簡易檢索 / 詳目顯示

研究生: 陳彥全
Yan-Quan Chen
論文名稱: 氙燈脈衝光退火於氧化銦鋅錫薄膜電晶體特性改善研究
Performance improvement of Indium-Zinc-Oxide Thin-Film Transistors with Xenon Pulsed-Light annealing
指導教授: 范慶麟
Ching-Lin Fan
口試委員: 李志堅
Chih-Chien Lee
劉舜維
Shun-Wei Liu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 159
中文關鍵詞: 強脈衝光退火非晶氧化銦鋅錫金屬氧化物薄膜電晶體高性能缺陷態
外文關鍵詞: Intense pulsed-light annealing, α-IZTO, Oxide-TFTs, High performance, Defect states
相關次數: 點閱:371下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

金屬氧化物半導體薄膜電晶體具有較高的載子遷移率、良好的均勻性、低製程溫度和低漏電流等優點,在透明大尺寸面板、可撓型裝置以及驅動和補償電路元件方面具有廣泛應用前景。然而,下一代高解析度和高更新率顯示器對載子遷移率要求更高,因此本研究選擇氧化銦鋅錫作為主動層材料,該材料具有比廣泛使用的氧化銦鎵鋅更高的載子遷移率,但在長時間操作中的穩定性較差。因此,我們使用氙燈脈衝光退火技術對氧化銦鋅錫進行退火處理,以顯著降低主動層的缺陷,從而提高元件的電特性和穩定性。
在本研究中,我們調節了氙燈脈衝光退火的能量、距離和次數,並與傳統爐管退火進行比較,分析了不同氙燈脈衝光退火條件對元件電特性的影響,得出最佳的氙燈脈衝光參數。我們還進行了薄膜的AFM材料片分析。此外,為了進一步提高載子遷移率,我們調節了主動層沉積時的氧氣流量和濺鍍功率,比較了不同參數下的電特性和穩定性差異。最後,基於氙燈脈衝光退火的機制與傳統爐管退火不同,我們調節了主動層的厚度,並對元件的電特性、穩定性以及薄膜進行了AFM和XRD的材料片分析。通過這些分析,我們確定在6奈米厚度的主動層下,具有最佳特性的調變參數。同時,我們對使用氙燈脈衝光退火和傳統爐管退火處理的6奈米薄膜進行了XPS材料片分析,證明氙燈脈衝光退火可以顯著減少缺陷,使載子傳輸更加順利。
在最佳的氙燈脈衝光退火以及主動層厚度條件下,我們的金屬氧化物半導體薄膜電晶體展示出卓越的電特性,包括載子遷移率(39.61 cm2/V∙s)、臨界電壓(0.24 V)、次臨界斜率(0.24 V/decade)以及開關電流比(7.31 × 108)。同時,該元件表現出良好的穩定性,包括正閘極偏壓(1.65 V)和負閘極偏壓(-1.51 V)。


Metal-oxide Thin-Film Transistors offer advantages such as high carrier mobility, good uniformity, low processing temperature, and low leakage current, making them promise for applications in transparent large-size panels, flexible devices, and driving and compensation circuit elements. However, the demand for higher carrier mobility in next-generation high-resolution and high-refresh-rate displays necessitates further improvements. This study focuses on indium-zinc-tin oxide (IZTO) as the active layer material, which exhibits higher carrier mobility compared to the commonly used indium-gallium-zinc oxide (IGZO). However, IZTO suffers from poorer stability during prolonged operation. To address this, we employed xenon pulsed-light annealing to significantly reduce defects in the IZTO active layer, thereby improving the device's electrical characteristics and stability.
In this study, we modulated the energy, distance, and number of pulses in xenon pulsed-light annealing and compared the effects with traditional furnace annealing. The impact of different xenon pulsed-light annealing conditions on the electrical characteristics of the devices was analyzed, and optimal annealing parameters were determined. Additionally, atomic force microscopy (AFM) was used for thin-film surface analysis. To further enhance carrier mobility, we varied the oxygen flow rate and increased the sputtering power, evaluating the electrical characteristics and stability under different parameter variations. Furthermore, based on the unique mechanism of xenon pulsed-light annealing, which involves short-duration pulses targeting the film surface, we modulated the thickness of the active layer. atomic force microscopy (AFM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) material analyses were performed on devices with a 6-nanometer active layer to identify the optimal parameters. XPS analysis confirmed that xenon pulsed-light annealing significantly reduced defects and facilitated smoother carrier transport.
Optimized xenon pulsed-light annealing conditions yielded remarkable electrical characteristics, including high carrier mobility (39.6 cm2/V∙s), low threshold voltage (0.24 V), subthreshold slope (0.24 V/decade), and high on/off current ratio (7.31 × 108). The devices also exhibited excellent stability, with positive gate bias (1.65 V) and negative gate bias (-1.51 V).

目錄 論文摘要 II Abstract IV 致謝 VI 目錄 VII 圖目錄 XI 表目錄 XX 第一章 緒論 1 1.1研究背景 1 1.2研究動機 4 第二章 材料特性與製程論述 6 2.1 金屬氧化物半導體材料介紹 6 2.1.1金屬氧化物半導體材料概述 6 2.1.2 非晶金屬氧化物半導體傳輸機制 7 2.1.3 非晶氧化銦鋅錫材料特性與電性影響 9 2.2 金屬氧化物薄膜電晶體結構 12 2.3 金屬氧化物薄膜電晶體操作模式 14 2.4.1 I-V 特性量測 18 2.4.2 載子遷移率 (Mobility, μ) 19 2.4.3 臨界電壓 (Threshold Voltage, VTH) 20 2.4.4 次臨界斜率 (Subthreshold Swing, S.S) 22 2.4.5 開關電流比 (On/Off Current Ratio, Ion/Ioff) 23 2.4.6 接觸電阻 (Contact Resistance, RC) 24 2.5薄膜材料特性分析 25 2.5.1 原子力顯微鏡 (Atomic Force Microscope , AFM) 25 2.5.2 紫外光/可見光光譜儀 (Ultraviolet/Visible Spectrophotometer, UV/VIS) 26 2.5.3 薄膜厚度輪廓測量儀 (Alpha-Step, α-step) 27 2.5.4 X光繞射儀(X Ray Diffractometer, XRD) 28 2.5.5 X射線光電子能譜儀 ( X-ray Photoelectron Spectroscopy, XPS) 29 第三章 氙燈退火用於氧化銦鋅錫製程參數調變與研究 31 3.1 簡介 31 3.1.1 文獻回顧 31 3.1.2 研究大綱 36 3.2 實驗步驟 36 3.3 不同脈衝光能量之元件實驗分析 44 3.3.1 不同脈衝光能量之元件電特性分析 44 3.3.2 不同脈衝光能量之元件遲滯特性分析 51 3.4 不同脈衝光距離之元件實驗分析 54 3.4.1 不同脈衝光距離之元件電特性分析 54 3.4.2 不同脈衝光距離之元件遲滯特性分析 60 3.5 不同脈衝光次數之元件實驗分析 62 3.5.1 不同脈衝光次數之元件電特性分析 62 3.5.2 不同脈衝光次數之元件遲滯特性分析 71 3.5.3 不同脈衝光次數之元件穩定性分析 74 3.5.4 不同脈衝光次數之AFM分析 77 第四章 基於氙燈退火最佳參數之氧化銦鋅錫薄膜電晶體調變與研究 80 4.1. 簡介 80 4.1.1. 文獻回顧 80 4.1.2. 研究大綱 82 4.2. 實驗步驟 82 4.3. 不同濺鍍氧氣流量比之元件實驗分析 86 4.3.1. 不同濺鍍氧氣流量比之元件電特性分析 86 4.3.2. 不同濺鍍氧氣流量比之元件遲滯特性分析 95 4.3.3. 不同濺鍍氧氣流量比之元件穩定性分析 98 4.4. 不同金屬覆蓋層後退火溫度之元件實驗分析 104 4.4.1. 不同主動層厚度之元件電特性分析 104 4.4.2. 不同主動層厚度之元件遲滯特性分析 112 4.4.3. 不同主動層厚度之元件穩定性分析 115 4.4.4. 不同主動層厚度之AFM分析 123 4.4.5. 爐管退退火與氙燈脈衝光退火之XRD分析 126 4.4.6. 爐管退火與氙燈脈衝光退火之XPS分析 126 第五章 結論與未來展望 129 5.1結論 129 5.2未來展望 131 參考文獻 132

[1] Powell, M.J. and D.H. Nicholls, " STABILITY OF AMORPHOUS-SILICON THIN-FILM TRANSISTORS, " IEE Proceedings I: Solid State and Electron Devices, vol. 130, no. 1, pp. 2-4, 1983.
[2] K. Nomura, A. Takagi, T. Kamiya, H. Ohta, M. Hirano, and H. Hosono, " AmorphousOxide Semiconductors for High-Performance Flexible Thin-Film Transistors, " Japanese Journal of Applied Physics, " vol. 45, no. 5B, pp. 4303-4308, 2006.
[3] C. L. Fan, F. P. Tseng, B. J. Li1, Y. Z. Lin, S. J. Wang, W. D. Lee, and B. R. Huang, " Improvement in reliability of amorphous indium–gallium–zinc oxide thin-filmtransistors with Teflon/SiO2 bilayer passivation under gate bias stress, " Japanese Journal of Applied Physics, " vol. 55, no. 2, 2016.
[4] https://corporate.jp.sharp.
[5] S. Wang, and M. Wong, " Stacked-Interconnect for Monolithic Integration of Low-Temperature Polysilicon and Amorphous Metal-Oxide Thin-Film Transistors, " IEEE Electron Device Letters, vol. 42, no. 9, pp. 1331-1333, 2021.
[6] C. L. Fan, W. Y. Lin, and C. Y. Chen, " New Low-Frame-Rate Compensating Pixel Circuit Based on Low-Temperature Poly-Si and Oxide TFTs for High-Pixel-Density Portable AMOLED Displays, " Micromachines, vol. 12, no. 12, 2021.
[7] 王木俊、劉傳璽," 薄膜電晶體液晶顯示器原理與實務 ",新北市,新文京開發出版 股份有限公司,2008.
[8] http://oled-news.blogspot.com/2017/03/amoled2017q3amoled.html
[9] D. H. Lee, S. Y. Han, G. S. Hermanc, and C. h. Chang, " Inkjet printed high-mobility indium zinc tin oxide thin film transistors, " Journal of Materials Chemistry, vol. 19, no. 20, pp. 3135-3137, 2009.
[10] M. Nakata, C. Zhao, and J. Kanicki, " DC sputtered amorphous In–Sn–Zn–O thin-film transistors: Electrical properties and stability, " Solid-State Electronics, vol. 116, pp. 22-29, 2016.
[11] X. Xiao, W. Deng, S. Chi, Y. Shao, X. He, L. Wang, and S. Zhang, " Effect of O2 Flow Rate During Channel Layer Deposition on Negative Gate Bias Stress-Induced Vth Shift of a-IGZO TFTs, " IEEE Transactions on Electron Devices, vol. 60, no. 12, pp. 4159-4164, 2013.
[12] S. Junfei, D. Chengyuan, D. Wenjun, W. Jie, C. Yuting, and Z. Runze, " The influence of RF power on the electrical properties of sputtered amorphous In– Ga–Zn–O thin films and devices, " Journal of Semiconductors, vol. 34, no. 8, 2013.
[13] M. Orita, H. Ohta, M. Hirano, S. Narushima, and H. Hosono, " Amorphous transparent conductive oxide InGaO3 (ZnO)m (m≤ 4): a Zn4s conductor, " Philosophical Magazine Part B, vol. 81, no. 5, pp. 501-515, 2001.
[14] D. C. Paine, T. Whitson, D. Janiac, R. Beresford, C. Ow-Yang, and B. Lewis, " A study of low temperature crystallization of amorphous thin film indium-tin-oxide, " Journal of Applied Physics, vol. 85, no. 12, pp. 8445-8450, 1999.
[15] M. Yasukawa, H. Hosono, N. Ueda, and H. Kawazoe, " Novel Transparent and Electroconductive Amorphous Semiconductor: amorphous AgSbO3 Film, " Journal of Applied Physics, vol. 34, no. 3A, pp. L281-L284, 1995.
[16] X. Zhou, S. Q. Wang, G. J. Lian, and G. C. Xiong, " Growth of n-type ZnO thin films by using mixture gas of hydrogen and argon, " Chinese Physics, vol.15, no. 1, 2006.
[17] Y. Ogo, H. Hiramatsu, K. Nomura, H. Yanagi, T. Kamiya, M. Hirano, and H. Hosono, " P- channel thin-film transistor using p-type oxide semiconductor, SnO, " Applied Physics Letters, vol. 93, no. 3, p. 032113, 2008.
[18] E. Arca, K. Fleischer, and I. V. Shvets, " Magnesium, nitrogen codoped Cr2O3: A p-type transparent conducting oxide, " Applied Physics Letters, vol. 99, no. 11, p. 111910, 2011.
[19] A. J. Bosman, and C. Crevecoeur, " Mechanism of the Electrical Conduction in Li-Doped NiO, " Physical Review, vol. 144, no. 2, pp. 763-770, 1966.
[20] D. C. Look, G. M. Renlund, R. H. Burgener, and J. R. Sizelove, " As-doped p-type ZnO produced by an evaporation∕sputtering process, " Applied Physics Letters, vol. 85, no. 22, pp. 5269-5271, 2004.
[21] M. L. Tu, Y. K. Su, and C. Y. Ma, " Nitrogen-doped p-type ZnO films prepared from nitrogen gas radio-frequency magnetron sputtering, " Journal of Applied Physics, vol. 100, no. 5, p. 053705, 2006.
[22] X. Ding, C. Qin, T. Xu, J. Song, J. Zhang, X. Jiang, and Z. Zhang, " Stability enhancement in InGaZnO thin-film transistor with a novel Al2O3/HfO2/Al2O3 as gate insulator, " Molecular Crystals and Liquid Crystals, vol. 651, no. 1, pp. 235-242, 2017.
[23] T. Kamiya, K. Nomura, and H. Hosono, " Origins of High Mobility and Low Operation Voltage of Amorphous Oxide TFTs: Electronic Structure, Electron Transport, Defects and Doping, " Journal of Display Technology, vol. 5, no. 7, pp. 273-288, 2009.
[24] H. Hosono, " Ionic amorphous oxide semiconductors: Material design, carrier transport, and device application, " Journal of Non-Crystalline Solids, vol. 352, pp. 851-858, 2006.
[25] H. Hosono, M. Yasukawa, and H. Kawazoe, " Novel oxide amorphous semiconductors: Transparent conducting amorphous oxides, " Journal of Non-Crystalline Solids, vol. 203, pp. 334-344, 1996.
[26] W. Yu, D. Han, H. Li, J. Dong, X. Zhou, Z. Yi, Z. Luo, S. Zhang, X. Zhang, and Y. Wang, " Titanium doped zinc oxide thin film transistors fabricated by cosputtering technique, " Applied Surface Science, vol. 459, pp. 345-348, 2018.
[27] Q. Tang, X. Chen, J. Wan, H. Wu, and C. Liu, " Influence of Ga Doping on Electrical Performance and Stability of ZnO Thin-Film Transistors Prepared by Atomic Layer Deposition, " IEEE Transactions on Electron Devices, vol. 67, no. 8, pp. 3129-3134, 2020.
[28] H. Hosono, K. Nomura, Y. Ogo, T. Uruga, and T. Kamiya, " Factors controlling electron transport properties in transparent amorphous oxide semiconductors, " Journal of NonCrystalline Solids, vol. 354, pp. 2796-2800, 2008.
[29] H. Q. Chiang, J. F. Wager, R. L. Hoffman, J. Jeong, and D. A. Keszler, " High mobility transparent thin-film transistors with amorphous zinc tin oxide channel layer, " Applied Physics Letters, vol. 86, no. 1, p. 013503, 2005.
[30] T. Kamiya, K. Nomura, and H. Hosono, " Present status of amorphous In-Ga-Zn-O thinfilm transistors, " Science and Technology of Advanced Materials, vol. 11, no. 4, p. 044305, Aug 2010.
[31] K. Takechi, M. Nakata, T. Eguchi, H. Yamaguchi, and S. Kaneko, " Comparison of ultraviolet photo-field effects between hydrogenated amorphous silicon and amorphous InGaZnO4 thin-film transistors, " Japanese Journal of Applied Physics, vol. 48, no. 1, p. 010203, 2009.
[32] 戴亞翔," TFT-LCD 面板的驅動與設計 ",五南圖書出版社股份有限公司,2008.
[33] J. S. Park, J. K. Jeong, Y. G. Mo, H. D. Kim, and C. J. Kim, " Control of threshold voltage in ZnO-based oxide thin film transistors, " Applied Physics Letters, vol. 93, no. 3, p. 033513, 2008.
[34] P. Barquinha, L. Pereira, G. Gonalves, R. Martins, and E. Fortunato, " The effect of deposition conditions and annealing on the performance of high-mobility GIZO TFTs, " Electrochemical and Solid-State Letters, vol. 11, no. 9, pp. H248-H251, 2008. 148
[35] J. H. Jeong, H. W. Yang, J. S. Park, J. K. Jeong, Y. G. Mo, H. D. Kim, J. Song, and C. S. Hwang, " Origin of subthreshold swing improvement in amorphous indium gallium zinc oxide transistors, " Electrochemical and Solid-State Letters, vol. 11, no. 6, pp. H157-H159, 2008.
[36] K. Ide, Y. Kikuchi, K. Nomura, M. Kimura, T. Kamiya, and H. Hosono, " Effects of excess oxygen on operation characteristics of amorphous In-Ga-Zn-O thin-film transistors, " Applied Physics Letters, vol. 99, no. 9, p. 093507, 2011
[37] P. Barquinha, A. M. Vila, G. Goncalves, L. Pereira, R. Martins, J. R. Morante, and E. Fortunato, " Gallium-indium-zinc-oxide-based thin-film transistors: Influence of the source/drain material, " IEEE Transactions on Electron Devices, vol. 55, no. 4, pp. 954- 960, 2008.
[38] J. R. Yim, S. Y. Jung, H. W. Yeon, J. Y. Kwon, Y. J. Lee, J. H. Lee, and Y. C. Joo, " Effects of metal electrode on the electrical performance of amorphous In-Ga-Zn-O thin film transistor, " Japanese Journal of Applied Physics, vol. 51, no. 1, p. 011401, 2011.
[39] E. N. Cho, J. H. Kang, and I. Yun, " Contact resistance dependent scaling-down behavior of amorphous InGaZnO thin-film transistors, " Current Applied Physics, vol. 11, no. 4, pp. 1015-1019, 2011.
[40] H. Kim, K. K. Kim, S. N. Lee, J. H. Ryon, and R. D. Dupuis, " Low resistance Ti/Au contacts to amorphous gallium indium zinc oxides, " Applied Physics Letters, vol. 98, no. 11, p. 112107, 2011.
[41] J. R. Yim, S. Y. Jung, H. W. Yeon, J. Y. Kwon, Y. J. Lee, J. H. Lee, and Y. C. Joo, " Effects of Metal Electrode on the Electrical Performance of Amorphous In–Ga–Zn–O Thin Film Transistor, " Japanese Journal of Applied Physics, vol. 51, no. 1, p.011401, 2012.
[42] Y. Shimura, K. Nomura, H. Yanagi, T. Kamiya, M. Hirano, and H. Hosono, " Specific contact resistances between amorphous oxide semiconductor In-Ga-Zn-O and metallic electrodes, " Thin Solid Films, vol. 516, no. 17, pp. 5899-5902, 2008.
[43] W. S. Kim, Y. K. Moon, K. T. Kim, J. H. Lee, B. D. Ahn, and J. W. Park, " An investigation of contact resistance between metal electrodes and amorphous gallium–indium–zinc oxide (a-GIZO) thin-film transistors, " Thin Solid Films, vol. 518, no. 22, pp. 6357-6360, 2010.
[44] L. Lu, M. Wong, " A Bottom-Gate Indium-Gallium-Zinc Oxide Thin-Film Transistor With an Inherent Etch-Stop and Annealing-Induced Source and Drain Regions, " IEEE Transactions on Electron Devices, vol. 62, no. 2, pp. 574-579, 2015.
[45] N. Kumar, J. Kumar, S. Panda, " Back-Channel Electrolyte-Gated a-IGZO Dual-Gate Thin-Film Transistor for Enhancement of pH Sensitivity Over Nernst Limit, " IEEE Electron Device Letters, vol. 37, no. 4, pp. 500-503, 2016.
[46] H. W. Lee, W. J. Cho, " Effects of vacuum rapid thermal annealing on the electrical characteristics of amorphous indium gallium zinc oxide thin films, " Journal of the Korean Physical Society, vol. 8, no. 1, 2018.
[47] C. Peng, S. Yang, C. Pan, X. L, " Effect of Two-Step Annealing on High Stability of a-IGZO Thin-Film Transistor, " IEEE Transactions on Electron Devices, vol. 67, no. 10, pp. 4262-4268, 2020.
[48] Hyun-Jun Jeong, Hyun-Mo Lee, Chung-Hyeon Ryu, Eun-Jae Park, Ki-Lim Han, Hyun-Jun Hwang, Kyung-Chul Ok, Hak-Sung Kim, and Jin-Seong Park, " Ultra-High-Speed Intense Pulsed-Light Irradiation Technique for High-Performance Zinc Oxynitride Thin-Film Transistors, " ACS Applied Materials & Interfaces, 2019, 11, 4, 4152–4158.
[49] Glenn Packard, Carolyn Spaulding, Alex Taylor, Karl Hirschman, Scott Williams, Santosh Kurinec, " Selective phosphorus doping of polycrystalline silicon on glass using self-assembled monolayer doping (MLD) and flash anneal, ", Materials Letters, Volume 305, 15 December 2021, 130780.
[50] Adam M. Weidling, Vikram S. Turkani, Bing Luo, Kurt A. Schroder, and Sarah L. Swisher, " Photonic Curing of Solution-Processed Oxide Semiconductors with Efficient Gate Absorbers and Minimal Substrate Heating for High-Performance ACS Omega, 2021, 6, 27, 17323–17334.
[51] Hyun Jae Kim, Chul Jong Han, Byungwook Yoo,J eongno Lee ,Kimoon Lee ,Kyu Hyoung Lee and Min Suk Oh, " Effects of Intense Pulsed Light (IPL) Rapid Annealing and Back-Channel Passivation on Solution-Processed In-Ga-Zn-O Thin Film Transistors Array, " Micromachines, 2020, 11(5), 508.
[52] S. Prucnal, L. Rebohle, W. Skorupa, " Doping by flash lamp annealing, " Materials Science in Semiconductor Processing, Volume 62, May 2017, Pages 115-127.
[53] Sudipta Kumar Sarkar, Dinabandhu Maji, Javed Alam Khan, Siddharth Kurup, and Dipti Gupta, " Photonic Cured Metal Oxides for Low-Cost, High-Performance, Low-Voltage, Flexible, and Transparent Thin-Film Transistors, " ACS Appl. Electron. Mater, 2022, 4, 2442–2454.
[54] M. Benwadih Orcid, R. Coppard, K. Bonrad, A. Klyszcz, and D. Vuillaume, " High Mobility Flexible Amorphous IGZO Thin-Film Transistors with a Low Thermal Budget Ultra-Violet Pulsed Light Process, " ACS Appl. Mater. Interfaces, 2016, 8, 50, 34513–34519.
[55] C. S. Fuh, P. T. Liu, W. H. Huang, and S. M. Sze, " Effect of Annealing on Defect Elimination for High Mobility Amorphous Indium-Zinc-Tin-Oxide Thin-Film Transistor, " IEEE Electron Device Letters, vol. 35, no. 11, pp. 1103-1105, 2014.
[56] R. Li, S. Dai, J. Su, Y. Ma, Y. Wang, D. Zhou, and X. Zhang, " Effect of thermal annealing on the electrical characteristics of an amorphous IZTO:Li thin film transistor fabricated using the magnetron sputtering method, " Materials Science in Semiconductor Processing, vol. 96, pp. 8-11, 2019.
[57] I. Noviyana, A. D. Lestari, M. Putri, M. S. Won, J. S. Bae, Y. W. Heo, and H. Y. Lee, " High Mobility Thin Film Transistors Based on Amorphous Indium Zinc Tin Oxide, " Materials, vol. 10, no. 7, Jun 2017.
[58] B. C. You, S. J. Wang, R. M. Ko2, J. H. Wu, C. E. Lin, " Enhanced electrical performance and reliability of Ti-IGZO thinfilm transistors with Hf1-xAlxO gate dielectrics, " Japanese Journal of Applied Physics, vol. 59, 2019.
[59] C. H. Hunga, S. J. Wanga, P. Y. Liua, C. H. Wuc, H. P. Yana, N. S. Wua, T. H. Lin, " Improving the electrical and hysteresis performance of amorphous igzo thinfilm transistors using co-sputtered zirconium silicon oxide gate dielectrics, " Materials Science in Semiconductor Processing, vol. 67, pp. 84-91, 2017.
[60] J. Raja, K. Jang, H. H. Nguyen, T. T. Trinh, W. Choi, J. Yi, " Enhancement of electrical stability of a-IGZO TFTs by improving the surface morphology and packing density of active channel, " Current Applied Physics, vol. 13, pp. 246-251, 2013.
[61] Jinbao Su , Hui Yang , Yaobin Ma , Ran Li , Lanchao Jia , Depeng Liu , Xiqing Zhang, " Annealing atmosphere-dependent electrical characteristics and bias stability of N-doped InZnSnO thin film transistors, " Materials Science in Semiconductor Processing, 113 (2020) 105040.
[62] Hui Yang, Weiguang Yang, Jinbao Su, Xiqing Zhang, " Enhancement-mode thin film transistor using amorphous phosphorus-doped Indium–Zinc–Tin-Oxide channel layer, " Materials Science in Semiconductor Processing, 137 (2022) 106228.
[63] M. Kim, H.-J. Jeong, J. Sheng, W.-H. Choi, W. Jeon, and J.-S. Park, "The impact of plasma-enhanced atomic layer deposited ZrSiOx insulators on low voltage operated In-Sn-Zn-O thin film transistors," Ceramics International, vol. 45, no. 15, pp. 19166-19172, 2019.
[64] J. W. Niu, R. X. Ma, Y. Y. Wang, S.N. Li, S. Y. Cheng, Z. L. Liu, " Effects of parameters on the performance of amorphous IGZO thin films prepared by RF magnetron sputtering, " Optoelectronics Letters, vol. 10, no. 5, pp. 347-351, Setp 2014.
[65] B. S. Yang, S. Oh, Y. J. Kim, S. J. Han, H. W. Lee, H. J. Kim, " Effect of sputter power on the photobias stability of zinc-tin-oxide field-effect transistors, " Journal of Vacuum Science & Technology B, vol. 32, no. 1, p. 011202, 2014.
[66] G. Wu, and A. K. Sahoo, " Influence of Oxygen Flow Rate on Channel Width Dependent Electrical Properties of Indium Gallium Zinc Oxide Thin-Film Transistors, " Nanomaterials, vol. 10, no. 15, pp. 1-15, 2020.
[67] E. Chong, Y. S. Chun, S. H. Kim, and S. Y. Lee, " Effect of oxygen on the threshold voltage of a-IGZO TFT, " Journal of Electrical Engineering & Technology, vol. 6, no. 4, pp. 539-542, 2011.
[68] S. Kim, Y. W. Jeon, Y. Kim, D. Kong, H. K. Jung, M. K. Bae, J. H. Lee, B. D. Ahn, S. Y. Park, J. H. Park, J. Park, H. I. Kwon, D. M. Kim, " Impact of Oxygen Flow Rate on the Instability Under Positive Bias Stresses in DC-Sputtered Amorphous InGaZnO Thin-Film Transistors, " IEEE Electron Device Letters, vol. 33, no. 1, p. 6087997, Jan 2012.
[69] X. Zhou, Y. Shao, L. Zhang, H. Lu, H. He, D. Han, Y. Wang, S. Zhang, " Oxygen Interstitial Creation in a-IGZO Thin-Film Transistors under Positive Gate-Bias Stress, " IEEE Electron Device Letters, vol. 38, no. 9, pp. 1252-1255, Sept 2017.
[70] C. C. Lo, T. E. Hsieh, " The Influences of Oxygen Incorporation on the Defect Trap States of a-IGZO Thin-film Transistors, " The Electrochemical Society, vol. 45, no. 7, pp. 239-243, 2012.
[71] Jinbao Su, Ran Li, Yaobin Ma, Shiqian Dai, Ye Wang, Hui Yang, Xiqing Zhang, " Annealing temperature effects on the structural and electrical properties of N-doped In-Zn-Sn-O thin film transistors, " Journal of Alloys and Compounds, 801 (2019) 33-39.

無法下載圖示 全文公開日期 2028/08/22 (校內網路)
全文公開日期 2028/08/22 (校外網路)
全文公開日期 2028/08/22 (國家圖書館:臺灣博碩士論文系統)
QR CODE