka and M. Morit, Nonaqueous electrolytes with advances in solvents, Springer, New York 2014.
[61] H. Tokuda, S. I. Tabata, M. A. B. H. Susan, K. Hayamizu, and M. Watanabe, Design of polymer electrolytes based on a lithium salt of a weakly coordinating anion to realize high ionic conductivity with fast charge-transfer reaction, Journal of Physical Chemistry B 108 (2004) 11995.
[62] H. Yildirim, A. Kinaci, M. K. Y. Chan, and J. P. Greeley, First-principles analysis of defect thermodynamics and ion transport in inorganic SEI compounds: LiF and NaF, ACS Applied Materials & Interfaces 7 (2015) 18985.
[63] F. M. Wang, H. M. Cheng, H. C. Wu, S. Y. Chu, C. S. Cheng, and C. R. Yang, Novel SEI formation of maleimide-based additives and its improvement of capability and cyclicability in lithium ion batteries, Electrochimica Acta 54 (2009) 3344.
[64] J. R. Szczech and S. Jin, Nanostructured silicon for high capacity lithium battery anodes, Energy & Environmental Science 4 (2011) 56.
[65] B.V. Ratnakumar, M.C. Smart, S. Surampudi, Effects of SEI on the kinetics of lithium intercalation, Journal of Power Sources 97-98 (2001) 137.
[66] Q. Lv, Y. Liu, T. Ma, W. Zhu, and X. Qiu, hollow structured silicon anodes with stabilized solid electrolyte interphase film for lithium-ion batteries, ACS Applied Materials & Interfaces 7 (2015) 23501.
[67] S. Menkin, D. Golodnitsky, and E. Peled, Artificial solid-electrolyte interphase (SEI) for improved cycleability and safety of lithium–ion cells for EV applications, Electrochemistry Communications 11 (2009) 1789.
[68] Y. Matsuda, T. Nakajima, Y. Ohzawa, M. Koh, A. Yamauchi, M. Kagawa, and H. Aoyama, Safety improvement of lithium ion batteries by organo-fluorine compounds 132 (2011) 1174.
[69] C. K. Kim, D. S. Shin, K. E. Kim, K. Shin, J. J. Woo, S. Kim, S. Y. Hong, and N. S. Choi, Fluorinated hyperbranched cyclotriphosphazene simultaneously enhances the safety, ChemElectroChem 3 (2016) 913.
[70] F. Höök and, B. Kasemo, T. Nylander, C. Fant, K. Sott, and H. Elwing, Variations in coupled water, viscoelastic properties, and film thickness of a Mefp-1 Protein film during adsorption and cross-linking:  A Quartz Crystal Microbalance with dissipation monitoring, ellipsometry, and surface plasmon resonance study, Analytical Chemistry 73 (2001) 5796.
[71] G. J. Wegner, A. W. Wark, H. J. Lee, E. Codner, T. S. S. Fang, and R. M. Corn, Real-Time surface plasmon resonance imaging measurements for the multiplexed determination of protein adsorption/desorption kinetics and surface enzymatic reactions on peptide microarrays, Analytical Chemistry 76 (2004) 5677.
[72] X. D. Hoa, A. G. Kirk, and M. Tabrizian, Towards integrated and sensitive surface plasmon resonance biosensors: A review of recent progress, Biosensors and Bioelectronics 23 (2007) 151.
[73] S. C. B. Mannsfeld, B. C. K. Tee, R. M. Stoltenberg, C. V. H. H. Chen, S. Barman, B.V. O. Muir, A. N. Sokolov, C. Reese, and Z. Bao, Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers, Nature Materials 9 (2010) 859.
[74] H. Bu, A. Würsig, J. Vetter, M. E. Spahr, F. Krumeich, and P. Novák, SEI film formation on highly crystalline graphitic materials in lithium-ion batteries, Journal of Power Sources 153 (2006) 385.
[75] F. M. Wang, M. H. Yu, Y. J. Hsiao, Y. Tsai, B. J. Hwang, Y. Y. Wang, and C. C. Wan, Agging effect to solid electrolyte interface (SEI) membrane formation and the performance analysis of lithium ion batteries, Journal of Electrochemical Science 6 (2011) 1014.
[76] M. Nie, D. Chalasani, D. P. Abraham, Y. Chen, A. Bose, and B. L. Lucht, Lithium ion battery graphite solid electrolyte interphase revealed by microscopy and spectroscopy, Journal of Physical Chemistry C 117 (2013) 1257.
[77] S. Komaba, W. Murata, T. Ishikawa, N. Yabuuchi, T. Ozeki, T. Nakayama, A. Ogata, K. Gotoh, and K. Fujiwara, Electrochemical Na insertion and solid electrolyte interphase for hard-carbon electrodes and application to Na-ion batteries, Advanced Functional Materials 21 (2011) 3859.
[78] T. Lucas, E. Pollak, and R. Kostecki, In situ AFM studies of SEI formation at a Sn electrode, Electrochemistry Communications 11 (2009) 2157.
[79] S. K. Jeong, M. Inaba, T. Abe and Z. Ogumi, Surface Film Formation on Graphite Negative Electrode in Lithium-Ion Batteries: AFM Study in an Ethylene Carbonate-Based Solution, Journal of The Electrochemical Society 148 (2001) A989.
[80] K. C. Högström, S. Malmgren, M. Hahlin, M. Gorgoi, L.Nyholm, H. Rensmo, and K. Edström, The buried Carbon/solid electrolyte interphase in li-ion batteries studied by hard x-ray photoelectron spectroscopy, Electrochimica Acta 138 (2014) 430.
[81] E. Peled, D. Bar Tow, A. Merson, A. Gladkich, L. Burstein, and D. Golodnitsky, Composition, depth profiles and lateral distribution of materials in the SEI built on HOPG-TOF SIMS and XPS studies, Journal of Power Sources 97-98 (2001) 52.
[82] H. J. Santner, C. Korepp, M. Winter, J. O. Besenhard, and K. C. Möller, In-situ FTIR investigations on the reduction of vinylene electrolyte additives suitable for use in lithium-ion batteries, Analytical and Bioanalytical Chemistry 379 (2004) 266.
[83] A. M. Haregewoin, T. D. Shie, S. D. Lin, B. J. Hwang and F. M. Wang, An effective in situ drifts analysis of the solid electrolyte interface in lithium-ion battery, ECS Transsaction 53 (2013) 23.
[84] G. Zampardi, E. Ventosa, F. L. Mantia and W. Schuhmann, In situ visualization of Li-ion intercalation and formation of the solid electrolyte interphase on TiO2 based paste electrodes using scanning electrochemical microscopy, Chemical Communications 49 (2013) 9347.
[85] H. Bülter, F. Peters, J. Schwenzel, and G. Wittstock, Spatiotemporal changes of the solid electrolyte interphase in lithium-ion batteries detected by scanning electrochemical microscopy, Angewandte Chemie 53 (2014) 10531.
[86] Y. Y. Hu, Z. Liu, K. W. Nam, O. J. Borkiewicz, J. Cheng, X. Hua, M. T. Dunstan, X. Yu, K. M. Wiaderek, L. S. Du, K. W. Chapman, P. J. Chupas, X. Q. Yang, and C. P. Grey, Origin of additional capacities in metal oxide lithium-ion battery electrodes, Nature Materials 12 (2013) 1130.
[87] J. Xiao, J. Z. Hu, H. Chen, M. Vijayakumar, J. Zheng, H. Pan, E. D. Walter, M. Hu, X. Deng, Ju Feng, B. Y. Liaw, M. Gu, Z. D. Deng, D. Lu, S. Xu, C. Wang, and J. Liu, Following the transient reactions in lithium–sulfur batteries using an in situ nuclear magnetic resonance technique, Nano Letters 15 (2015) 3309.
[88] R. L. Sacci, N. J. Dudney, K. L. More, L. R. Parent, I. Arslan, N. D. Browning, and R. R. Unocic, Direct visualization of initial SEI morphology and growth kinetics during lithium deposition by in situ electrochemical transmission electron microscopy, Chemical Communications 50 (2014) 2104.
[89] Z. Zeng, W. I. Liang, Y. H. Chu, and H. Zheng, In situ TEM study of the Li–Au reaction in an electrochemical liquid cell, Faraday Discuss 176 (2014) -.
[90] N. Schweikert, A. Hofmann, M. Schulz, M. Scheuermann, S. T. Boles, T. Hanemann, H. Hahn, and S. Indris, Suppressed lithium dendrite growth in lithium batteries using ionic liquid electrolytes: Investigation by electrochemical impedance spectroscopy, scanning electron microscopy, and in situ 7Li nuclear magnetic resonance spectroscopy, Journal of Power Sources 228 (2013) 237.
[91] Z. Yang, B. J. Ingram, and L. Trahey, Interfacial studies of li-ion battery cathodes using in situ electrochemical quartz microbalance with dissipation, Journal of The Electrochemical Society 161 (2014) A1127.
[92] A. Hubaud, Z. Z. Yang, D. J. Schroederb, F. Dogan, L. Trahey, and J. T. Vaughey, Interfacial study of the role of SiO2 on Si anodes using electrochemical quartz crystal microbalance, Journal of Power Sources 282 (2015) 639.
[93] Z. Z. Yang, A. A. Gewirth, and L. Trahey, Investigation of fluoroethylene carbonate effects on tin-based lithium-ion battery electrodes, ACS Applied Materials and Interfaces 7 (2015) 6557.
[94] Z. Zhu, Y. Zhou, P.Yan, R. S. Vemuri, W. Xu, R. Zhao, X. Wang, S. Thevuthasan, D. R. Baer, and C. M. Wang, In situ mass spectrometric determination of molecular structural evolution at the solid electrolyte interphase in lithium-ion batteries, Nano Letter 15 (2015) 6170.
[95] G. Krishnamoorthy, E. T. Carlen, D. Kohlheyer, R. B. M. Schasfoort, and A. Van Den, Integrated Electrokinetic Sample Focusing and Surface Plasmon Resonance, Analytical Chemistry 81 (2009) 1957.
[96] Z. Wang, T. Wilkop, D. Xu, Y. Dong, G. Ma, and Q. Cheng, Surface plasmon resonance imaging for affinity analysis of aptamer–protein interactions with PDMS microfluidic chips, Analytical and Bioanalytical Chemistry 389 (2007) 819.
[97] P. Critchley, J.Kazlauskaite, R. Eason, and T. J. T. Pinheiro, Binding of prion proteins to lipid membranes, Biochemical and Biophysical Research Communications, 313 (2004) 559.
[98] S. Hong, S. Lee, I. Choi, Y. I. Yang, T. Kang, and J. Yi, Real-time analysis and direct observations of different superoxide dismutase (SOD1) molecules bindings to aggregates in temporal evolution step, Colloids and Surfaces B: Biointerfaces 101 (2013) 266.
[99] T. Guo, F. Liu, X. Liang, X. Qiu, Y. Huang, C. Xie, P. Xu, W. Mao, B.O. Guan, and J. Albert, Highly sensitive detection of urinary protein variations using tilted fiber grating sensors with plasmonic nanocoatings, Biosensors and Bioelectronics 78 (2016) 2121.
[100] V. Biju, Chemical modifications and bioconjugate reactions of nanomaterials for sensing, imaging, drug delivery and therapy, Chemical Society Reviews 43 (2014) 744.
[101] J. W. Sadowski, I. K. J. Korhonen, and J. P. K. Peltonen, Characterization of thin film and their structure in surface plasmon resonance measurement, Optical Engineering 34 (1995) 2581.
[102] Z. Xu, C.K. Park, Z. W. Zhang, and C. Chul, Organic lithium salt electrolytes having enhanced safety for rechargeable batteries and methods of making the same, US7534527B2 (2009).
[103] C. K. Dyer, P. T. Moseley, Z. Ogumi, D. A. J. Rand and B. Scrosati, Encyclopedia of Electrochemical Power Sources, Elsevier Store, - (2013).
[104] K. Izutsu, Electrochemistry in Nonaquous Solution, Willey-VCH, Weinheim (2002).
[105] D. A. Skoog, F. J. Holler and T. A. Nieman, Principles of Instrumental Analysis, Brooks Cole Publishing Co, Philadelphia (1997).
[106] B. P. Vinayan, R. Nagar, V. Raman, N. Rajalakshmi, K. S. Dhathathreyan and S. Ramaprabhu, Synthesis of graphene-multiwalled carbon nanotubes hybrid nanostructure by strengthened electrostatic interaction and its lithium ion battery application, Journal of Material Chemistry 22 (2012) 9949.
[107] C. P. Lee, P. Y. Chen, R. Vittal and K. C. Ho, Enhanced performance of a dye-sensitized solar cell with the incorporation of titanium carbide in the TiO2 matrix, Physical Chemistry Chemical Physics 12 (2010) 9249.
[108] D. Pergolesi, E. Fabbri, A. D’Epifanio, E. D. Bartolomeo, A. Tebano, S. Sanna, S. Licoccia, G. Balestrino and E. Traversa, High proton conduction in grain-boundary-free yttrium-doped barium zirconate films grown by pulsed laser deposition, Nature Materials 9 (2010) 846.
[109] Y. H. Chen, H. P. Liu, H. Y. Chen, F. J. Tsai, C. H. Chang, Y. J. Lee, W. Y. Lin and W. C. Chen, Ethylene glycol induces calcium oxalate crystal deposition in Malpighian tubules: A Drosophila model for nephrolithiasis/urolithiasis, Kidney International 80 (2011) 369.
[110] M. Jana, A. Sil, and S. Ray, Morphology of carbon nanostructures and their electrochemical performance for lithium ion battery, Journal of Physics and Chemistry of Solids 75 (2014) 60.
[111] http://www.bionavis.com/products/accessories [Online] (2016).
[112] K. Morigaki and K. Tawa, Vesicle fusion studied by surface plasmon resonance and surface plasmon fluorescence spectroscopy, Biophysical Journal 91 (2006) 1380.
[113] Takarada, T. Suzuki, K. Kanda, M. Niibe, M. Nakano, N. Ohtake, and H. Akasaka, Structural dependence of corrosion resistance of amorphous carbon films against nitric acid, Diamond and Related Materials 51 (2015) 49.
[114] S. Y. Li, P. H. Ma, X. L. Cui, Q. D. Ren, and F. Q. Li, Studies on the thermal decomposition kinetics of LiPF6 and LiBC4O8, Journal of Chemical Sciences 120 (2008) 289.
[115] T. Kawamura, A. Kimura, M. Egashira, S. Okada, and J. I. Yamaki , Thermal stability of alkyl carbonates mixed-solvent electrolytes for lithium ion cell, Journal of Power Sources 104 (2002) 260.
[116] J. T. Lee, M. S. Wu, F. M. Wang, Y. W. Lin, M. Y. Bai, and P. C. J. Chiang, Effect of aromatic esters as PC-based electrolyte additives in lithium ion batteries. Journal of Electrochemical Society 152 (2005) A1837.
[117] C. S. Cheng, W. R. Liu, and F. M. Wang, A novel ionic host SEI formation on reduced graphene oxide of lithium ion battery, Electrochimica Acta 106 (2013) 425.
[118] F. M. Wang, H. M. Cheng, H. C. Wu, S. Y. Chu, C. S. Cheng, and C. R. Yang, Novel SEI formation of maleimide-based additives and its improvement of capability and cyclicability in lithium ion batteries, Electrochimica Acta 54 (2009) 3344.
[119] J. S. Gnanaraj, E. Zinigrad, L. Asraf, H. E. Gottlieb, M. Sprecher, M. Schmidt, W. Geissler, and D. Aurbach, A Detailed Investigation of the thermal reactions of LiPF6 solution in organic carbonates using ARC and DSC, Journal of The Electrochemical Society 150 (2003) A1533.
[120] X. J. Wang, H. S. Lee, H. Li, X. Q. Yang, and X. J. Huang, The effects of substituting groups in cyclic carbonates for stable SEI formation on graphite anode of lithium batteries, Electrochemistry Communications 12 (2010) 386.
[121] Q. Wang, P. Ping, X. Zhao, G. Chu, J. Sun, and C. Chen, Thermal runaway caused fire and explosion of lithium ion battery, Journal of Power Sources 208 (2012) 210.
[122] Y. Wu, Lithium Ion Battery: Fundamental and Application, Taylor and Francis Group, New York (2015).
[123] S. Wang, W. Qiu, T. Li, B. Yu, and H. Zhao, Properties of Lithium bis(oxatlato)borate (LiBOB) as a lithium salt and cycle performance in LiMnO half cell, Journal of Electrochemical Science 1 (2006) 250.
[124] G. Ning, B. Haran, and B.N. Popov, Capacity fade study of lithium-ion batteries cycled at high discharge rates, Journal of Power Sources 117 (2003) 160.
[125] Q. Q. Qiao, L. Qin, G. R. Li, Y. L. Wang, and X. P. Gao, Sn-stabilized Li-rich layered Li(Li0.17Ni0.25Mn0.58)O2 oxide as a cathode for advanced lithium-ion batteries, Journal of Materials Chemistry A 3 (2015) 17627.
[126] X. Fang, N. Ding, X. Feng, Y. Lu, and C. H.Chen, Study of LiNi0.5Mn1.5O4 synthesized via a chloride-ammonia co-precipitation method: electrochemical performance, diffusion coefficient and capacity loss mechanism, Electrochimica Acta 54 (2009) 7471.
[127] T. Yoon, D. Kim, K. H. Park, H. Park, S. Jurng, J. Jang, J. H. Ryu, J. J. Kim, and S. M. Oh, Compositional Change of Surface Film Deposited on LiNi0.5Mn1.5O4 Positive Electrode, Journal of The Electrochemical Society 161 (2014) A519.
[128] M. Lu, H. Cheng, and Y. Yang, A comparison of solid electrolyte interphase (SEI) on the artificial graphite anode of the aged and cycled commercial lithium ion cells, Electrochimica Acta 53 (2008) 3539.
[129] J. H. Kim, N. P.W. Pieczonka, Z. Li, Y. Wu, S. Harris, and B. R. Powell, Understanding the capacity fading mechanism in LiNi0.5Mn1.5O4/graphite Li-ion batteries, Electrochimica Acta 90 (2013) 556.
[130] D. Aurbach, B. Markovsky, G. Salitra, E. Markevich, Y. Talyossef, M. Koltypin, L. Nazar, B. Ellis, and D. Kovacheva, Review on electrode-electrolyte solution interactions, related to cathode materials for Li-ion batteries, Journal of Power Sources 165 (2007) 491.
[131] R. L. Sacci, J. M. Black, N. Balke, N. J. Dudney, K. L. More, and R. R. Unocic, Nanoscale imaging of fundamental li battery chemistry: solid- electrolyte interphase formation and preferential growth of lithium metal nanoclusters, Nano Letter 12 (2015) 2011.
[132] C. J. Patridge, C. T. Love, and D. E. Ramaker, Utilization of heavy alkali dopants as a beacon to study the cathode electrolyte decomposition layer in lithium-ion batteries, Ionics 22 (2016) 51.
[133] M. Haregewoin, E. G. Leggesse, J. C. Jiang, F. M. Wang, B. J. Hwang, and S. D. Lin, Comparative study on the solid electrolyte interface formation by the reduction of alkyl carbonates in lithium ion battery, Electrochimica Acta 136 (2014) 274.
[134] K. Leung, Two-electron reduction of ethylene carbonate: A quantum chemistry re-examination of mechanisms, Chemical Physics Letters 568-569 (2013) 1.
[135] K. Leung, and A. Leenheer, How voltage drops are manifested by lithium ion configurations at interfaces and in thin films on battery electrodes, The Journal of Physical Chemistry A 119 (2015) 10234.
[136] X. L. Yao, S. Xie, C. H. Chen, Q. S. Wang, J. H. Sun, Y. L. Li, and S. X. Lu, Comparative study of trimethyl phosphite and trimethyl phosphate as electrolyte additives in lithium ion batteries, Journal of Power Sources 144 (2005) 170.
[137] M. Safari, M. Morcrette, A. Teyssot and C. Delacourt, Multimodal physics-based aging model for life prediction of li-ion batteries, Journal of The Electrochemical Society 156 (2009) A145.
[138] W.Wang, S. Kim, B.Chen, Z. Nie, J. Zhang, G. G. Xia, L. Li and Z. Yang, A new redox flow battery using Fe/V redox couples in chloride supporting electrolyte, Energy & Environmental Science 4 (2014) 4068.
[139] M. E. Orazem and B. Tribollet, Electrochemical Impedance Spectroscopy, John Wiley & Sons, New Jersey (2010).
[140] S. Fang, H. J. Lee, A. W. Wark, and R. M. Corn, Attomole microarray detection of micrornas by nanoparticle-amplified spr imaging measurements of surface polyadenylation reactions, Journal of the American Chemical Society 128 (2006) 14044.
[141] X. Chen, M. Usrey, A. Pena-Hueso, R. West, and R .J. Hamers, Thermal and electrochemical stability of organosilicon electrolytes for lithium-ion batteries, Journal of Power Sources 241 (2013) 311.
[142] W. Xing, J. B. Garrett, J. Kelly, M. Krysiak, and J. Zhang, High Performance and Safe Electrolyte Development, ECS Transactions 45 (29) (2013) 35.
[143] K. S. Gavritchev, G. A. Sharpataya, A. A. Smagin, E. N. Malyi, and V. A. Matyukha, Calorimetric study of thermal decomposition of lithium hexafluorophosphate, 73 (2004) 71.
[144] T. J. Barbarich, P. F. Driscoll, S. Izquierdo, L N. Zakharov, C. D. Incarvito, and A. L. Rheingold, New family of lithium salt for highly conductive nonaqueous electrolyte, Inorganic Chemistry 43 (2004) 7764.
[145] T. Sriana, E. G. Leggesse and J. C. Jiang, Novel benzimidazole salts for lithium ion battery electrolytes: effects of substituents, Physical Chemistry Chemical Physics 17 (2015) 16462.
[146] S. G. Patching, Surface plasmon resonance spectroscopy for characterisation of membrane protein–ligand interactions and its potential for drug discovery, Biochimica et Biophysica Acta 1838 (2014) 43.
[147] T. Viitala, N. Granqvist, S. Hallila, M. Raviña, and M. Yliperttula, Elucidating the signal responses of multi-parametric surface plasmon resonance living cell sensing: a comparison between optical modeling and drug–mdckii cell interaction measurements, PLoS ONE 8 (2013) -.

無法下載圖示 全文公開日期 2021/07/22 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE